Search results for: error compensation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2192

Search results for: error compensation

1232 A Systems Approach to Targeting Cyclooxygenase: Genomics, Bioinformatics and Metabolomics Analysis of COX-1 -/- and COX-2-/- Lung Fibroblasts Providing Indication of Sterile Inflammation

Authors: Abul B. M. M. K. Islam, Mandar Dave, Roderick V. Jensen, Ashok R. Amin

Abstract:

A systems approach was applied to characterize differentially expressed transcripts, bioinformatics pathways, and proteins and prostaglandins (PGs) from lung fibroblasts procured from wild-type (WT), COX-1-/- and COX-2-/- mice to understand system level control mechanism. Bioinformatics analysis of COX-2 and COX-1 ablated cells induced COX-1 and COX-2 specific signature respectively, which significantly overlapped with an 'IL-1β induced inflammatory signature'. This defined novel cross-talk signals that orchestrated coordinated activation of pathways of sterile inflammation sensed by cellular stress. The overlapping signals showed significant over-representation of shared pathways for interferon y and immune responses, T cell functions, NOD, and toll-like receptor signaling. Gene Ontology Biological Process (GOBP) and pathway enrichment analysis specifically showed an increase in mRNA expression associated with: (a) organ development and homeostasis in COX-1-/- cells and (b) oxidative stress and response, spliceosomes and proteasomes activity, mTOR and p53 signaling in COX-2-/- cells. COX-1 and COX-2 showed signs of functional pathways committed to cell cycle and DNA replication at the genomics level. As compared to WT, metabolomics analysis revealed a significant increase in COX-1 mRNA and synthesis of basal levels of eicosanoids (PGE2, PGD2, TXB2, LTB4, PGF1α, and PGF2α) in COX-2 ablated cells and increase in synthesis of PGE2, and PGF1α in COX-1 null cells. There was a compensation of PGE2 and PGF1α in COX-1-/- and COX-2-/- cells. Collectively, these results support a broader, differential and collaborative regulation of both COX-1 and COX-2 pathways at the metabolic, signaling, and genomics levels in cellular homeostasis and sterile inflammation induced by cellular stress.

Keywords: cyclooxygenases, inflammation, lung fibroblasts, systemic

Procedia PDF Downloads 293
1231 Required SNR for PPM in Downlink Gamma-Gamma Turbulence Channel

Authors: Selami Şahin

Abstract:

In this paper, in order to achieve sufficient bit error rate (BER) according to zenith angle of the satellite to ground station, SNR requirement is investigated utilizing pulse position modulation (PPM). To realize explicit results, all parameters such as link distance, Rytov variance, scintillation index, wavelength, aperture diameter of the receiver, Fried's parameter and zenith angle have been taken into account. Results indicate that after some parameters are determined since the constraints of the system, to achieve desired BER, required SNR values are in wide range while zenith angle changes from small to large values. Therefore, in order not to utilize high link margin, either SNR should adjust according to zenith angle or link should establish with predetermined intervals of the zenith angle.

Keywords: Free-space optical communication, optical downlink channel, atmospheric turbulence, wireless optical communication

Procedia PDF Downloads 402
1230 Accessing Livestock Depredation by the Himalayan Wolf in Neshyang Valley, Manag, Nepal

Authors: Tenzing Lama, Ganga Ram Regmi, Thakur Silwal, Rinzin Punjok Lama

Abstract:

Livestock depredation by a wolf and associated financial loss suffered by herders is perhaps the most important issue leading to human-wolf conflict. As a result, recolonized wolves remained one of the most persecuted large carnivores in Nepal Himalaya suffering high mortality due to retaliatory killings by herdsmen. Reducing such depredation are crucial in gaining herder’s support in conservation program to ensure the long-term survival of such carnivores. In February 2018, a study was conducted through questionnaire survey with 33 herders from different settlements in Neshyang valley of Manang district to assess the status of human-wolf conflict in terms of livestock loss and herder’s attitude. A total of 36 livestock were lost to the wolf with an average loss of 1.09 ± 0.48 (SE) livestock heads per herder between March 2017 to February 2018 which represents 1.5% of the total holdings. The estimated financial value of livestock loss was equivalent to US$ 25,428 with an average of US$ 770 per herder. Majority of the herders (80%) expressed a negative attitude towards the wolf, but only a few herders (6.06%) suggested removal of the wolf from the valley. The incidences of livestock loss differed significantly with highest in day time and seasonally highest in winter, when herders freely leaves their livestock (except goat/sheep) in the pastures. Wolf showed positive selectivity to the horse (EI=0.59), yak (EI=0.24) and cattle (EI=0.14) but strong avoidance to goat/sheep (EI=-1). This study suggests that livestock depredation by wolf could be minimized through improved livestock husbandry practices and implication of mitigation measures (e.g. coral improvement) and immediate relief to the victims. Conservation education and awareness programs to enhance herders knowledge about the ecological importance of wolf, provision of relief scheme and law enforcement.

Keywords: canis lupus canco, conservation education, human wildlife conflict, compensation schemes

Procedia PDF Downloads 20
1229 Digital Rehabilitation for Navigation Impairment

Authors: Milan N. A. Van Der Kuil, Anne M. A. Visser-Meily, Andrea W. M. Evers, Ineke J. M. Van Der Ham

Abstract:

Navigation ability is essential for autonomy and mobility in daily life. In patients with acquired brain injury, navigation impairment is frequently impaired; however, in this study, we tested the effectiveness of a serious gaming training protocol as a tool for cognitive rehabilitation to reduce navigation impairment. In total, 38 patients with acquired brain injury and subjective navigation complaints completed the experiment, with a partially blind, randomized control trial design. An objective navigation test was used to construct a strengths and weaknesses profile for each patient. Subsequently, patients received personalized compensation training that matched their strengths and weaknesses by addressing an egocentric or allocentric strategy or a strategy aimed at minimizing the use of landmarks. Participants in the experimental condition received psychoeducation and a home-based rehabilitation game with a series of exercises (e.g., map reading, place finding, and turn memorization). The exercises were developed to stimulate the adoption of more beneficial strategies, according to the compensatory approach. Self-reported navigation ability (wayfinding questionnaire), participation level, and objective navigation performance were measured before and after 1 and 4 weeks after completing the six-week training program. Results indicate that the experimental group significantly improved in subjective navigation ability both 1 and 4 weeks after completion of the training, in comparison to the score before training and the scores of the control group. Similarly, goal attainment showed a significant increase after the first and fourth week after training. Objective navigation performance was not affected by the training. This navigation training protocol provides an effective solution to address navigation impairment after acquired brain injury, with clear improvements in subjective performance and goal attainment of the participants. The outcomes of the training should be re-examined after implementation in a clinical setting.

Keywords: spatial navigation, cognitive rehabilitation, serious gaming, acquired brain injury

Procedia PDF Downloads 177
1228 Application of Homer Optimization to Investigate the Prospects of Hybrid Renewable Energy System in Rural Area: Case of Rwanda

Authors: Emile Niringiyimana, LI Ji Qing, Giovanni Dushimimana, Virginie Umwere

Abstract:

The development and utilization of renewable energy (RE) can not only effectively reduce carbon dioxide (CO2) emissions, but also became a solution to electricity shortage mitigation in rural areas. Hybrid RE systems are promising ways to provide consistent and continuous power for isolated areas. This work investigated the prospect and cost effectiveness of hybrid system complementarity between a 100kW solar PV system and a small-scale 200kW hydropower station in the South of Rwanda. In order to establish the optimal size of a RE system with adequate sizing of system components, electricity demand, solar radiation, hydrology, climate data are utilized as system input. The average daily solar radiation in Rukarara is 5.6 kWh/m2 and average wind speed is 3.5 m/s. The ideal integrated RE system, according to Homer optimization, consists of 91.21kW PV, 146kW hydropower, 12 x 24V li-ion batteries with a 20kW converter. The method of enhancing such hybrid systems control, sizing and choice of components is to reduce the Net present cost (NPC) of the system, unmet load, the cost of energy and reduction of CO2. The power consumption varies according to dominant source of energy in the system by controlling the energy compensation depending on the generation capacity of each power source. The initial investment of the RE system is $977,689.25, and its operation and maintenance expenses is $142,769.39 over a 25-year period. Although the investment is very high, the targeted profits in future are huge, taking into consideration of high investment in rural electrification structure implementations, tied with an increase of electricity cost and the 5 years payback period. The study outcomes suggest that the standalone hybrid PV-Hydropower system is feasible with zero pollution in Rukara community.

Keywords: HOMER optimization, hybrid power system, renewable energy, NPC and solar pv systems

Procedia PDF Downloads 62
1227 Temporally Coherent 3D Animation Reconstruction from RGB-D Video Data

Authors: Salam Khalifa, Naveed Ahmed

Abstract:

We present a new method to reconstruct a temporally coherent 3D animation from single or multi-view RGB-D video data using unbiased feature point sampling. Given RGB-D video data, in form of a 3D point cloud sequence, our method first extracts feature points using both color and depth information. In the subsequent steps, these feature points are used to match two 3D point clouds in consecutive frames independent of their resolution. Our new motion vectors based dynamic alignment method then fully reconstruct a spatio-temporally coherent 3D animation. We perform extensive quantitative validation using novel error functions to analyze the results. We show that despite the limiting factors of temporal and spatial noise associated to RGB-D data, it is possible to extract temporal coherence to faithfully reconstruct a temporally coherent 3D animation from RGB-D video data.

Keywords: 3D video, 3D animation, RGB-D video, temporally coherent 3D animation

Procedia PDF Downloads 374
1226 Towards Automated Remanufacturing of Marine and Offshore Engineering Components

Authors: Aprilia, Wei Liang Keith Nguyen, Shu Beng Tor, Gerald Gim Lee Seet, Chee Kai Chua

Abstract:

Automated remanufacturing process is of great interest in today’s marine and offshore industry. Most of the current remanufacturing processes are carried out manually and hence they are error prone, labour-intensive and costly. In this paper, a conceptual framework for automated remanufacturing is presented. This framework involves the integration of 3D non-contact digitization, adaptive surface reconstruction, additive manufacturing and machining operation. Each operation is operated and interconnected automatically as one system. The feasibility of adaptive surface reconstruction on marine and offshore engineering components is also discussed. Several engineering components were evaluated and the results showed that this proposed system is feasible. Conclusions are drawn and further research work is discussed.

Keywords: adaptive surface reconstruction, automated remanufacturing, automatic repair, reverse engineering

Procedia PDF Downloads 326
1225 A New Framework for ECG Signal Modeling and Compression Based on Compressed Sensing Theory

Authors: Siavash Eftekharifar, Tohid Yousefi Rezaii, Mahdi Shamsi

Abstract:

The purpose of this paper is to exploit compressed sensing (CS) method in order to model and compress the electrocardiogram (ECG) signals at a high compression ratio. In order to obtain a sparse representation of the ECG signals, first a suitable basis matrix with Gaussian kernels, which are shown to nicely fit the ECG signals, is constructed. Then the sparse model is extracted by applying some optimization technique. Finally, the CS theory is utilized to obtain a compressed version of the sparse signal. Reconstruction of the ECG signal from the compressed version is also done to prove the reliability of the algorithm. At this stage, a greedy optimization technique is used to reconstruct the ECG signal and the Mean Square Error (MSE) is calculated to evaluate the precision of the proposed compression method.

Keywords: compressed sensing, ECG compression, Gaussian kernel, sparse representation

Procedia PDF Downloads 463
1224 Context-Aware Recommender System Using Collaborative Filtering, Content-Based Algorithm and Fuzzy Rules

Authors: Xochilt Ramirez-Garcia, Mario Garcia-Valdez

Abstract:

Contextual recommendations are implemented in Recommender Systems to improve user satisfaction, recommender system makes accurate and suitable recommendations for a particular situation reaching personalized recommendations. The context provides information relevant to the Recommender System and is used as a filter for selection of relevant items for the user. This paper presents a Context-aware Recommender System, which uses techniques based on Collaborative Filtering and Content-Based, as well as fuzzy rules, to recommend items inside the context. The dataset used to test the system is Trip Advisor. The accuracy in the recommendations was evaluated with the Mean Absolute Error.

Keywords: algorithms, collaborative filtering, intelligent systems, fuzzy logic, recommender systems

Procedia PDF Downloads 424
1223 Forecasting Amman Stock Market Data Using a Hybrid Method

Authors: Ahmad Awajan, Sadam Al Wadi

Abstract:

In this study, a hybrid method based on Empirical Mode Decomposition and Holt-Winter (EMD-HW) is used to forecast Amman stock market data. First, the data are decomposed by EMD method into Intrinsic Mode Functions (IMFs) and residual components. Then, all components are forecasted by HW technique. Finally, forecasting values are aggregated together to get the forecasting value of stock market data. Empirical results showed that the EMD- HW outperform individual forecasting models. The strength of this EMD-HW lies in its ability to forecast non-stationary and non- linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy comparing with eight existing forecasting methods based on the five forecast error measures.

Keywords: Holt-Winter method, empirical mode decomposition, forecasting, time series

Procedia PDF Downloads 132
1222 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus

Authors: J. K. Alhassan, B. Attah, S. Misra

Abstract:

Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.

Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus

Procedia PDF Downloads 411
1221 Time Synchronization between the eNBs in E-UTRAN under the Asymmetric IP Network

Authors: M. Kollar, A. Zieba

Abstract:

In this paper, we present a method for a time synchronization between the two eNodeBs (eNBs) in E-UTRAN (Evolved Universal Terrestrial Radio Access) network. The two eNBs are cooperating in so-called inter eNB CA (Carrier Aggregation) case and connected via asymmetrical IP network. We solve the problem by using broadcasting signals generated in E-UTRAN as synchronization signals. The results show that the time synchronization with the proposed method is possible with the error significantly less than 1 ms which is sufficient considering the time transmission interval is 1 ms in E-UTRAN. This makes this method (with low complexity) more suitable than Network Time Protocol (NTP) in the mobile applications with generated broadcasting signals where time synchronization in asymmetrical network is required.

Keywords: IP scheduled throughput, E-UTRAN, Evolved Universal Terrestrial Radio Access Network, NTP, Network Time Protocol, assymetric network, delay

Procedia PDF Downloads 361
1220 Extracting an Experimental Relation between SMD, Mass Flow Rate, Velocity and Pressure in Swirl Fuel Atomizers

Authors: Mohammad Hassan Ziraksaz

Abstract:

Fuel atomizers are used in a wide range of IC engines, turbojets and a variety of liquid propellant rocket engines. As the fuel spray fully develops its characters approach their ultimate amounts. Fuel spray characters such as SMD, injection pressure, mass flow rate, droplet velocity and spray cone angle play important roles to atomize the liquid fuel to finely atomized fuel droplets and finally form the fine fuel spray. Well performed, fully developed, fine spray without any defections, brings the idea of finding an experimental relation between the main effective spray characters. Extracting an experimental relation between SMD and other fuel spray physical characters in swirl fuel atomizers is the main scope of this experimental work. Droplet velocity, fuel mass flow rate, SMD and spray cone angle are the parameters which are measured. A set of twelve reverse engineering atomizers without any spray defections and a set of eight original atomizers as referenced well-performed spray are contributed in this work. More than 350 tests, mostly repeated, were performed. This work shows that although spray cone angle plays a very effective role in spray formation, after formation, it smoothly approaches to an almost constant amount while the other characters are changed to create fine droplets. Therefore, the work to find the relation between the characters is focused on SMD, droplet velocity, fuel mass flow rate, and injection pressure. The process of fuel spray formation begins in 5 Psig injection pressures, where a tiny fuel onion attaches to the injector tip and ended in 250 Psig injection pressure, were fully developed fine fuel spray forms. Injection pressure is gradually increased to observe how the spray forms. In each step, all parameters are measured and recorded carefully to provide a data bank. Various diagrams have been drawn to study the behavior of the parameters in more detail. Experiments and graphs show that the power equation can best show changes in parameters. The SMD experimental relation with pressure P, fuel mass flow rate Q ̇ and droplet velocity V extracted individually in pairs. Therefore, the proportional relation of SMD with other parameters is founded. Now it is time to find an experimental relation including all the parameters. Using obtained proportional relation, replacing the parameters with experimentally measured ones and drawing the graphs of experimental SMD versus proportion SMD (〖SMD〗_P), a correctional equation and consequently the final experimental equation is obtained. This experimental equation is specified to use for swirl fuel atomizers and the use of this experimental equation in different conditions shows about 3% error, which is expected to achieve lower error and consequently higher accuracy by increasing the number of experiments and increasing the accuracy of data collection.

Keywords: droplet velocity, experimental relation, mass flow rate, SMD, swirl fuel atomizer

Procedia PDF Downloads 161
1219 Autonomic Recovery Plan with Server Virtualization

Authors: S. Hameed, S. Anwer, M. Saad, M. Saady

Abstract:

For autonomic recovery with server virtualization, a cogent plan that includes recovery techniques and backups with virtualized servers can be developed instead of assigning an idle server to backup operations. In addition to hardware cost reduction and data center trail, the disaster recovery plan can ensure system uptime and to meet objectives of high availability, recovery time, recovery point, server provisioning, and quality of services. This autonomic solution would also support disaster management, testing, and development of the recovery site. In this research, a workflow plan is proposed for supporting disaster recovery with virtualization providing virtual monitoring, requirements engineering, solution decision making, quality testing, and disaster management. This recovery model would make disaster recovery a lot easier, faster, and less error prone.

Keywords: autonomous intelligence, disaster recovery, cloud computing, server virtualization

Procedia PDF Downloads 162
1218 Demand Forecasting Using Artificial Neural Networks Optimized by Particle Swarm Optimization

Authors: Daham Owaid Matrood, Naqaa Hussein Raheem

Abstract:

Evolutionary algorithms and Artificial neural networks (ANN) are two relatively young research areas that were subject to a steadily growing interest during the past years. This paper examines the use of Particle Swarm Optimization (PSO) to train a multi-layer feed forward neural network for demand forecasting. We use in this paper weekly demand data for packed cement and towels, which have been outfitted by the Northern General Company for Cement and General Company of prepared clothes respectively. The results showed superiority of trained neural networks using particle swarm optimization on neural networks trained using error back propagation because their ability to escape from local optima.

Keywords: artificial neural network, demand forecasting, particle swarm optimization, weight optimization

Procedia PDF Downloads 454
1217 Virtual Dimension Analysis of Hyperspectral Imaging to Characterize a Mining Sample

Authors: L. Chevez, A. Apaza, J. Rodriguez, R. Puga, H. Loro, Juan Z. Davalos

Abstract:

Virtual Dimension (VD) procedure is used to analyze Hyperspectral Image (HIS) treatment-data in order to estimate the abundance of mineral components of a mining sample. Hyperspectral images coming from reflectance spectra (NIR region) are pre-treated using Standard Normal Variance (SNV) and Minimum Noise Fraction (MNF) methodologies. The endmember components are identified by the Simplex Growing Algorithm (SVG) and after adjusted to the reflectance spectra of reference-databases using Simulated Annealing (SA) methodology. The obtained abundance of minerals of the sample studied is very near to the ones obtained using XRD with a total relative error of 2%.

Keywords: hyperspectral imaging, minimum noise fraction, MNF, simplex growing algorithm, SGA, standard normal variance, SNV, virtual dimension, XRD

Procedia PDF Downloads 158
1216 Optimal Mother Wavelet Function for Shoulder Muscles of Upper Limb Amputees

Authors: Amanpreet Kaur

Abstract:

Wavelet transform (WT) is a powerful statistical tool used in applied mathematics for signal and image processing. The different mother, wavelet basis function, has been compared to select the optimal wavelet function that represents the electromyogram signal characteristics of upper limb amputees. Four different EMG electrode has placed on different location of shoulder muscles. Twenty one wavelet functions from different wavelet families were investigated. These functions included Daubechies (db1-db10), Symlets (sym1-sym5), Coiflets (coif1-coif5) and Discrete Meyer. Using mean square error value, the significance of the mother wavelet functions has been determined for teres, pectorals, and infraspinatus around shoulder muscles. The results show that the best mother wavelet is the db3 from the Daubechies family for efficient classification of the signal.

Keywords: Daubechies, upper limb amputation, shoulder muscles, Symlets, Coiflets

Procedia PDF Downloads 238
1215 The Design of a Computer Simulator to Emulate Pathology Laboratories: A Model for Optimising Clinical Workflows

Authors: M. Patterson, R. Bond, K. Cowan, M. Mulvenna, C. Reid, F. McMahon, P. McGowan, H. Cormican

Abstract:

This paper outlines the design of a simulator to allow for the optimisation of clinical workflows through a pathology laboratory and to improve the laboratory’s efficiency in the processing, testing, and analysis of specimens. Often pathologists have difficulty in pinpointing and anticipating issues in the clinical workflow until tests are running late or in error. It can be difficult to pinpoint the cause and even more difficult to predict any issues which may arise. For example, they often have no indication of how many samples are going to be delivered to the laboratory that day or at a given hour. If we could model scenarios using past information and known variables, it would be possible for pathology laboratories to initiate resource preparations, e.g. the printing of specimen labels or to activate a sufficient number of technicians. This would expedite the clinical workload, clinical processes and improve the overall efficiency of the laboratory. The simulator design visualises the workflow of the laboratory, i.e. the clinical tests being ordered, the specimens arriving, current tests being performed, results being validated and reports being issued. The simulator depicts the movement of specimens through this process, as well as the number of specimens at each stage. This movement is visualised using an animated flow diagram that is updated in real time. A traffic light colour-coding system will be used to indicate the level of flow through each stage (green for normal flow, orange for slow flow, and red for critical flow). This would allow pathologists to clearly see where there are issues and bottlenecks in the process. Graphs would also be used to indicate the status of specimens at each stage of the process. For example, a graph could show the percentage of specimen tests that are on time, potentially late, running late and in error. Clicking on potentially late samples will display more detailed information about those samples, the tests that still need to be performed on them and their urgency level. This would allow any issues to be resolved quickly. In the case of potentially late samples, this could help to ensure that critically needed results are delivered on time. The simulator will be created as a single-page web application. Various web technologies will be used to create the flow diagram showing the workflow of the laboratory. JavaScript will be used to program the logic, animate the movement of samples through each of the stages and to generate the status graphs in real time. This live information will be extracted from an Oracle database. As well as being used in a real laboratory situation, the simulator could also be used for training purposes. ‘Bots’ would be used to control the flow of specimens through each step of the process. Like existing software agents technology, these bots would be configurable in order to simulate different situations, which may arise in a laboratory such as an emerging epidemic. The bots could then be turned on and off to allow trainees to complete the tasks required at that step of the process, for example validating test results.

Keywords: laboratory-process, optimization, pathology, computer simulation, workflow

Procedia PDF Downloads 286
1214 Solution of S3 Problem of Deformation Mechanics for a Definite Condition and Resulting Modifications of Important Failure Theories

Authors: Ranajay Bhowmick

Abstract:

Analysis of stresses for an infinitesimal tetrahedron leads to a situation where we obtain a cubic equation consisting of three stress invariants. This cubic equation, when solved for a definite condition, gives the principal stresses directly without requiring any cumbersome and time-consuming trial and error methods or iterative numerical procedures. Since the failure criterion of different materials are generally expressed as functions of principal stresses, an attempt has been made in this study to incorporate the solutions of the cubic equation in the form of principal stresses, obtained for a definite condition, into some of the established failure theories to determine their modified descriptions. It has been observed that the failure theories can be represented using the quadratic stress invariant and the orientation of the principal plane.

Keywords: cubic equation, stress invariant, trigonometric, explicit solution, principal stress, failure criterion

Procedia PDF Downloads 137
1213 Adiabatic Flame Temperature: New Calculation Methode

Authors: Muthana Abdul Mjed Jamel Al-gburi

Abstract:

The present paper introduces the methane-air flame and its main chemical reaction, the mass burning rate, the burning velocity, and the most important parameter, the adiabatic and its evaluation. Those major important flame parameters will be mathematically formulated and computerized using the MATLAB program. The present program established a new technique to decide the true adiabatic flame temperature. The new technique implements the trial and error procedure to obtained the calculated total internal energy of the product species then evaluate of the reactants ones, from both, we can draw two energy lines their intersection will decide the true required temperature. The obtained results show accurate evaluation for the atmospheric Stoichiometric (Φ=1.05) methane-air flame, and the value was 2136.36 K.

Keywords: 1- methane-air flame, 2-, adiabatic flame temperature, 3-, reaction model, 4- matlab program, 5-, new technique

Procedia PDF Downloads 77
1212 Bayesian Structural Identification with Systematic Uncertainty Using Multiple Responses

Authors: André Jesus, Yanjie Zhu, Irwanda Laory

Abstract:

Structural health monitoring is one of the most promising technologies concerning aversion of structural risk and economic savings. Analysts often have to deal with a considerable variety of uncertainties that arise during a monitoring process. Namely the widespread application of numerical models (model-based) is accompanied by a widespread concern about quantifying the uncertainties prevailing in their use. Some of these uncertainties are related with the deterministic nature of the model (code uncertainty) others with the variability of its inputs (parameter uncertainty) and the discrepancy between a model/experiment (systematic uncertainty). The actual process always exhibits a random behaviour (observation error) even when conditions are set identically (residual variation). Bayesian inference assumes that parameters of a model are random variables with an associated PDF, which can be inferred from experimental data. However in many Bayesian methods the determination of systematic uncertainty can be problematic. In this work systematic uncertainty is associated with a discrepancy function. The numerical model and discrepancy function are approximated by Gaussian processes (surrogate model). Finally, to avoid the computational burden of a fully Bayesian approach the parameters that characterise the Gaussian processes were estimated in a four stage process (modular Bayesian approach). The proposed methodology has been successfully applied on fields such as geoscience, biomedics, particle physics but never on the SHM context. This approach considerably reduces the computational burden; although the extent of the considered uncertainties is lower (second order effects are neglected). To successfully identify the considered uncertainties this formulation was extended to consider multiple responses. The efficiency of the algorithm has been tested on a small scale aluminium bridge structure, subjected to a thermal expansion due to infrared heaters. Comparison of its performance with responses measured at different points of the structure and associated degrees of identifiability is also carried out. A numerical FEM model of the structure was developed and the stiffness from its supports is considered as a parameter to calibrate. Results show that the modular Bayesian approach performed best when responses of the same type had the lowest spatial correlation. Based on previous literature, using different types of responses (strain, acceleration, and displacement) should also improve the identifiability problem. Uncertainties due to parametric variability, observation error, residual variability, code variability and systematic uncertainty were all recovered. For this example the algorithm performance was stable and considerably quicker than Bayesian methods that account for the full extent of uncertainties. Future research with real-life examples is required to fully access the advantages and limitations of the proposed methodology.

Keywords: bayesian, calibration, numerical model, system identification, systematic uncertainty, Gaussian process

Procedia PDF Downloads 327
1211 Reconnecting The Peripheral Wagons to the Euro Area Core Locomotive

Authors: Igor Velickovski, Aleksandar Stojkov, Ivana Rajkovic

Abstract:

This paper investigates drivers of shock synchronization using quarterly data for 27 European countries over the period 1999-2013 and taking into account the difference between core (‘the euro area core locomotive’) and peripheral euro area and transition countries (‘the peripheral wagons’). Results from panel error-correction models suggest that core of the euro area has not been strong magnetizer of the shock convergence of periphery and transition countries since the euro inception as a result of the offsetting effects of the various factors that affected the shock convergence process. These findings challenge the endogeneity hypothesis in the optimum currency area framework and rather support the specialisation paradigm which is concerning evidence for the future stability of the euro area.

Keywords: dynamic panel models, shock synchronisation, trade, optimum currency area

Procedia PDF Downloads 359
1210 On a Continuous Formulation of Block Method for Solving First Order Ordinary Differential Equations (ODEs)

Authors: A. M. Sagir

Abstract:

The aim of this paper is to investigate the performance of the developed linear multistep block method for solving first order initial value problem of Ordinary Differential Equations (ODEs). The method calculates the numerical solution at three points simultaneously and produces three new equally spaced solution values within a block. The continuous formulations enable us to differentiate and evaluate at some selected points to obtain three discrete schemes, which were used in block form for parallel or sequential solutions of the problems. A stability analysis and efficiency of the block method are tested on ordinary differential equations involving practical applications, and the results obtained compared favorably with the exact solution. Furthermore, comparison of error analysis has been developed with the help of computer software.

Keywords: block method, first order ordinary differential equations, linear multistep, self-starting

Procedia PDF Downloads 306
1209 Image Compression Using Block Power Method for SVD Decomposition

Authors: El Asnaoui Khalid, Chawki Youness, Aksasse Brahim, Ouanan Mohammed

Abstract:

In these recent decades, the important and fast growth in the development and demand of multimedia products is contributing to an insufficient in the bandwidth of device and network storage memory. Consequently, the theory of data compression becomes more significant for reducing the data redundancy in order to save more transfer and storage of data. In this context, this paper addresses the problem of the lossless and the near-lossless compression of images. This proposed method is based on Block SVD Power Method that overcomes the disadvantages of Matlab's SVD function. The experimental results show that the proposed algorithm has a better compression performance compared with the existing compression algorithms that use the Matlab's SVD function. In addition, the proposed approach is simple and can provide different degrees of error resilience, which gives, in a short execution time, a better image compression.

Keywords: image compression, SVD, block SVD power method, lossless compression, near lossless

Procedia PDF Downloads 388
1208 Upon One Smoothing Problem in Project Management

Authors: Dimitri Golenko-Ginzburg

Abstract:

A CPM network project with deterministic activity durations, in which activities require homogenous resources with fixed capacities, is considered. The problem is to determine the optimal schedule of starting times for all network activities within their maximal allowable limits (in order not to exceed the network's critical time) to minimize the maximum required resources for the project at any point in time. In case when a non-critical activity may start only at discrete moments with the pregiven time span, the problem becomes NP-complete and an optimal solution may be obtained via a look-over algorithm. For the case when a look-over requires much computational time an approximate algorithm is suggested. The algorithm's performance ratio, i.e., the relative accuracy error, is determined. Experimentation has been undertaken to verify the suggested algorithm.

Keywords: resource smoothing problem, CPM network, lookover algorithm, lexicographical order, approximate algorithm, accuracy estimate

Procedia PDF Downloads 302
1207 A Comparison of YOLO Family for Apple Detection and Counting in Orchards

Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long

Abstract:

In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.

Keywords: agricultural object detection, deep learning, machine vision, YOLO family

Procedia PDF Downloads 201
1206 Fuzzy Logic Based Sliding Mode Controller for a New Soft Switching Boost Converter

Authors: Azam Salimi, Majid Delshad

Abstract:

This paper presents a modified design of a sliding mode controller based on fuzzy logic for a New ZVThigh step up DC-DC Converter . Here a proportional - integral (PI)-type current mode control is employed and a sliding mode controller is designed utilizing fuzzy algorithm. Sliding mode controller guarantees robustness against all variations and fuzzy logic helps to reduce chattering phenomenon due to sliding controller, in that way efficiency increases and error, voltage and current ripples decreases. The proposed system is simulated using MATLAB / SIMULINK. This model is tested under variations of input and reference voltages and it was found that in comparison with conventional sliding mode controllers they perform better.

Keywords: switching mode power supplies, DC-DC converters, sliding mode control, robustness, fuzzy control, current mode control, non-linear behavior

Procedia PDF Downloads 540
1205 Experimental Study of Discharge with Sharp-Crested Weirs

Authors: E. Keramaris, V. Kanakoudis

Abstract:

In this study the water flow in an open channel over a sharp-crested weir is investigated experimentally. For this reason a series of laboratory experiments were performed in an open channel with a sharp-crested weir. The maximum head expected over the weir, the total upstream water height and the downstream water height of the impact in the constant bed of the open channel were measured. The discharge was measured using a tank put right after the open channel. In addition, the discharge and the upstream velocity were also calculated using already known equations. The main finding is that the relative error percentage for the majority of the experimental measurements is ± 4%, meaning that the calculation of the discharge with a sharp-crested weir gives very good results compared to the numerical results from known equations.

Keywords: sharp-crested weir, weir height, flow measurement, open channel flow

Procedia PDF Downloads 139
1204 Simulation Model of Induction Heating in COMSOL Multiphysics

Authors: K. Djellabi, M. E. H. Latreche

Abstract:

The induction heating phenomenon depends on various factors, making the problem highly nonlinear. The mathematical analysis of this problem in most cases is very difficult and it is reduced to simple cases. Another knowledge of induction heating systems is generated in production environments, but these trial-error procedures are long and expensive. The numerical models of induction heating problem are another approach to reduce abovementioned drawbacks. This paper deals with the simulation model of induction heating problem. The simulation model of induction heating system in COMSOL Multiphysics is created. In this work we present results of numerical simulations of induction heating process in pieces of cylindrical shapes, in an inductor with four coils. The modeling of the inducting heating process was made with the software COMSOL Multiphysics Version 4.2a, for the study we present the temperature charts.

Keywords: induction heating, electromagnetic field, inductor, numerical simulation, finite element

Procedia PDF Downloads 316
1203 The Impact of Bitcoin on Stock Market Performance

Authors: Oliver Takawira, Thembi Hope

Abstract:

This study will analyse the relationship between Bitcoin price movements and the Johannesburg stock exchange (JSE). The aim is to determine whether Bitcoin price movements affect the stock market performance. As crypto currencies continue to gain prominence as a safe asset during periods of economic distress, this raises the question of whether Bitcoin’s prosperity could affect investment in the stock market. To identify the existence of a short run and long run linear relationship, the study will apply the Autoregressive Distributed Lag Model (ARDL) bounds test and a Vector Error Correction Model (VECM) after testing the data for unit roots and cointegration using the Augmented Dicker Fuller (ADF) and Phillips-Perron (PP). The Non-Linear Auto Regressive Distributed Lag (NARDL) will then be used to check if there is a non-linear relationship between bitcoin prices and stock market prices.

Keywords: bitcoin, stock market, interest rates, ARDL

Procedia PDF Downloads 107