Search results for: dislocation density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3557

Search results for: dislocation density

2597 Effect of Brown Algae, Ecklonia arborea and Silvetia compressa, in Lipidemic and Hepatic Metabolism in Wistar Rats

Authors: Laura Acevedo-Pacheco, Janet Alejandra Gutierrez-Uribe, Lucia Elizabeth Cruz-Suarez, Segio Othon Serna-Saldivar

Abstract:

Seaweeds can generate changes in the metabolism of lipids; as a consequence, this may diminish cholesterol and other lipids in the blood. However, the consumption of marine algae may also alter the functions of other organs. Therefore, the objective of this research was to study the effect of two different sorts of algae (Ecklonia arborea and Silvetia compressa) in the metabolism of lipids, as well as, in the physiology of the liver. Wistar male rats were fed for two months with independent diets composed of 20% of fat and 2.5% of E. arborea and S. compressa each. Blood parameters (cholesterol, lipoproteins, triglycerides, hepatic enzymes) and triglycerides in the liver were quantified, and also hepatic histology analyses were performed. While S. compressa reduced 18% total cholesterol compared to the positive control, E. arborea increased it 5.8%. Animals fed with S. compressa presented a decrement, compared to the positive control, not only in low density lipoproteins levels (53%) but also in triglycerides (67%). The presence of steatosis in the histologies and the high levels of triglycerides showed an evident lipid accumulation in hepatic tissues of rats fed with both algae. These results indicate that even though S. compressa showed a promising resource to decrease total cholesterol and low-density lipoproteins in blood, a detrimental effect was observed in liver physiology. Further investigations should be made to find out if toxic compounds associated with these seaweeds may cause liver damage especially in terms of heavy metals.

Keywords: brown algae, Eisenia arborea, hepatic metabolism, lipidemic metabolism, Pelvetia compressa, steatosis

Procedia PDF Downloads 135
2596 Effect of Sintering Time and Porosity on Microstructure, Mechanical and Corrosion Properties of Ti6Al15Mo Alloy for Implant Applications

Authors: Jyotsna Gupta, S. Ghosh, S. Aravindan

Abstract:

The requirement of artificial prostheses (such as hip and knee joints) has increased with time. Many researchers are working to develop new implants with improved properties such as excellent biocompatibility with no tissue reactions, corrosion resistance in body fluid, high yield strength and low elastic modulus. Further, the morphological properties of the artificial implants should also match with that of the human bone so that cell adhesion, proliferation and transportation of the minerals and nutrition through body fluid can be obtained. Present study attempts to make porous Ti6Al15Mo alloys through powder metallurgy route using space holder technique. The alloy consists of 6wt% of Al which was taken as α phase stabilizer and 15wt% Mo was taken as β phase stabilizer with theoretical density 4.708. Ammonium hydrogen carbonate is used as a space holder in order to generate the porosity. The porosity of these fabricated porous alloys was controlled by adding the 0, 50, 70 vol.% of the space holder content. Three phases were found in the microstructure: α, α_2 and β phase of titanium. Kirkendall pores are observed to be decreased with increase of holding time during sintering and parallelly compressive strength and elastic modulus value increased slightly. Compressive strength and elastic modulus of porous Ti-6Al-15Mo alloy (1.17 g/cm3 density) is found to be suitable for cancellous bone. Released ions from Ti-6Al-15Mo alloy are far below from the permissible limits in human body.

Keywords: bone implant, powder metallurgy, sintering time, Ti-6Al-15Mo

Procedia PDF Downloads 144
2595 Characterization of Erodibility Using Soil Strength and Stress-Strain Indices for Soils in Some Selected Sites in Enugu State

Authors: C. C. Egwuonwu, N. A. A. Okereke, K. O. Chilakpu, S. O. Ohanyere

Abstract:

In this study, initial soil strength indices (qu) and stress-strain characteristics, namely failure strain (ϵf), area under the stress-strain curve up to failure (Is) and stress-strain modulus between no load and failure (Es) were investigated as potential indicators for characterizing the erosion resistance of two compacted soils, namely sandy clay loam (SCL) and clay loam (CL) in some selected sites in Enugu State, Nigeria. The unconfined compressive strength (used in obtaining strength indices) and stress-strain measurements were obtained as a function of moisture content in percentage (mc %) and dry density (γd). Test were conducted over a range of 8% to 30% moisture content and 1.0 g/cm3 to 2.0 g/cm3 dry density at applied loads of 20, 40, 80, 160 and 320 kPa. Based on the results, it was found out that initial soil strength alone was not a good indicator of erosion resistance. For instance, in the comparison of exponents of mc% and γd for jet index or erosion resistance index (Ji) and the strength measurements, qu and Es agree in signs for mc%, but are opposite in signs for γd. Therefore, there is an inconsistency in exponents making it difficult to develop a relationship between the strength parameters and Ji for this data set. In contrast, the exponents of mc% and γd for Ji and ϵf and Is are opposite in signs, there is potential for an inverse relationship. The measured stress-strain characteristics, however, appeared to have potential in providing useful information on erosion resistance. The models developed for the prediction of the extent or the susceptibility of soils to erosion and subjected to sensitivity test on some selected sites achieved over 90% efficiency in their functions.

Keywords: characterization of erodibility, selected sites in Enugu state, soil strength, stress-strain indices

Procedia PDF Downloads 414
2594 The Association among Obesity, Lipid Profiles and Depression Severity in Patients with Depressive Disorder

Authors: In Hee Shim, Dong Sik Bae

Abstract:

Introduction: Obesity and unfavorable lipid profile may be linked to depressive disorders. This study compared the levels of obesity, lipid profiles and depression severity of patients with depressive disorders. Methods: This study included 156 patients diagnosed with a depressive disorder who were hospitalized between March 2012 and February 2016. The patients were categorized into mild to moderate and severe depressive groups, based on Hamilton Depression Rating Scale scores (Mild to moderate depression 8-23 vs. severe depression ≥ 24). The charts of the patients were reviewed to evaluate body mass index and lipid profiles, including total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides (TG), confounding factors, such as other general medical disorders (hypertension, diabetes mellitus, and dyslipidemia), except smoking status (insufficient data). Demographic and clinical characteristics, such as age, sex, comorbidities, family history of mood disorders, psychotic features, and prescription patterns were also assessed. Results: Compared to the mild to the moderate depressive group, patients with severe depression had significantly lower rate of male and comorbidity. The patients with severe depression had a significantly lower TG than patients in the mild to moderate depressive group. After adjustment for the sex and comorbidity, there were no significant differences between the two groups in terms of the obesity and lipid profiles, including TG. Conclusion: These results did not show a significant difference in the association between obesity, lipid profiles and the depression severity. The role of obesity and lipid profiles in the pathophysiology of depression remains to be clarified.

Keywords: depression, HAM-D, lipid profiles, obesity

Procedia PDF Downloads 288
2593 Preparation of Carbon Nanofiber Reinforced HDPE Using Dialkylimidazolium as a Dispersing Agent: Effect on Thermal and Rheological Properties

Authors: J. Samuel, S. Al-Enezi, A. Al-Banna

Abstract:

High-density polyethylene reinforced with carbon nanofibers (HDPE/CNF) have been prepared via melt processing using dialkylimidazolium tetrafluoroborate (ionic liquid) as a dispersion agent. The prepared samples were characterized by thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. The samples blended with imidazolium ionic liquid exhibit higher thermal stability. DSC analysis showed clear miscibility of ionic liquid in the HDPE matrix and showed single endothermic peak. The melt rheological analysis of HDPE/CNF composites was performed using an oscillatory rheometer. The influence of CNF and ionic liquid concentration (ranging from 0, 0.5, and 1 wt%) on the viscoelastic parameters was investigated at 200 °C with an angular frequency range of 0.1 to 100 rad/s. The rheological analysis shows the shear-thinning behavior for the composites. An improvement in the viscoelastic properties was observed as the nanofiber concentration increases. The progress in the modulus values was attributed to the structural rigidity imparted by the high aspect ratio CNF. The modulus values and complex viscosity of the composites increased significantly at low frequencies. Composites blended with ionic liquid exhibit slightly lower values of complex viscosity and modulus over the corresponding HDPE/CNF compositions. Therefore, reduction in melt viscosity is an additional benefit for polymer composite processing as a result of wetting effect by polymer-ionic liquid combinations.

Keywords: high-density polyethylene, carbon nanofibers, ionic liquid, complex viscosity

Procedia PDF Downloads 127
2592 Community Forest Management and Ecological and Economic Sustainability: A Two-Way Street

Authors: Sony Baral, Harald Vacik

Abstract:

This study analyzes the sustainability of community forest management in two community forests in Terai and Hills of Nepal, representing four forest types: 1) Shorearobusta, 2) Terai hardwood, 3) Schima-Castanopsis, and 4) other Hills. The sustainability goals for this region include maintaining and enhancing the forest stocks. Considering this, we analysed changes in species composition, stand density, growing stock volume, and growth-to-removal ratio at 3-5 year intervals from 2005-2016 within 109 permanent forest plots (57 in the Terai and 52 in the Hills). To complement inventory data, forest users, forest committee members, and forest officials were consulted. The results indicate that the relative representation of economically valuable tree species has increased. Based on trends in stand density, both forests are being sustainably managed. Pole-sized trees dominated the diameter distribution, however, with a limited number of mature trees and declined regeneration. The forests were over-harvested until 2013 but under-harvested in the recent period in the Hills. In contrast, both forest types were under-harvested throughout the inventory period in the Terai. We found that the ecological dimension of sustainable forest management is strongly achieved while the economic dimension is lacking behind the current potential. Thus, we conclude that maintaining a large number of trees in the forest does not necessarily ensure both ecological and economical sustainability. Instead, priority should be given on a rational estimation of the annual harvest rates to enhance forest resource conditions together with regular benefits to the local communities.

Keywords: community forests, diversity, growing stock, forest management, sustainability, nepal

Procedia PDF Downloads 97
2591 Carbonation of Wollastonite (001) competing Hydration: Microscopic Insights from Ion Spectroscopy and Density Functional Theory

Authors: Peter Thissen

Abstract:

In this work, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as model surface of cement and concrete. Total energy calculations based on density functional theory (DFT) combined with kinetic barrier predictions based on nudge elastic band (NEB) method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO32-) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (MPER, also called early stage hydration) and Ca2+ ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca2+ react again with CO2 and form carbonate complexes, ending in a delocalized layer. By means of high resolution time-of-flight secondary-ion mass-spectroscopy images (ToF-SIMS), we confirm that hydration can lead to a partially delocalization of Ca2+ ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by means of Low Energy Ion Scattering (LEIS) spectroscopy combined with careful discussion about the competing reactions of carbonation vs. hydration.

Keywords: Calcium-silicate, carbonation, hydration, metal-proton exchange reaction

Procedia PDF Downloads 363
2590 Microplastic Migration from Food Packaging on Cured Meat Products

Authors: Klytaimnistra Katsara, George Kenanakis, Eleftherios Alissandrakis, Vassilis M. Papadakis

Abstract:

In recent decades, microplastics (MPs) attracted the interest of the research community as the level of environmental plastic pollution has increased over the years. Through air inhalation and food consumption, MPs enter the human body, creating a series of possible health issues. The majority of MPs enter through the digestive tract; they migrate from the plastic packaging of the foodstuffs. Several plastics, such as Polyethylene (PE), are commonly used as food packaging material due to their preservation and storage capabilities. In this work, the surfaces of three different cured meat products with varied fat compositions were studied (bacon, mortadella, and salami) to determine the migration of MPs from plastic packaging. Micro-Raman spectroscopic measurements were performed in an experimental set lasting 28 days, where the meat samples were stored in vacuum-sealed low-density polyethylene (LDPE) pouches under refrigeration conditions at 4°C. Specific measurement days (0, 3, 9, 12, 15, and 28 days of storage) were chosen to obtain comparative results. Raman micro-spectroscopy was used to monitor the MPs migration, where the Raman spectral profile of LDPE first appeared on day 9 in Bacon, day 15 in Salami, and finally, on day 28 in Mortadella. All the meat samples on day 28 were tainted because a layer of bacterial outgrowth had developed on their surface. In conclusion, MP migration from food packaging to the surface of the cured meat samples was proven. To minimize the consumption of MPs in cured meat products that are stored in plastic packaging, a short period of storage time under refrigeration conditions is advised.

Keywords: cured meat, food packaging, low-density polyethylene, microplastic migration, micro-Raman spectroscopy

Procedia PDF Downloads 75
2589 The Influense of Alternative Farming Systems on Physical Parameters of the Soil

Authors: L. Masilionyte, S. Maiksteniene

Abstract:

Alternative farming systems are used to cultivate high quality food products and retain the viability and fertility of soil. The field experiments of different farming systems were conducted at Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry in 2006–2013. The soil of the experimental site was Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). In different farming systems, farmyard manure, straw and green manure catch crops used for fertilization both in the soil low in humus and in the soil moderate in humus. In the 0–20 cm depth layer, it had a more significant effect on soil moisture than on other physical soil properties. In the agricultural systems, in which catch crops had been grown, soil physical characteristics did not differ significantly before their biomass incorporation, except for the moisture content, which was lower in rainy periods and higher in drier periods than in the soil without catch crops. Soil bulk density and porosity in the topsoil layer were more dependent on soil humus content than on agricultural measures used: in the soil moderate in humus content, compared with the soil low in humus, bulk density was by 1.4 % lower, and porosity by 1.8 % higher. The research findings create a possibility to make improvements in alternative cropping systems by choosing organic fertilizers and catch crops’ combinations that have the sustainable effect on soil and that maintain the sustainability of soil productivity parameters. Rational fertilization systems, securing the stability of soil productivity parameters and crop rotation productivity will promote a development of organic agriculture.

Keywords: agro-measures, soil physical parameters, organic farming, sustainable farming

Procedia PDF Downloads 404
2588 Taking the Good with the Bad: Psychological Well-Being and Social Integration in Russian-Speaking Immigrants in Montreal

Authors: Momoka Sunohara, Ashley J. Lemieux, Esther Yakobov, Andrew G. Ryder, Tomas Jurcik

Abstract:

Immigration brings changes in many aspects of an individual's life, from social support dynamics, to housing and language, as well as difficulties with regards to discrimination, trauma, and loss. Past research has mostly emphasized individual differences in mental health and has neglected the impact of social-ecological context, such as acculturation and ethnic density. Purpose: The present study aimed to assess the relationship between variables associated with social integration such as perceived ethnic density and ways of coping, as well as psychological adjustment in a rapidly growing non-visible minority group of immigrants in Canada. Data: A small subset of an archival data from our previously published study was reanalyzed with additional variables. Data included information from 269 Russian-Speaking immigrants in Montreal, Canada. Method: Canonical correlation analysis (CCA) investigated the relationship between two sets of variables. SAS PROC CANCORR was used to conduct CCA on a set of social integration variables, including ethnic density, discrimination, social support, family functioning, and acculturation, and a set of psychological well-being variables, including distress, depression, self-esteem, and life satisfaction. In addition, canonical redundancy analysis was performed to calculate the proportion of variances of original variables explained by their own canonical variates. Results: Significance tests using Rao’s F statistics indicated that the first two canonical correlations (i.e., r1 = 0.64, r2 = 0.40) were statistically significant (p-value < 0.0001). Additionally, canonical redundancy analysis showed that the first two well-being canonical variates explained separately 62.9% and 12.8% variances of the standardized well-being variables, whereas the first two social integration canonical variates explained separately 14.7% and 16.7% variances of the standardized social integration variables. These results support the selection of the first two canonical correlations. Then, we interpreted the derived canonical variates based on their canonical structure (i.e., correlations with original variables). Two observations can be concluded. First, individuals who have adequate social support, and who, as a family, cope by acquiring social support, mobilizing others and reframing are more likely to have better self-esteem, greater life satisfaction and experience less feelings of depression or distress. Second, individuals who feel discriminated yet rate higher on a mainstream acculturation scale, and who, as a family, cope by acquiring social support, mobilizing others and using spirituality, while using less passive strategies are more likely to have better life satisfaction but also higher degree of depression. Implications: This model may serve to explain the complex interactions that exist between social and emotional adjustment and aid in facilitating the integration of individuals immigrating into new communities. The same group may experience greater depression but paradoxically improved life satisfaction associated with their coping process. Such findings need to be placed in the context of Russian cultural values. For instance, some Russian-speakers may value the expression of negative emotions with significant others during the integration process; this in turn may make negative emotions more salient, but also facilitate a greater sense of family and community connection, as well as life satisfaction.

Keywords: acculturation, ethnic density, mental health, Russian-speaking

Procedia PDF Downloads 480
2587 Sustainable Land Use Evaluation Based on Preservative Approach: Neighborhoods of Susa City

Authors: Somaye Khademi, Elahe Zoghi Hoseini, Mostafa Norouzi

Abstract:

Determining the manner of land-use and the spatial structure of cities on the one hand, and the economic value of each piece of land, on the other hand, land-use planning is always considered as the main part of urban planning. In this regard, emphasizing the efficient use of land, the sustainable development approach has presented a new perspective on urban planning and consequently on its most important pillar, i.e. land-use planning. In order to evaluate urban land-use, it has been attempted in this paper to select the most significant indicators affecting urban land-use and matching sustainable development indicators. Due to the significance of preserving ancient monuments and the surroundings as one of the main pillars of achieving sustainability, in this research, sustainability indicators have been selected emphasizing the preservation of ancient monuments and historical observance of the city of Susa as one of the historical cities of Iran. It has also been attempted to integrate these criteria with other land-use sustainability indicators. For this purpose, Kernel Density Estimation (KDE) and the AHP model have been used for providing maps displaying spatial density and combining layers as well as providing final maps respectively. Moreover, the rating of sustainability will be studied in different districts of the city of Shush so as to evaluate the status of land sustainability in different parts of the city. The results of the study show that different neighborhoods of Shush do not have the same sustainability in land-use such that neighborhoods located in the eastern half of the city, i.e. the new neighborhoods, have a higher sustainability than those of the western half. It seems that the allocation of a high percentage of these areas to arid lands and historical areas is one of the main reasons for their sustainability.

Keywords: city of Susa, historical heritage, land-use evaluation, urban sustainable development

Procedia PDF Downloads 379
2586 First Formaldehyde Retrieval Using the Raw Data Obtained from Pandora in Seoul: Investigation of the Temporal Characteristics and Comparison with Ozone Monitoring Instrument Measurement

Authors: H. Lee, J. Park

Abstract:

In this present study, for the first time, we retrieved the Formaldehyde (HCHO) Vertical Column Density (HCHOVCD) using Pandora instruments in Seoul, a megacity in northeast Asia, for the period between 2012 and 2014 and investigated the temporal characteristics of HCHOVCD. HCHO Slant Column Density (HCHOSCD) was obtained using the Differential Optical Absorption Spectroscopy (DOAS) method. HCHOSCD was converted to HCHOVCD using geometric Air Mass Factor (AMFG) as Pandora is the direct-sun measurement. The HCHOVCDs is low at 12:00 Local Time (LT) and is high in the morning (10:00 LT) and late afternoon (16:00 LT) except for winter. The maximum (minimum) values of Pandora HCHOVCD are 2.68×1016 (1.63×10¹⁶), 3.19×10¹⁶ (2.23×10¹⁶), 2.00×10¹⁶ (1.26×10¹⁶), and 1.63×10¹⁶ (0.82×10¹⁶) molecules cm⁻² in spring, summer, autumn, and winter, respectively. In terms of seasonal variations, HCHOVCD was high in summer and low in winter which implies that photo-oxidation plays an important role in HCHO production in Seoul. In comparison with the Ozone Monitoring Instrument (OMI) measurements, the HCHOVCDs from the OMI are lower than those from Pandora. The correlation coefficient (R) between monthly HCHOVCDs values from Pandora and OMI is 0.61, with slop of 0.35. Furthermore, to understand HCHO mixing ratio within Planetary Boundary Layer (PBL) in Seoul, we converted Pandora HCHOVCDs to HCHO mixing ratio in the PBL using several meteorological input data from the Atmospheric InfraRed Sounder (AIRS). Seasonal HCHO mixing ratio in PBL converted from Pandora (OMI) HCHOVCDs are estimated to be 6.57 (5.17), 7.08 (6.68), 7.60 (4.70), and 5.00 (4.76) ppbv in spring, summer, autumn, and winter, respectively.

Keywords: formaldehyde, OMI, Pandora, remote sensing

Procedia PDF Downloads 150
2585 The Implementation of Level of Service for Development of Kuala Lumpur Transit Information System using GIS

Authors: Mokhtar Azizi

Abstract:

Due to heavy traffic and congested roads, it is crucial that the most popular main public transport services in Kuala Lumpur i.e. Putra LRT, Star LRT, KTM Commuter, KL Monorail and Rapid Bus must be continuously monitored and improved to fulfill the rider’s requirement and kept updated by the transit agencies. Evaluation on the current status of the services has been determined out by calculating the transit supportive area (TSA) and level of service (LOS) for each transit station. This research study has carried out the TSA and LOS mapping based on GIS techniques. The detailed census data of the region along the line of services has been collected from the Department of Statistics Malaysia for this purpose. The service coverage has been decided by 400 meters buffer zone for bus stations and 800 meters for rails station and railways in measurement the Quality of Service along the line of services. All the required information has been calculated by using the customized GIS software called Kuala Lumpur Transit Information System (KLTIS). The transit supportive area was calculated with the employment density at least 10 job/hectare or household density at 7.5 unit/hectare and total area covered by transit supportive area is 22516 hectare and the total area that is not supported by transit is 1718 hectare in Kuala Lumpur. The level of service is calculated with the percentage of transit supportive area served by transit for each station. In overall the percentage transit supportive areas served by transit for all the stations were less than 50% which falls in a very low level of service category. This research has proven its benefit by providing the current transit services operators with vital information for improvement of existing public transport services.

Keywords: service coverage, transit supportive area, level of service, transit system

Procedia PDF Downloads 376
2584 Heating of the Ions by Electromagnetic Ion Cyclotron (EMIC) Waves Using Magnetospheric Multiscale (MMS) Satellite Observation

Authors: A. A. Abid

Abstract:

The magnetospheric multiscale (MMS) satellite observations in the inner magnetosphere were used to detect the proton band of the electromagnetic ion cyclotron (EMIC) waves on December 14, 2015, which have been significantly contributing to the dynamics of the magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. The waves are triggered by hot proton thermal anisotropy. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these previously invisible protons are now visible. As a result, the EMC waves also excite the helium ions. The EMIC waves, whose frequency in the magnetosphere of the Earth ranges from 0.001 Hz to 5 Hz, have drawn a lot of attention for their ability to carry energy. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. This work examines how the excitation of EMIC waves is affected by the energy of hot proton temperature anisotropy, and It has a minimum resonance energy of 6.9 keV and a range of 7 to 26 keV. On the hot protons, however, the reverse effect can be seen for energies below the minimum resonance energy. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. Key Points: 1. The analysis of EMIC waves produced by hot proton temperature anisotropy using MMS data. 2. The number density and temperature anisotropy of the cold protons increases owing to high-intensity EMIC waves. 3. The cold protons with an energy range of 1-100eV are energized by EMIC waves using the Magnetospheric Multiscale (MMS) satellite not been discussed before

Keywords: EMIC waves, temperature anisotropy of hot protons, energization of the cold proton, magnetospheric multiscale (MMS) satellite observations

Procedia PDF Downloads 122
2583 Theoretical Study of Gas Adsorption in Zirconium Clusters

Authors: Rasha Al-Saedi, Anthony Meijer

Abstract:

The progress of new porous materials has increased rapidly over the past decade for use in applications such as catalysis, gas storage and removal of environmentally unfriendly species due to their high surface area and high thermal stability. In this work, a theoretical study of the zirconium-based metal organic framework (MOFs) were examined in order to determine their potential for gas adsorption of various guest molecules: CO2, N2, CH4 and H2. The zirconium cluster consists of an inner Zr6O4(OH)4 core in which the triangular faces of the Zr6- octahedron are alternatively capped by O and OH groups which bound to nine formate groups and three benzoate groups linkers. General formula is [Zr(μ-O)4(μ-OH)4(HCOO)9((phyO2C)3X))] where X= CH2OH, CH2NH2, CH2CONH2, n(NH2); (n = 1-3). Three types of adsorption sites on the Zr metal center have been studied, named according to capped chemical groups as the ‘−O site’; the H of (μ-OH) site removed and added to (μ-O) site, ‘–OH site’; (μ-OH) site removed, the ‘void site’ where H2O molecule removed; (μ-OH) from one site and H from other (μ-OH) site, in addition to no defect versions. A series of investigations have been performed aiming to address this important issue. First, density functional theory DFT-B3LYP method with 6-311G(d,p) basis set was employed using Gaussian 09 package in order to evaluate the gas adsorption performance of missing-linker defects in zirconium cluster. Next, study the gas adsorption behaviour on different functionalised zirconium clusters. Those functional groups as mentioned above include: amines, alcohol, amide, in comparison with non-substitution clusters. Then, dispersion-corrected density functional theory (DFT-D) calculations were performed to further understand the enhanced gas binding on zirconium clusters. Finally, study the water effect on CO2 and N2 adsorption. The small functionalized Zr clusters were found to result in good CO2 adsorption over N2, CH4, and H2 due to the quadrupole moment of CO2 while N2, CH4 and H2 weakly polar or non-polar. The adsorption efficiency was determined using the dispersion method where the adsorption binding improved as most of the interactions, for example, van der Waals interactions are missing with the conventional DFT method. The calculated gas binding strengths on the no defect site are higher than those on the −O site, −OH site and the void site, this difference is especially notable for CO2. It has been stated that the enhanced affinity of CO2 of no defect versions is most likely due to the electrostatic interactions between the negatively charged O of CO2 and the positively charged H of (μ-OH) metal site. The uptake of the gas molecule does not enhance in presence of water as the latter binds to Zr clusters more strongly than gas species which attributed to the competition on adsorption sites.

Keywords: density functional theory, gas adsorption, metal- organic frameworks, molecular simulation, porous materials, theoretical chemistry

Procedia PDF Downloads 184
2582 Effect of High-Energy Ball Milling on the Electrical and Piezoelectric Properties of (K0.5Na0.5)(Nb0.9Ta0.1)O3 Lead-Free Piezoceramics

Authors: Chongtham Jiten, K. Chandramani Singh, Radhapiyari Laishram

Abstract:

Nanocrystalline powders of the lead-free piezoelectric material, tantalum-substituted potassium sodium niobate (K0.5Na0.5)(Nb0.9Ta0.1)O3 (KNNT), were produced using a Retsch PM100 planetary ball mill by setting the milling time to 15h, 20h, 25h, 30h, 35h and 40h, at a fixed speed of 250rpm. The average particle size of the milled powders was found to decrease from 12nm to 3nm as the milling time increases from 15h to 25h, which is in agreement with the existing theoretical model. An anomalous increase to 98nm and then a drop to 3nm in the particle size were observed as the milling time further increases to 30h and 40h respectively. Various sizes of these starting KNNT powders were used to investigate the effect of milling time on the microstructure, dielectric properties, phase transitions and piezoelectric properties of the resulting KNNT ceramics. The particle size of starting KNNT was somewhat proportional to the grain size. As the milling time increases from 15h to 25h, the resulting ceramics exhibit enhancement in the values of relative density from 94.8% to 95.8%, room temperature dielectric constant (εRT) from 878 to 1213, and piezoelectric charge coefficient (d33) from 108pC/N to 128pC/N. For this range of ceramic samples, grain size refinement suppresses the maximum dielectric constant (εmax), shifts the Curie temperature (Tc) to a lower temperature and the orthorhombic-tetragonal phase transition (Tot) to a higher temperature. Further increase of milling time from 25h to 40h produces a gradual degradation in the values of relative density, εRT, and d33 of the resulting ceramics.

Keywords: perovskite, dielectric, ceramics, high-energy milling

Procedia PDF Downloads 325
2581 Nutritional Importance and Functional Properties of Baobab Leaves

Authors: Khadijat Ayanpeju Abdulsalam, Bolanle Mary Olawoye, Paul Babatunde Ayoola

Abstract:

The potential of Baobab leaves is understudied and not yet fully documented. The purpose of this work is to highlight the important nutritional value and practical qualities of baobab leaves. In this research, proximate analysis was studied to determine the macronutrient quantitative analysis in baobab leaves. Studies were also conducted on other characteristics, such as moisture content, which is significant to the food business since it affects food quality, preservation, and resistance to deterioration. Dietary fiber, which was also studied, has important health benefits, such as lowering blood cholesterol levels by lowering low-density lipoprotein or "bad" cholesterol. It functions as an anti-obesity and anti-diabetic agent, lowering the likelihood of haemorrhoids developing. Additionally, increasing face bulk and short-chain fatty acid synthesis improves gastrointestinal health and overall wellness. Baobab leaves had a moisture content of 6.4%, fat of 16.1%, ash of 3.2%, protein of 18.7%, carbohydrate 57.2% and crude fiber of 4.1%. The minerals determined in the sample of baobab leaves are Ca, Fe, Mg, K, Na, P, and Zn with Potassium (347.6±0.70) as the most abundant mineral while Zn (9.31±0.60) is the least abundant. The functional properties studied include pH, gelation temperature, bulk density, water absorption capacity, oil absorption capacity, foaming property, emulsifying property, and stability and swelling capacity, which are 8.72, 29, 0.39, 138, 98.20, 0.80, 72.80, and 73.50 respectively. The Fourier Transform InfraRed absorption spectra show bands like C=O, C-Cl and N-H. Baobab leaves are edible, nutritious, and non-toxic, as the mineral contents are within the required range.

Keywords: dietary fibre, proximate analysis, macronutrients, minerals, baobab leaves, frequency range

Procedia PDF Downloads 72
2580 Defining the Limits of No Load Test Parameters at Over Excitation to Ensure No Over-Fluxing of Core Based on a Case Study: A Perspective From Utilities

Authors: Pranjal Johri, Misbah Ul-Islam

Abstract:

Power Transformers are one of the most critical and failure prone entities in an electrical power system. It is an established practice that each design of a power transformer has to undergo numerous type tests for design validation and routine tests are performed on each and every power transformer before dispatch from manufacturer’s works. Different countries follow different standards for testing the transformers. Most common and widely followed standard for Power Transformers is IEC 60076 series. Though these standards put up a strict testing requirements for power transformers, however, few aspects of transformer characteristics and guaranteed parameters can be ensured by some additional tests. Based on certain observations during routine test of a transformer and analyzing the data of a large fleet of transformers, three propositions have been discussed and put forward to be included in test schedules and standards. The observations in the routine test raised questions on design flux density of transformer. In order to ensure that flux density in any part of the core & yoke does not exceed 1.9 tesla at 1.1 pu as well, following propositions need to be followed during testing:  From the data studied, it was evident that generally NLC at 1.1 pu is apporx. 3 times of No Load Current at 1 pu voltage.  During testing the power factor at 1.1 pu excitation, it must be comparable to calculated values from the Cold Rolled Grain Oriented steel material curves, including building factor.  A limit of 3 % to be extended for higher than rated voltages on difference in Vavg and Vrms, during no load testing.  Extended over excitation test to be done in case above propositions are observed to be violated during testing.

Keywords: power transfoemrs, no load current, DGA, power factor

Procedia PDF Downloads 104
2579 Bone Mineral Density in Type 2 Diabetes Mellitus Postmenopausal Egyptian Female Patients: Correlation with Fetuin-A Level and Metabolic Parameters

Authors: Ahmed A. M. Shoaib, Heba A. Esaily, Mahmoud M. Emara, Eman A. E. Badr, Amany S. Khalifa, Mayada M. M., Abdel-Raizk

Abstract:

Background: DM is associated with metabolic bone diseases, osteoporosis, low-impact fractures and falls in geriatrics. Fetuin-A, which is a serum protein produced by the liver and promotes bone mineralization, is an independent risk factor for type 2 diabetes. Aim: Evaluation of fetuin-A level and bone mineral density in postmenopausal Egyptian female patients with type 2 diabetes mellitus and their correlation with each other & with other metabolic parameters. Patients and methods: Seventy postmenopausal female patients with type II diabetes and thirty postmenopausal female as control were included in this study. Measurement of Fetuin-A together with metabolic parameters and DXA in wrist, hip and spine, ALP, CBC, FBS, PP2H and HBA1c was done in all participants. Results: - Fetuin-A level was found to be highly significant (p< 0.001) between diabetic and nondiabetic groups and negatively correlated with BMD in spine. No difference in BMD was found between patients and control groups while significant negative correlation was found between FBS and hip BMD (<0.05) and between 2hpp and HBA1c with spine BMD in the diabetic group (<0.05). Osteoporosis represented 12.9% in spine area and 7.2% in hip and wrist areas in diabetic patients, while osteopenia were found in 58.5%, 57.1%, and 37.1% in diabetic patients in spine, wrist, and hip respectively. Conclusion: - type II diabetes cannot be considered as a risk factor for osteoporosis; while glycemic parameters (FBS, 2hpp & HBA1c) and serum Fetuin-A levels were correlated with BMD in diabetics. Good glycemic control can be protective against osteoporosis in diabetic elderly.

Keywords: fetuin-A, BMD, postmenopausal, DM type II

Procedia PDF Downloads 267
2578 A Feasibility Study on Producing Bio-Coal from Orange Peel Residue by Using Torrefaction

Authors: Huashan Tai, Chien-Hui Lung

Abstract:

Nowadays people use massive fossil fuels which not only cause environmental impacts and global climate change, but also cause the depletion of non-renewable energy such as coal and oil. Bioenergy is currently the most widely used renewable energy, and agricultural waste is one of the main raw materials for bioenergy. In this study, we use orange peel residue, which is easier to collect from agricultural waste to produce bio-coal by torrefaction. The orange peel residue (with 25 to 30% moisture) was treated by torrefaction, and the experiments were conducted with initial temperature at room temperature (approximately at 25° C), with heating rates of 10, 30, and 50°C / min, with terminal temperatures at 150, 200, 250, 300, 350℃, and with residence time of 10, 20, and 30 minutes. The results revealed that the heating value, ash content and energy densification ratio of the solid products after torrefaction are in direct proportion to terminal temperatures and residence time, and are inversely proportional to heating rates. The moisture content, solid mass yield, energy yield, and volumetric energy density of the solid products after torrefaction are inversely proportional to terminal temperatures and residence time, and are in direct proportion to heating rates. In conclusion, we found that the heating values of the solid products were 1.3 times higher than those of the raw orange peels before torrefaction, and the volumetric energy densities were increased by 1.45 times under operating parameters with terminal temperature at 250°C, residence time of 10 minutes, and heating rate of 10°C / min of torrefaction. The results indicated that the residue of orange peel treated by torrefaction improved its energy density and fuel properties, and became more suitable for bio-fuel applications.

Keywords: biomass energy, orange, torrefaction

Procedia PDF Downloads 291
2577 Thermal Transport Properties of Common Transition Single Metal Atom Catalysts

Authors: Yuxi Zhu, Zhenqian Chen

Abstract:

It is of great interest to investigate the thermal properties of non-precious metal catalysts for Proton exchange membrane fuel cell (PEMFC) based on the thermal management requirements. Due to the low symmetry of materials, to accurately obtain the thermal conductivity of materials, it is necessary to obtain the second and third order force constants by combining density functional theory and machine learning interatomic potential. To be specific, the interatomic force constants are obtained by moment tensor potential (MTP), which is trained by the computational trajectory of Ab initio molecular dynamics (AIMD) at 50, 300, 600, and 900 K for 1 ps each, with a time step of 1 fs in the AIMD computation. And then the thermal conductivity can be obtained by solving the Boltzmann transport equation. In this paper, the thermal transport properties of single metal atom catalysts are studied for the first time to our best knowledge by machine-learning interatomic potential (MLIP). Results show that the single metal atom catalysts exhibit anisotropic thermal conductivities and partially exhibit good thermal conductivity. The average lattice thermal conductivities of G-FeN₄, G-CoN₄ and G-NiN₄ at 300 K are 88.61 W/mK, 205.32 W/mK and 210.57 W/mK, respectively. While other single metal atom catalysts show low thermal conductivity due to their low phonon lifetime. The results also show that low-frequency phonons (0-10 THz) dominate thermal transport properties. The results provide theoretical insights into the application of single metal atom catalysts in thermal management.

Keywords: proton exchange membrane fuel cell, single metal atom catalysts, density functional theory, thermal conductivity, machine-learning interatomic potential

Procedia PDF Downloads 24
2576 Olive Stone Valorization to Its Application on the Ceramic Industry

Authors: M. Martín-Morales, D. Eliche-Quesada, L. Pérez-Villarejo, M. Zamorano

Abstract:

Olive oil is a product of particular importance within the Mediterranean and Spanish agricultural food system, and more specifically in Andalusia, owing to be the world's main production area. Olive oil processing generates olive stones which are dried and cleaned to remove pulp and olive stones fines to produce biofuel characterized to have high energy efficiency in combustion processes. Olive stones fine fraction is not too much appreciated as biofuel, so it is important the study of alternative solutions to be valorized. Some researchers have studied recycling different waste to produce ceramic bricks. The main objective of this study is to investigate the effects of olive stones addition on the properties of fired clay bricks for building construction. Olive stones were substituted by volume (7.5%, 15%, and 25%) to brick raw material in three different sizes (lower than 1 mm, lower than 2 mm and between 1 and 2 mm). In order to obtain comparable results, a series without olive stones was also prepared. The prepared mixtures were compacted in laboratory type extrusion under a pressure of 2.5MPa for rectangular shaped (30 mm x 60 mm x 10 mm). Dried and fired industrial conditions were applied to obtain laboratory brick samples. Mass loss after sintering, bulk density, porosity, water absorption and compressive strength of fired samples were investigated and compared with a sample manufactured without biomass. Results obtained have shown that olive stone addition decreased mechanical properties due to the increase in water absorption, although values tested satisfied the requirements in EN 772-1 about methods of test for masonry units (Part 1: Determination of compressive strength). Finally, important advantages related to the properties of bricks as well as their environmental effects could be obtained with the use of biomass studied to produce ceramic bricks. The increasing of the percentage of olive stones incorporated decreased bulk density and then increased the porosity of bricks. On the one hand, this lower density supposes a weight reduction of bricks to be transported, handled as well as the lightening of building; on the other hand, biomass in clay contributes to auto thermal combustion which involves lower fuel consumption during firing step. Consequently, the production of porous clay bricks using olive stones could reduce atmospheric emissions and improve their life cycle assessment, producing eco-friendly clay bricks.

Keywords: clay bricks, olive stones, sustainability, valorization

Procedia PDF Downloads 153
2575 The Scanning Vibrating Electrode Technique (SVET) as a Tool for Optimising a Printed Ni(OH)2 Electrode under Charge Conditions

Authors: C. F. Glover, J. Marinaccio, A. Barnes, I. Mabbett, G. Williams

Abstract:

The aim of the current study is to optimise formulations, in terms of charging efficiency, of a printed Ni(OH)2 precursor coating of a battery anode. Through the assessment of the current densities during charging, the efficiency of a range of formulations are compared. The Scanning vibrating electrode technique (SVET) is used extensively in the field of corrosion to measure area-averaged current densities of freely-corroding metal surfaces when fully immersed in electrolyte. Here, a Ni(OH)2 electrode is immersed in potassium hydroxide (30% w/v solution) electrolyte and charged using a range of applied currents. Samples are prepared whereby multiple coatings are applied to one substrate, separated by a non-conducting barrier, and charged using a constant current. With a known applied external current, electrode efficiencies can be calculated based on the current density outputs measured using SVET. When fully charged, a green Ni(OH)2 is oxidised to a black NiOOH surface. Distinct regions displaying high current density, and hence a faster oxidising reaction rate, are located using the SVET. This is confirmed by a darkening of the region upon transition to NiOOH. SVET is a highly effective tool for assessing homogeneity of electrodes during charge/discharge. This could prove particularly useful for electrodes where there are no visible surface appearance changes. Furthermore, a scanning Kelvin probe technique, traditionally used to assess underfilm delamination of organic coatings for the protection of metallic surfaces, is employed to study the change in phase of oxides, pre and post charging.

Keywords: battery, electrode, nickel hydroxide, SVET, printed

Procedia PDF Downloads 236
2574 Analytical Description of Disordered Structures in Continuum Models of Pattern Formation

Authors: Gyula I. Tóth, Shaho Abdalla

Abstract:

Even though numerical simulations indeed have a significant precursory/supportive role in exploring the disordered phase displaying no long-range order in pattern formation models, studying the stability properties of this phase and determining the order of the ordered-disordered phase transition in these models necessitate an analytical description of the disordered phase. First, we will present the results of a comprehensive statistical analysis of a large number (1,000-10,000) of numerical simulations in the Swift-Hohenberg model, where the bulk disordered (or amorphous) phase is stable. We will show that the average free energy density (over configurations) converges, while the variance of the energy density vanishes with increasing system size in numerical simulations, which suggest that the disordered phase is a thermodynamic phase (i.e., its properties are independent of the configuration in the macroscopic limit). Furthermore, the structural analysis of this phase in the Fourier space suggests that the phase can be modeled by a colored isotropic Gaussian noise, where any instant of the noise describes a possible configuration. Based on these results, we developed the general mathematical framework of finding a pool of solutions to partial differential equations in the sense of continuous probability measure, which we will present briefly. Applying the general idea to the Swift-Hohenberg model we show, that the amorphous phase can be found, and its properties can be determined analytically. As the general mathematical framework is not restricted to continuum theories, we hope that the proposed methodology will open a new chapter in studying disordered phases.

Keywords: fundamental theory, mathematical physics, continuum models, analytical description

Procedia PDF Downloads 134
2573 Effect of Segregation on the Reaction Rate of Sewage Sludge Pyrolysis in a Bubbling Fluidized Bed

Authors: A. Soria-Verdugo, A. Morato-Godino, L. M. García-Gutiérrez, N. García-Hernando

Abstract:

The evolution of the pyrolysis of sewage sludge in a fixed and a fluidized bed was analyzed using a novel measuring technique. This original measuring technique consists of installing the whole reactor over a precision scale, capable of measuring the mass of the complete reactor with enough precision to detect the mass released by the sewage sludge sample during its pyrolysis. The inert conditions required for the pyrolysis process were obtained supplying the bed with a nitrogen flowrate, and the bed temperature was adjusted to either 500 ºC or 600 ºC using a group of three electric resistors. The sewage sludge sample was supplied through the top of the bed in a batch of 10 g. The measurement of the mass released by the sewage sludge sample was employed to determine the evolution of the reaction rate during the pyrolysis, the total amount of volatile matter released, and the pyrolysis time. The pyrolysis tests of sewage sludge in the fluidized bed were conducted using two different bed materials of the same size but different densities: silica sand and sepiolite particles. The higher density of silica sand particles induces a flotsam behavior for the sewage sludge particles which move close to the bed surface. In contrast, the lower density of sepiolite produces a neutrally-buoyant behavior for the sewage sludge particles, which shows a proper circulation throughout the whole bed in this case. The analysis of the evolution of the pyrolysis process in both fluidized beds show that the pyrolysis is faster when buoyancy effects are negligible, i.e. in the bed conformed by sepiolite particles. Moreover, sepiolite was found to show an absorbent capability for the volatile matter released during the pyrolysis of sewage sludge.

Keywords: bubbling fluidized bed, pyrolysis, reaction rate, segregation effects, sewage sludge

Procedia PDF Downloads 358
2572 Soil Quality Status under Dryland Vegetation of Yabello District, Southern Ethiopia

Authors: Mohammed Abaoli, Omer Kara

Abstract:

The current research has investigated the soil quality status under dryland vegetation of Yabello district, Southern Ethiopia in which we should identify the nature and extent of salinity problem of the area for further research bases. About 48 soil samples were taken from 0-30, 31-60, 61-90 and 91-120 cm soil depths by opening 12 representative soil profile pits at 1.5 m depth. Soil color, texture, bulk density, Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC), Na, K, Mg, Ca, CaCO3, gypsum (CaSO4), pH, Sodium Adsorption Ratio (SAR), Exchangeable Sodium Percentage (ESP) were analyzed. The dominant soil texture was silty-clay-loam.  Bulk density varied from 1.1 to 1.31 g/cm3. High SOC content was observed in 0-30 cm. The soil pH ranged from 7.1 to 8.6. The electrical conductivity shows indirect relationship with soil depth while CaCO3 and CaSO4 concentrations were observed in a direct relationship with depth. About 41% are non-saline, 38.31% saline, 15.23% saline-sodic and 5.46% sodic soils. Na concentration in saline soils was greater than Ca and Mg in all the soil depths. Ca and Mg contents were higher above 60 cm soil depth in non-saline soils. The concentrations of SO2-4 and HCO-3 were observed to be higher at the most lower depth than upper. SAR value tends to be higher at lower depths in saline and saline-sodic soils, but decreases at lower depth of the non-saline soils. The distribution of ESP above 60 cm depth was in an increasing order in saline and saline-sodic soils. The result of the research has shown the direction to which extent of salinity we should consider for the Commiphora plant species we want to grow on the area. 

Keywords: commiphora species, dryland vegetation, ecological significance, soil quality, salinity problem

Procedia PDF Downloads 196
2571 The Effect of Shredded Polyurethane Foams on Shear Modulus and Damping Ratio of Sand

Authors: Javad Saeidaskari, Nader Khalafian

Abstract:

The undesirable impact of vibrations induced by road and railway traffic is an important concern in modern world. These vibrations are transmitted through soil and cause disturbances to the residence area and high-tech production facilities alongside the train/traffic lines. In this paper for the first time a new method of soil improvement with vibration absorber material, is used to increase the damping factor, in other word, to reduce the ability of wave transitions in sand. In this study standard Firoozkooh No. 161 sand is used as the host sand. The semi rigid polyurethane (PU) foam which used in this research is one of the common materials for vibration absorbing purposes. Series of cyclic triaxial tests were conducted on remolded samples with identical relative density of 70% of maximum dry density for different volume percentage of shredded PU foam. The frequency of tests was 0.1 Htz with shear strain of 0.37% and 0.75% and also the effective confining pressures during the tests were 100 kPa and 350 kPa. In order to find out the best soil-PU foam mixture, different volume percent of PU foam varying from 10% to 30% were examined. The results show that adding PU foam up to 20%, as its optimum content, causes notable enhancement in damping ratio for both shear strains of 0.37% (52.19% and 69% increase for effective confining pressures of 100 kPa and 350 kPa, respectively) and 0.75% (59.56% and 59.11% increase for effective confining pressures of 100 kPa and 350 kPa, respectively). The results related to shear modulus present significant reduction for both shear strains of 0.37% (82.22% and 56.03% decrease for effective confining pressures of 100 kPa and 350 kPa, respectively) and 0.75% (89.32% and 39.9% decrease for effective confining pressures of 100 kPa and 350 kPa, respectively). In conclusion, shredded PU foams effectively affect the dynamic properties of sand and act as vibration absorber in soil.

Keywords: polyurethane foam, sand, damping ratio, shear modulus

Procedia PDF Downloads 449
2570 Triangular Libration Points in the R3bp under Combined Effects of Oblateness, Radiation and Power-Law Profile

Authors: Babatunde James Falaye, Shi Hai Dong, Kayode John Oyewumi

Abstract:

We study the e ffects of oblateness up to J4 of the primaries and power-law density pro file (PDP) on the linear stability of libration location of an in nitesimal mass within the framework of restricted three body problem (R3BP), by using a more realistic model in which a disc with PDP is rotating around the common center of the system mass with perturbed mean motion. The existence and stability of triangular equilibrium points have been explored. It has been shown that triangular equilibrium points are stable for 0 < μ < μc and unstable for μc ≤ μ ≤ 1/2, where c denotes the critical mass parameter. We find that, the oblateness up to J2 of the primaries and the radiation reduces the stability range while the oblateness up to J4 of the primaries increases the size of stability both in the context where PDP is considered and ignored. The PDP has an e ect of about ≈0:01 reduction on the application of c to Earth-Moon and Jupiter-Moons systems. We find that the comprehensive eff ects of the perturbations have a stabilizing proclivity. However, the oblateness up to J2 of the primaries and the radiation of the primaries have tendency for instability, while coecients up to J4 of the primaries have stability predisposition. In the limiting case c = 0, and also by setting appropriate parameter(s) to zero, our results are in excellent agreement with the ones obtained previously. Libration points play a very important role in space mission and as a consequence, our results have a practical application in space dynamics and related areas. The model may be applied to study the navigation and station-keeping operations of spacecraft (in nitesimal mass) around the Jupiter (more massive) -Callisto (less massive) system, where PDP accounts for the circumsolar ring of asteroidal dust, which has a cloud of dust permanently in its wake.

Keywords: libration points, oblateness, power-law density profile, restricted three-body problem

Procedia PDF Downloads 326
2569 A First-Principles Investigation of Magnesium-Hydrogen System: From Bulk to Nano

Authors: Paramita Banerjee, K. R. S. Chandrakumar, G. P. Das

Abstract:

Bulk MgH2 has drawn much attention for the purpose of hydrogen storage because of its high hydrogen storage capacity (~7.7 wt %) as well as low cost and abundant availability. However, its practical usage has been hindered because of its high hydrogen desorption enthalpy (~0.8 eV/H2 molecule), which results in an undesirable desorption temperature of 3000C at 1 bar H2 pressure. To surmount the limitations of bulk MgH2 for the purpose of hydrogen storage, a detailed first-principles density functional theory (DFT) based study on the structure and stability of neutral (Mgm) and positively charged (Mgm+) Mg nanoclusters of different sizes (m = 2, 4, 8 and 12), as well as their interaction with molecular hydrogen (H2), is reported here. It has been found that due to the absence of d-electrons within the Mg atoms, hydrogen remained in molecular form even after its interaction with neutral and charged Mg nanoclusters. Interestingly, the H2 molecules do not enter into the interstitial positions of the nanoclusters. Rather, they remain on the surface by ornamenting these nanoclusters and forming new structures with a gravimetric density higher than 15 wt %. Our observation is that the inclusion of Grimme’s DFT-D3 dispersion correction in this weakly interacting system has a significant effect on binding of the H2 molecules with these nanoclusters. The dispersion corrected interaction energy (IE) values (0.1-0.14 eV/H2 molecule) fall in the right energy window, that is ideal for hydrogen storage. These IE values are further verified by using high-level coupled-cluster calculations with non-iterative triples corrections i.e. CCSD(T), (which has been considered to be a highly accurate quantum chemical method) and thereby confirming the accuracy of our ‘dispersion correction’ incorporated DFT calculations. The significance of the polarization and dispersion energy in binding of the H2 molecules are confirmed by performing energy decomposition analysis (EDA). A total of 16, 24, 32 and 36 H2 molecules can be attached to the neutral and charged nanoclusters of size m = 2, 4, 8 and 12 respectively. Ab-initio molecular dynamics (AIMD) simulation shows that the outermost H2 molecules are desorbed at a rather low temperature viz. 150 K (-1230C) which is expected. However, complete dehydrogenation of these nanoclusters occur at around 1000C. Most importantly, the host nanoclusters remain stable up to ~500 K (2270C). All these results on the adsorption and desorption of molecular hydrogen with neutral and charged Mg nanocluster systems indicate towards the possibility of reducing the dehydrogenation temperature of bulk MgH2 by designing new Mg-based nano materials which will be able to adsorb molecular hydrogen via this weak Mg-H2 interaction, rather than the strong Mg-H bonding. Notwithstanding the fact that in practical applications, these interactions will be further complicated by the effect of substrates as well as interactions with other clusters, the present study has implications on our fundamental understanding to this problem.

Keywords: density functional theory, DFT, hydrogen storage, molecular dynamics, molecular hydrogen adsorption, nanoclusters, physisorption

Procedia PDF Downloads 415
2568 Exploring the Safety of Sodium Glucose Co-Transporter-2 Inhibitors at the Imperial College London Diabetes Centre, UAE

Authors: Raad Nari, Maura Moriaty, Maha T. Barakat

Abstract:

Introduction: Sodium-glucose co-transporter-2 (SGLT2) inhibitors are a new class of oral anti-diabetic drugs with a unique mechanism of action. They are used to improve glycaemic control in adults with type 2 diabetes by enhancing urinary glucose excretion. In the UAE, there has been certainly an increased use of these medications. As with any new medication, there are safety considerations related to their use in patients with type two diabetes. A retrospective study was conducted at the three main centres of the Imperial College London Diabetes Centre. Methodology: All patients in electronic database (Diamond) from October 2014 to October 2017 were included with a minimum of six months usage of sodium glucose co-transporter inhibitors that comprise canagliflozin, dapagliflozin and empagliflozin. There were 15 paired sample biochemical and clinical correlations. The analysis was done at the start of the study, three months and six months apart. SPSS version 24 was used for this study. Conclusion: This study of sodium glucose co-transporter-2 inhibitors used showed significant reductions in weight, glycated haemoglobin A1C, systolic and diastolic blood pressures. As the case with systematic reviews, there were similar changes in liver enzymes, raised total cholesterol, low density lipopoptein and high density lipoprotein. There was slight improvement in estimated glomerular filtration rate too. Our analysis also showed that they increased in the incidence of urinary tract symptoms and incidence of urinary tract infections.

Keywords: SGLT2 inhibitors dapagliflozin empagliflozin canagliflozin, adverse effects, amputation diabetic ketoacidosis DKA, urinary tract infection

Procedia PDF Downloads 229