Search results for: charging decision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4198

Search results for: charging decision

3238 An Equivalent Circuit Model Approach for Battery Pack Simulation in a Hybrid Electric Vehicle System Powertrain

Authors: Suchitra Sivakumar, Hajime Shingyouchi, Toshinori Okajima, Kyohei Yamaguchi, Jin Kusaka

Abstract:

The progressing need for powertrain electrification calls for more accurate and reliable simulation models. A battery pack serves as the most vital component for energy storage in an electrified powertrain. Hybrid electric vehicles (HEV) do not behave the same way as they age, and there are several environmental factors that account for the degradation of the battery on a system level. Therefore, in this work, a battery model was proposed to study the state of charge (SOC) variation and the internal dynamic changes that contribute to aging and performance degradation in HEV batteries. An equivalent circuit battery model (ECM) is built using MATLAB Simulink to investigate the output characteristics of the lithium-ion battery. The ECM comprises of circuit elements like a voltage source, a series resistor and a parallel RC network connected in series. A parameter estimation study is conducted on the ECM to study the dependencies of the circuit elements with the state of charge (SOC) and the terminal voltage of the battery. The battery model is extended to simulate the temperature dependence of the individual battery cell and the battery pack with the environment. The temperature dependence model accounts for the heat loss due to internal resistance build up in the battery pack during charging, discharging, and due to atmospheric temperature. The model was validated for a lithium-ion battery pack with an independent drive cycle showing a voltage accuracy of 4% and SOC accuracy of about 2%.

Keywords: battery model, hybrid electric vehicle, lithium-ion battery, thermal model

Procedia PDF Downloads 298
3237 Cleaner Production Options for Fishery Wastes around Lake Tana-Ethiopia

Authors: Demisash, Abate Getnet, Gudisa, Ababo Geleta, Daba, Berhane Olani

Abstract:

As consumption trends of fish are rising in Ethiopia, assessment of the environmental performance of Fisheries becomes vital. Hence, Cleaner Production Assessment was conducted on Lake Tana No.1 Fish Supply Association. This paper focuses on determining the characteristics, quantity, and setting up cleaner production options for the site with the experimental investigation. The survey analysis showed that illegal waste dumping in Lake Tana is common practice in the area, and some of the main reasons raised were they have no option than doing this for dis-charging fish wastes. Quantifying a fish waste by examination of records at the point of generation resulted in a generation rate of 72,822.61 kg per year, which is a significant amount of waste and needs management system. The result of the proximate analysis showed high free fat content of about 12.33%, and this was a good candidate for the production of biodiesel that has been set as an option for fish waste utilization. Among the different waste management options, waste reduction by product optimization, which involves biodiesel production, was chosen as a potential method. Laboratory scale experiments were performed to produce a renewable energy source from the wastes. The resulting biodiesel was characterized and found to have a density of 0.756kg/L, viscosity 0.24p, and 153°C flashpoints, which shows the product has values in compliance with the American Society for Testing and Materials (ASTM) standards.

Keywords: biodiesel, cleaner production, renewable energy, waste management

Procedia PDF Downloads 151
3236 A Framework for Early Differential Diagnosis of Tropical Confusable Diseases Using the Fuzzy Cognitive Map Engine

Authors: Faith-Michael E. Uzoka, Boluwaji A. Akinnuwesi, Taiwo Amoo, Flora Aladi, Stephen Fashoto, Moses Olaniyan, Joseph Osuji

Abstract:

The overarching aim of this study is to develop a soft-computing system for the differential diagnosis of tropical diseases. These conditions are of concern to health bodies, physicians, and the community at large because of their mortality rates, and difficulties in early diagnosis due to the fact that they present with symptoms that overlap, and thus become ‘confusable’. We report on the first phase of our study, which focuses on the development of a fuzzy cognitive map model for early differential diagnosis of tropical diseases. We used malaria as a case disease to show the effectiveness of the FCM technology as an aid to the medical practitioner in the diagnosis of tropical diseases. Our model takes cognizance of manifested symptoms and other non-clinical factors that could contribute to symptoms manifestations. Our model showed 85% accuracy in diagnosis, as against the physicians’ initial hypothesis, which stood at 55% accuracy. It is expected that the next stage of our study will provide a multi-disease, multi-symptom model that also improves efficiency by utilizing a decision support filter that works on an algorithm, which mimics the physician’s diagnosis process.

Keywords: medical diagnosis, tropical diseases, fuzzy cognitive map, decision support filters, malaria differential diagnosis

Procedia PDF Downloads 320
3235 Consumer Behaviour Model for Apparel E-Tailers Using Structural Equation Modelling

Authors: Halima Akhtar, Abhijeet Chandra

Abstract:

The paper attempts to analyze the factors that influence the Consumer Behavior to purchase apparel through the internet. The intentions to buy apparels online were based on in terms of user style, orientation, size and reputation of the merchant, social influence, perceived information utility, perceived ease of use, perceived pleasure and attractiveness and perceived trust and risk. The basic framework used was Technology acceptance model to explain apparels acceptance. A survey was conducted to gather the data from 200 people. The measures and hypotheses were analyzed using Correlation testing and would be further validated by the Structural Equation Modelling. The implications of the findings for theory and practice could be used by marketers of online apparel websites. Based on the values obtained, we can conclude that the factors such as social influence, Perceived information utility, attractiveness and trust influence the decision for a user to buy apparels online. The major factors which are found to influence an online apparel buying decision are ease of use, attractiveness that a website can offer and the trust factor which a user shares with the website.

Keywords: E-tailers, consumer behaviour, technology acceptance model, structural modelling

Procedia PDF Downloads 186
3234 Moral Decision-Making in the Criminal Justice System: The Influence of Gruesome Descriptions

Authors: Michel Patiño-Sáenz, Martín Haissiner, Jorge Martínez-Cotrina, Daniel Pastor, Hernando Santamaría-García, Maria-Alejandra Tangarife, Agustin Ibáñez, Sandra Baez

Abstract:

It has been shown that gruesome descriptions of harm can increase the punishment given to a transgressor. This biasing effect is mediated by negative emotions, which are elicited upon the presentation of gruesome descriptions. However, there is a lack of studies inquiring the influence of such descriptions on moral decision-making in people involved in the criminal justice system. Such populations are of special interest since they have experience dealing with gruesome evidence, but also formal education on how to assess evidence and gauge the appropriate punishment according to the law. Likewise, they are expected to be objective and rational when performing their duty, because their decisions can impact profoundly people`s lives. Considering these antecedents, the objective of this study was to explore the influence gruesome written descriptions on moral decision-making in this group of people. To that end, we recruited attorneys, judges and public prosecutors (Criminal justice group, CJ, n=30) whose field of specialty is criminal law. In addition, we included a control group of people who did not have a formal education in law (n=30), but who were paired in age and years of education with the CJ group. All participants completed an online, Spanish-adapted version of a moral decision-making task, which was previously reported in the literature and also standardized and validated in the Latin-American context. A series of text-based stories describing two characters, one inflicting harm on the other, were presented to participants. Transgressor's intentionality (accidental vs. intentional harm) and language (gruesome vs. plain) used to describe harm were manipulated employing a within-subjects and a between-subjects design, respectively. After reading each story, participants were asked to rate (a) the harmful action's moral adequacy, (b) the amount of punishment deserving the transgressor and (c) how damaging was his behavior. Results showed main effects of group, intentionality and type of language on all dependent measures. In both groups, intentional harmful actions were rated as significantly less morally adequate, were punished more severely and were deemed as more damaging. Moreover, control subjects deemed more damaging and punished more severely any type of action than the CJ group. In addition, there was an interaction between intentionality and group. People in the control group rated harmful actions as less morally adequate than the CJ group, but only when the action was accidental. Also, there was an interaction between intentionality and language on punishment ratings. Controls punished more when harm was described using gruesome language. However, that was not the case of people in the CJ group, who assigned the same amount of punishment in both conditions. In conclusion, participants with job experience in the criminal justice system or criminal law differ in the way they make moral decisions. Particularly, it seems that they are less sensitive to the biasing effect of gruesome evidence, which is probably explained by their formal education or their experience in dealing with such evidence. Nonetheless, more studies are needed to determine the impact this phenomenon has on the fulfillment of their duty.

Keywords: criminal justice system, emotions, gruesome descriptions, intentionality, moral decision-making

Procedia PDF Downloads 188
3233 The Antecedent Variables of Government Financial Accounting System (SAKD) Implementation and Its Consequences: Empirical Study on the Device of Regional Coordinating Agency for Development of Cross County, City Region III Central Java Province, Indo

Authors: Dona Primasari

Abstract:

This study examines the antecedent variables of Government Financial Acccounting System (SAKD) implementation and its consequence. The antecedent variables are: decentralization of decision making, adaptation, and the manager support. The consequences are satisfaction and performance officer. This research represents the empirical test which used convenience sampling technics in data collection. The data were collected from 167 officers of local government in the Regional Coordinating Agency for Development of Cross County/City Region III Central Java Province. Data analysis used Structural Equation Model (SEM) with the AMOS 18.0 program. The result of hypothesis examination indicates that six raised hypothesis are accepted and two hypothesis are rejected.

Keywords: decentralization of decision making, adaptation officer, manager support, implementation of Government Accounting Financial System (SAKD), satisfaction and performance officer

Procedia PDF Downloads 389
3232 Disability, Technology and Inclusion: Fostering and Inclusive Pedagogical Approach in an Interdisciplinary Project

Authors: M. Lopez-Pereyra, I. Cisneros Alvarado, M. Del Socorro Lobato Alba

Abstract:

This paper aims to discuss a conceptual, pedagogical approach that foster inclusive education and that create an awareness of the use of assistive technology in Mexico. Interdisciplinary understanding of disabilities and the use of assistive technology as a frame for an inclusive education have challenged the reality of the researchers’ participation in decision-making. Drawing upon a pedagogical inquiry process within an interdisciplinary academic project that involved the sciences, design, biotechnology, psychology and education fields, this paper provides a discussion on the challenges of assistive technology and inclusive education in interdisciplinary research on disabilities and technology project. This study is frame on an educational action research design where the team is interested in integrating, disability, technology, and inclusion, theory, and practice. Major findings include: (1) the concept of inclusive education as a strategy for interdisciplinary research; (2) inclusion as a pedagogical approach that challenges the creation of assistive technology from diverse academic fields; and, (3) inclusion as a frame, problem-focused, for decision-making. The findings suggest that inclusive pedagogical approaches provide a unique insight into interdisciplinary teams on disability and assistive technology in education.

Keywords: assistive technology, inclusive education, inclusive pedagogy, interdisciplinary research

Procedia PDF Downloads 189
3231 Deciding Graph Non-Hamiltonicity via a Closure Algorithm

Authors: E. R. Swart, S. J. Gismondi, N. R. Swart, C. E. Bell

Abstract:

We present an heuristic algorithm that decides graph non-Hamiltonicity. All graphs are directed, each undirected edge regarded as a pair of counter directed arcs. Each of the n! Hamilton cycles in a complete graph on n+1 vertices is mapped to an n-permutation matrix P where p(u,i)=1 if and only if the ith arc in a cycle enters vertex u, starting and ending at vertex n+1. We first create exclusion set E by noting all arcs (u, v) not in G, sufficient to code precisely all cycles excluded from G i.e. cycles not in G use at least one arc not in G. Members are pairs of components of P, {p(u,i),p(v,i+1)}, i=1, n-1. A doubly stochastic-like relaxed LP formulation of the Hamilton cycle decision problem is constructed. Each {p(u,i),p(v,i+1)} in E is coded as variable q(u,i,v,i+1)=0 i.e. shrinks the feasible region. We then implement the Weak Closure Algorithm (WCA) that tests necessary conditions of a matching, together with Boolean closure to decide 0/1 variable assignments. Each {p(u,i),p(v,j)} not in E is tested for membership in E, and if possible, added to E (q(u,i,v,j)=0) to iteratively maximize |E|. If the WCA constructs E to be maximal, the set of all {p(u,i),p(v,j)}, then G is decided non-Hamiltonian. Only non-Hamiltonian G share this maximal property. Ten non-Hamiltonian graphs (10 through 104 vertices) and 2000 randomized 31 vertex non-Hamiltonian graphs are tested and correctly decided non-Hamiltonian. For Hamiltonian G, the complement of E covers a matching, perhaps useful in searching for cycles. We also present an example where the WCA fails.

Keywords: Hamilton cycle decision problem, computational complexity theory, graph theory, theoretical computer science

Procedia PDF Downloads 373
3230 Distributive School Leadership in Croatian Primary Schools

Authors: Iva Buchberger, Vesna Kovač

Abstract:

Global education policy trends and recommendations underline the importance of (distributive) school leadership as a school effectiveness key factor. In this context, the broader aim of this research (supported by the Croatian Science Foundation) is to identify school leadership characteristics in Croatian schools and to examine the correlation between school leadership and school effectiveness. The aim of the proposed conference paper is to focus on the school leadership characteristics which are additionally explained with school leadership facilitators that contribute to (distributive) school leadership development. The aforementioned school leadership characteristics include the following dimensions: (a) participation in the process of making different types of decisions, (b) influence in the decision making process, (c) social interactions between different stakeholders in the decision making process in schools. Further, the school leadership facilitators are categorized as follows: (a) principal’s activities (such as providing support to different stakeholders and developing mutual trust among them), (b) stakeholders’ characteristics (such as developed stakeholders’ interest and competence to participate in decision-making process), (c) organizational and material resources (such as school material conditions, the necessary information and time as resources for making decisions). The data were collected by a constructed and validated questionnaire for examining the school leadership characteristics and facilitators from teachers’ perspective. The main population in this study consists of all primary schools in Croatia while the sample is comprised of 100 primary schools, selected by random sampling. Furthermore, the sample of teachers was selected by an additional procedure taking into consideration the independent variables of sex, work experience, etc. Data processing was performed by standard statistical methods of descriptive and inferential statistics. Statistical program IBM SPSS 20.0 was used for data processing. The results of this study show that there is a (positive) correlation between school leadership characteristics and school leadership facilitators. Specifically, it is noteworthy to mention that all the dimensions of school leadership characteristics are in positive correlation with the categories of school leadership facilitators. These results are indicative for the education policy creators who should ensure positive and supportive environment for the school leadership development including the development of school leadership characteristics and school leadership facilitators.

Keywords: distributive school leadership, school effectiveness , school leadership characteristics, school leadership facilitators

Procedia PDF Downloads 249
3229 The Impact of Cloud Accounting on Boards of Directors in the Middle East and North African (MENA) Countries

Authors: Ahmad Alqatan

Abstract:

Purpose: The purpose of this study is to analyze how the adoption of cloud accounting systems influences the governance practices and performance of boards of directors in MENA countries. The research aims to identify the benefits and challenges associated with cloud accounting and its role in improving board efficiency and oversight. Methodology: This research employs a mixed-method approach, combining quantitative surveys and qualitative interviews with board members and financial officers from a diverse range of companies in the MENA region. The quantitative data is analyzed to determine patterns and correlations, while qualitative insights provide a deeper understanding of the contextual factors influencing cloud accounting adoption and its impacts. Findings: The findings indicate that cloud accounting significantly enhances the decision-making capabilities of boards by providing real-time financial information and facilitating better communication among board members. Companies using cloud accounting reports improved financial oversight and more timely and accurate financial reporting. However, the research also identifies challenges such as cybersecurity concerns, resistance to change, and the need for ongoing training and support. Practical Implications: The study suggests that MENA companies can benefit from investing in cloud accounting technologies to improve board governance and strategic decision-making. It highlights the importance of addressing cybersecurity issues and providing adequate training for board members to maximize the advantages of cloud accounting. Originality: This research contributes to the limited literature on cloud accounting in the MENA region, offering valuable insights for policymakers, business leaders, and academics. It underscores the transformative potential of cloud accounting for enhancing board performance and corporate governance in emerging markets.

Keywords: cloud accounting, board of directors, MENA region, corporate governance, financial transparency, real-time data, decision-making, cybersecurity, technology adoption

Procedia PDF Downloads 30
3228 Considering International/Local Peacebuilding Partnerships: The Stoplights Analysis System

Authors: Charles Davidson

Abstract:

This paper presents the Stoplight Analysis System of Partnering Organizations Readiness, offering a structured framework to evaluate conflict resolution collaboration feasibility, especially crucial in conflict areas, employing a colour-coded approach and specific assessment points, with implications for more informed decision-making and improved outcomes in peacebuilding initiatives. Derived from at total of 40 years of practical peacebuilding experience from the project’s two researchers as well as interviews of various other peacebuilding actors, this paper introduces the Stoplight Analysis System of Partnering Organizations Readiness, a comprehensive framework designed to facilitate effective collaboration in international/local peacebuilding partnerships by evaluating the readiness of both potential partner organisations and the location of the proposed project. ^The system employs a colour-coded approach, categorising potential partnerships into three distinct indicators: Red (no-go), Yellow (requires further research), and Green (promising, go ahead). Within each category, specific points are identified for assessment, guiding decision-makers in evaluating the feasibility and potential success of collaboration. The Red category signals significant barriers, prompting an immediate stoppage in the consideration of partnership. The Yellow category encourages deeper investigation to determine whether potential issues can be mitigated, while the Green category signifies organisations deemed ready for collaboration. This systematic and structured approach empowers decision-makers to make informed choices, enhancing the likelihood of successful and mutually beneficial partnerships. Methodologically, this paper utilised interviews from peacebuilders from around the globe, scholarly research of extant strategies, and a collaborative review of programming from the project’s two authors from their own time in the field. This method as a formalised model has been employed for the past two years across a litany of partnership considerations, and has been adjusted according to its field experimentation. This research holds significant importance in the field of conflict resolution as it provides a systematic and structured approach to peacebuilding partnership evaluation. In conflict-affected regions, where the dynamics are complex and challenging, the Stoplight Analysis System offers decision-makers a practical tool to assess the readiness of partnering organisations. This approach can enhance the efficiency of conflict resolution efforts by ensuring that resources are directed towards partnerships with a higher likelihood of success, ultimately contributing to more effective and sustainable peacebuilding outcomes.

Keywords: collaboration, conflict resolution, partnerships, peacebuilding

Procedia PDF Downloads 64
3227 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 80
3226 Attribute Based Comparison and Selection of Modular Self-Reconfigurable Robot Using Multiple Attribute Decision Making Approach

Authors: Manpreet Singh, V. P. Agrawal, Gurmanjot Singh Bhatti

Abstract:

From the last decades, there is a significant technological advancement in the field of robotics, and a number of modular self-reconfigurable robots were introduced that can help in space exploration, bucket to stuff, search, and rescue operation during earthquake, etc. As there are numbers of self-reconfigurable robots, choosing the optimum one is always a concern for robot user since there is an increase in available features, facilities, complexity, etc. The objective of this research work is to present a multiple attribute decision making based methodology for coding, evaluation, comparison ranking and selection of modular self-reconfigurable robots using a technique for order preferences by similarity to ideal solution approach. However, 86 attributes that affect the structure and performance are identified. A database for modular self-reconfigurable robot on the basis of different pertinent attribute is generated. This database is very useful for the user, for selecting a robot that suits their operational needs. Two visual methods namely linear graph and spider chart are proposed for ranking of modular self-reconfigurable robots. Using five robots (Atron, Smores, Polybot, M-Tran 3, Superbot), an example is illustrated, and raking of the robots is successfully done, which shows that Smores is the best robot for the operational need illustrated, and this methodology is found to be very effective and simple to use.

Keywords: self-reconfigurable robots, MADM, TOPSIS, morphogenesis, scalability

Procedia PDF Downloads 223
3225 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 70
3224 Accountants and Anti-Money Laundering Compliance in the Real Estate Sector

Authors: Mark E. Lokanan, Liz Lee

Abstract:

This paper aims to examine the role of accountants as gatekeepers in anti-money laundering compliance in real estate transactions. The paper seeks to answer questions on ways in which accountants are involved in real estate transactions and mandatory compliance with regulatory authorities in Canada. The data for the study came from semi-structured interviews with accountants, lawyers, and government officials. Preliminary results reveal that there is a conflict between accountants’ obligation to disclose and loyalty to their clients. Accountants often do not see why they are obligated to disclose their clients' information to government agencies. The importance of the client in terms of the amount of revenue contributed to the accounting firm also plays a significant role in accountants' reporting decision-making process. Although the involvement of accountants in real estate purchase and sale transactions is limited to lawyers or notaries, they are often involved in designing financing schemes, which may involve money laundering activities. The paper is of wider public policy interests to both accountants and regulators. It is hard not to see Chartered Professional Accountant (CPA) Canada and government regulators using the findings to better understand the decision-making processes of accountants in their reporting practices to regulatory authorities.

Keywords: money laundering, real estate, disclosure, legislation, compliance

Procedia PDF Downloads 231
3223 The Material-Process Perspective: Design and Engineering

Authors: Lars Andersen

Abstract:

The development of design and engineering in large construction projects are characterized by an increased degree of flattening out of formal structures, extended use of parallel and integrated processes (‘Integrated Concurrent Engineering’) and an increased number of expert disciplines. The integration process is based on ongoing collaborations, dialogues, intercommunication and comments on each other’s work (iterations). This process based on reciprocal communication between actors and disciplines triggers value creation. However, communication between equals is not in itself sufficient to create effective decision making. The complexity of the process and time pressure contribute to an increased risk of a deficit of decisions and loss of process control. The paper refers to a study that aims at developing a resilient decision-making system that does not come in conflict with communication processes based on equality between the disciplines in the process. The study includes the construction of a hospital, following the phases design, engineering and physical building. The Research method is a combination of formative process research, process tracking and phenomenological analyses. The study tracked challenges and problems in the building process to the projection substrates (drawing and models) and further to the organization of the engineering and design phase. A comparative analysis of traditional and new ways of organizing the projecting made it possible to uncover an implicit material order or structure in the process. This uncovering implied a development of a material process perspective. According to this perspective the complexity of the process is rooted in material-functional differentiation. This differentiation presupposes a structuring material (the skeleton of the building) that coordinates the other types of material. Each expert discipline´s competence is related to one or a set of materials. The architect, consulting engineer construction etc. have their competencies related to structuring material, and inherent in this; coordination competence. When dialogues between the disciplines concerning the coordination between them do not result in agreement, the disciplines with responsibility for the structuring material decide the interface issues. Based on these premises, this paper develops a self-organized expert-driven interdisciplinary decision-making system.

Keywords: collaboration, complexity, design, engineering, materiality

Procedia PDF Downloads 221
3222 Effective Emergency Response and Disaster Prevention: A Decision Support System for Urban Critical Infrastructure Management

Authors: M. Shahab Uddin, Pennung Warnitchai

Abstract:

Currently more than half of the world’s populations are living in cities, and the number and sizes of cities are growing faster than ever. Cities rely on the effective functioning of complex and interdependent critical infrastructures networks to provide public services, enhance the quality of life, and save the community from hazards and disasters. In contrast, complex connectivity and interdependency among the urban critical infrastructures bring management challenges and make the urban system prone to the domino effect. Unplanned rapid growth, increased connectivity, and interdependency among the infrastructures, resource scarcity, and many other socio-political factors are affecting the typical state of an urban system and making it susceptible to numerous sorts of diversion. In addition to internal vulnerabilities, urban systems are consistently facing external threats from natural and manmade hazards. Cities are not just complex, interdependent system, but also makeup hubs of the economy, politics, culture, education, etc. For survival and sustainability, complex urban systems in the current world need to manage their vulnerabilities and hazardous incidents more wisely and more interactively. Coordinated management in such systems makes for huge potential when it comes to absorbing negative effects in case some of its components were to function improperly. On the other hand, ineffective management during a similar situation of overall disorder from hazards devastation may make the system more fragile and push the system to an ultimate collapse. Following the quantum, the current research hypothesizes that a hazardous event starts its journey as an emergency, and the system’s internal vulnerability and response capacity determine its destination. Connectivity and interdependency among the urban critical infrastructures during this stage may transform its vulnerabilities into dynamic damaging force. An emergency may turn into a disaster in the absence of effective management; similarly, mismanagement or lack of management may lead the situation towards a catastrophe. Situation awareness and factual decision-making is the key to win a battle. The current research proposed a contextual decision support system for an urban critical infrastructure system while integrating three different models: 1) Damage cascade model which demonstrates damage propagation among the infrastructures through their connectivity and interdependency, 2) Restoration model, a dynamic restoration process of individual infrastructure, which is based on facility damage state and overall disruptions in surrounding support environment, and 3) Optimization model that ensures optimized utilization and distribution of available resources in and among the facilities. All three models are tightly connected, mutually interdependent, and together can assess the situation and forecast the dynamic outputs of every input. Moreover, this integrated model will hold disaster managers and decision makers responsible when it comes to checking all the alternative decision before any implementation, and support to produce maximum possible outputs from the available limited inputs. This proposed model will not only support to reduce the extent of damage cascade but will ensure priority restoration and optimize resource utilization through adaptive and collaborative management. Complex systems predictably fail but in unpredictable ways. System understanding, situation awareness, and factual decisions may significantly help urban system to survive and sustain.

Keywords: disaster prevention, decision support system, emergency response, urban critical infrastructure system

Procedia PDF Downloads 227
3221 Discover Your Power: A Case for Contraceptive Self-Empowerment

Authors: Oluwaseun Adeleke, Samuel Ikan, Anthony Nwala, Mopelola Raji, Fidelis Edet

Abstract:

Background: The risks associated with each pregnancy is carried almost entirely by a woman; however, the decision about whether and when to get pregnant is a subject that several others contend with her to make. The self-care concept offers women of reproductive age the opportunity to take control of their health and its determinants with or without the influence of a healthcare provider, family, and friends. DMPA-SC Self-injection (SI) is becoming the cornerstone of contraceptive self-care and has the potential to expand access and create opportunities for women to take control of their reproductive health. Methodology: To obtain insight into the influences that interfere with a woman’s capacity to make contraceptive choices independently, the Delivering Innovations in Selfcare (DISC) project conducted two intensive rounds of qualitative data collection and triangulation that included provider, client, and community mobilizer interviews, facility observations, and routine program data collection. Respondents were sampled according to a convenience sampling approach and data collected analyzed using a codebook and Atlas-TI. The research team members came together for participatory analysis workshop to explore and interpret emergent themes. Findings: Insights indicate that women are increasingly finding their voice and independently seek services to prevent a deterioration of their economic situation and achieve personal ambitions. Women who hold independent decision-making power still prefer to share decision making power with their male partners. Male partners’ influence on women’s use of family planning and self-inject was most dominant. There were examples of men’s support for women’s use of contraception to prevent unintended pregnancy, as well as men withholding support. Other men outrightly deny their partners from obtaining contraceptive services and their partners cede this sexual and reproductive health right without objection. A woman’s decision to initiate family planning is affected by myths and misconceptions, many of which have cultural and religious origins. Some tribes are known for their reluctance to use contraception and often associate stigma with the pursuit of family planning (FP) services. Information given by the provider is accepted, and, in many cases, clients cede power to providers to shape their SI user journey. A provider’s influence on a client’s decision to self-inject is reinforced by their biases and concerns. Clients are inhibited by the presence of peers during group education at the health facility. Others are motivated to seek FP services by the interest expressed by peers. There is also a growing trend in the influence of social media on FP uptake, particularly Facebook fora. Conclusion: The convenience of self-administration at home is a benefit for those that contend with various forms of social influences as well as covert users. Beyond increasing choice and reducing barriers to accessing Sexual and Reproductive Health (SRH) services, it can initiate the process of self-discovery and agency in the contraceptive user journey.

Keywords: selfcare, self-empowerment, agency, DMPA-SC, contraception, family planning, influences

Procedia PDF Downloads 71
3220 Modeling the Impact of Time Pressure on Activity-Travel Rescheduling Heuristics

Authors: Jingsi Li, Neil S. Ferguson

Abstract:

Time pressure could have an influence on the productivity, quality of decision making, and the efficiency of problem-solving. This has been mostly stemmed from cognitive research or psychological literature. However, a salient scarce discussion has been held for transport adjacent fields. It is conceivable that in many activity-travel contexts, time pressure is a potentially important factor since an excessive amount of decision time may incur the risk of late arrival to the next activity. The activity-travel rescheduling behavior is commonly explained by costs and benefits of factors such as activity engagements, personal intentions, social requirements, etc. This paper hypothesizes that an additional factor of perceived time pressure could affect travelers’ rescheduling behavior, thus leading to an impact on travel demand management. Time pressure may arise from different ways and is assumed here to be essentially incurred due to travelers planning their schedules without an expectation of unforeseen elements, e.g., transport disruption. In addition to a linear-additive utility-maximization model, the less computationally compensatory heuristic models are considered as an alternative to simulate travelers’ responses. The paper will contribute to travel behavior modeling research by investigating the following questions: how to measure the time pressure properly in an activity-travel day plan context? How do travelers reschedule their plans to cope with the time pressure? How would the importance of the activity affect travelers’ rescheduling behavior? What will the behavioral model be identified to describe the process of making activity-travel rescheduling decisions? How do these identified coping strategies affect the transport network? In this paper, a Mixed Heuristic Model (MHM) is employed to identify the presence of different choice heuristics through a latent class approach. The data about travelers’ activity-travel rescheduling behavior is collected via a web-based interactive survey where a fictitious scenario is created comprising multiple uncertain events on the activity or travel. The experiments are conducted in order to gain a real picture of activity-travel reschedule, considering the factor of time pressure. The identified behavioral models are then integrated into a multi-agent transport simulation model to investigate the effect of the rescheduling strategy on the transport network. The results show that an increased proportion of travelers use simpler, non-compensatory choice strategies instead of compensatory methods to cope with time pressure. Specifically, satisfying - one of the heuristic decision-making strategies - is adopted commonly since travelers tend to abandon the less important activities and keep the important ones. Furthermore, the importance of the activity is found to increase the weight of negative information when making trip-related decisions, especially route choices. When incorporating the identified non-compensatory decision-making heuristic models into the agent-based transport model, the simulation results imply that neglecting the effect of perceived time pressure may result in an inaccurate forecast of choice probability and overestimate the affectability to the policy changes.

Keywords: activity-travel rescheduling, decision making under uncertainty, mixed heuristic model, perceived time pressure, travel demand management

Procedia PDF Downloads 112
3219 Advances in Design Decision Support Tools for Early-stage Energy-Efficient Architectural Design: A Review

Authors: Maryam Mohammadi, Mohammadjavad Mahdavinejad, Mojtaba Ansari

Abstract:

The main driving force for increasing movement towards the design of High-Performance Buildings (HPB) are building codes and rating systems that address the various components of the building and their impact on the environment and energy conservation through various methods like prescriptive methods or simulation-based approaches. The methods and tools developed to meet these needs, which are often based on building performance simulation tools (BPST), have limitations in terms of compatibility with the integrated design process (IDP) and HPB design, as well as use by architects in the early stages of design (when the most important decisions are made). To overcome these limitations in recent years, efforts have been made to develop Design Decision Support Systems, which are often based on artificial intelligence. Numerous needs and steps for designing and developing a Decision Support System (DSS), which complies with the early stages of energy-efficient architecture design -consisting of combinations of different methods in an integrated package- have been listed in the literature. While various review studies have been conducted in connection with each of these techniques (such as optimizations, sensitivity and uncertainty analysis, etc.) and their integration of them with specific targets; this article is a critical and holistic review of the researches which leads to the development of applicable systems or introduction of a comprehensive framework for developing models complies with the IDP. Information resources such as Science Direct and Google Scholar are searched using specific keywords and the results are divided into two main categories: Simulation-based DSSs and Meta-simulation-based DSSs. The strengths and limitations of different models are highlighted, two general conceptual models are introduced for each category and the degree of compliance of these models with the IDP Framework is discussed. The research shows movement towards Multi-Level of Development (MOD) models, well combined with early stages of integrated design (schematic design stage and design development stage), which are heuristic, hybrid and Meta-simulation-based, relies on Big-real Data (like Building Energy Management Systems Data or Web data). Obtaining, using and combining of these data with simulation data to create models with higher uncertainty, more dynamic and more sensitive to context and culture models, as well as models that can generate economy-energy-efficient design scenarios using local data (to be more harmonized with circular economy principles), are important research areas in this field. The results of this study are a roadmap for researchers and developers of these tools.

Keywords: integrated design process, design decision support system, meta-simulation based, early stage, big data, energy efficiency

Procedia PDF Downloads 162
3218 Factors Influencing the Logistics Services Providers' Performance: A Literature Overview

Authors: A. Aguezzoul

Abstract:

The Logistics Services Providers (LSPs) selection and performance is a strategic decision that affects the overall performance of any company as well as its supply chain. It is a complex process, which takes into account various conflicting quantitative and qualitative factors, as well as outsourced logistics activities. This article focuses on the evolution of the weights associated to these factors over the last years in order to better understand the change in the importance that logistics professionals place on them criteria when choosing their LSPs. For that, an analysis of 17 main studies published during 2014-2017 period was carried out and the results are compared to those of a previous literature review on this subject. Our analysis allowed us to deduce the following observations: 1) the LSPs selection is a multi-criteria process; 2) the empirical character of the majority of studies, conducted particularly in Asian countries; 3) the criteria importance has undergone significant changes following the emergence of information technologies that have favored the work in close collaboration and in partnership between the LSPs and their customers, even on a worldwide scale; 4) the cost criterion is relatively less important than in the past; and finally 5) with the development of sustainable supply chains, the factors associated with the logistic activities of return and waste processing (reverse logistics) are becoming increasingly important in this multi-criteria process of selection and evaluation of LSPs performance.

Keywords: logistics outsourcing, logistics providers, multi-criteria decision making, performance

Procedia PDF Downloads 154
3217 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment

Authors: Seun Mayowa Sunday

Abstract:

Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.

Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud

Procedia PDF Downloads 135
3216 Economies of Scale of Worker's Continuing Professional Development in Selected Universities in South- South, Nigeria

Authors: Jonathan E. Oghenekohwo

Abstract:

The return to scale constitutes a significant investment index in the determination of the quantum of resources that is deployed in investment decision on worker’s continuing professional development. Such investment decision is always predicted on the expected outcomes to the individual, institution and the society in context. Several investments in the development of human capacity on the job have been made, but the return to the scale of such seems not to have been correlated positively with the quantum of resources invested in terms of productivity and performance among workers in many universities. This paper thus found out that, despite the commitment and policy instrument to avail workers the right of continuing professional development, the multiplier effects are not evident in diligence, commitment, honesty, dedication, productivity and improved performance on the job among most administrative staff in Nigerian Universities This author, therefore concludes that, given the policy on the right of workers to get trained on-the job, the outcomes of such training must reflect on the overall performance indices, otherwise, institutions should carry out a forensic analysis of the types of continuing professional development programmes that workers participate in, whether or not, they are consistent with the vision and mission of the institutions in terms of economies of scale of workers professional development to the individual, institution and the nation in context.

Keywords: continuing, professional development, economies of scale, worker’s education, administrative staff

Procedia PDF Downloads 326
3215 Feasibility on Introducing an Alternative Solar Powered Propelling Mechanism for Multiday Fishing Boats in Sri Lanka

Authors: Oshada Gamage, Chamal Wimalasooriya, Chrismal Boteju, W. K. Wimalsiri

Abstract:

This paper presents a study on the feasibility of introducing a solar powered propelling mechanism to multi-day fishing boats as an alternative energy source. Since solar energy is readily available on the sea throughout the year, this free energy could be utilized to power multi-day fishing vessels. Multi-day boats have a large deck area where solar panels can be mounted above without much effort. This project involves studying the amount of power that can be generated using onboard solar panels and implementing an independent propelling system to run the boat. A chain drive system was designed to propel the boat, when the batteries are fully charged, from an electric motor using the same propeller. A 60 feet multi-day fishing boat built by a local boat manufacturer was chosen for the study. The service speed of the boat was around 6 knots with the electric motor, and the duration of cruising is 1 hour per day with around 11 hours of charging. 350-watt Mono-crystalline PV module, 75 kW HVH type motor, and 10 kWh lithium-ion battery packs were chosen for the study. From the calculations, it was obtained that the boat has 30 PV modules (10.5 kW), 5 batteries (47 kWh), The boat dimensions are 20 meter length of water line, 5.51 meter of beam, 1.8 meter of draught, and 77 ton of total displacement with the PV system net present value of USD 12445 for 20 years of operation and a payback period of around 8.2 years.

Keywords: multiday fishing boats, photovoltaic cells, solar energy, solar powered boat

Procedia PDF Downloads 147
3214 Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka

Authors: E. U. Dampage, Ovindi D. Bandara, Vinushi S. Waraketiya, Samitha S. R. De Silva, Yasiru S. Gunarathne

Abstract:

The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency.

Keywords: convolutional neural network, CNN, inflow, long short-term memory, LSTM, multi-layer perceptron, MLP, neural network

Procedia PDF Downloads 151
3213 The Restrictions of the Householder’s ‘Double Two-Thirds Principles’ in Decision-Making for Elevators Addition to Existing Condominium

Authors: Haifeng Shi, Kun Song, Yili Zhao

Abstract:

In China, with the extensive promotion of the ‘aging in place’ pension policy as the background, most of the elders will choose to remain in their current homes and communities, finding out of preference or necessity that they will need to remodel their homes to fit their changing needs. This generation elder born in the 1960s to 1970s almost live in the same form of housing-condominium built from 1982 to 2012. Based on the survey of existing multi-family housing, especially in Tianjin, it is found that the current ‘double two-thirds principles’ is becoming the threshold for modification to existing house, particularly in the project of elevators addition to existing condominium (built from 1982 to 2016 without elevators below 6 floors according to the previous building code). Firstly, this article concludes the local policies of elevator addition nationwide, most of which has determined the importance and necessity of the community-based self-organization principle in the operation of the elevator addition. Secondly, by comparing the three existing community management systems (owners' congress, property management system and community committee) in instances, find that the community-based ‘two-thirds’ principle is not conducive to implement for multi-owned property renovation in the community or common accessibility modification in the building. However, analysis the property and other community management related laws, pointing out the shortcomings of the existing community-based ‘two-thirds’ decision-making norms. The analyzation showed that the unit-based and ‘100% principle’ method is more capable of common accessibility in the condominium in China. Differing from existing laws, the unit-based principle will be effective for the process of decision-making and ‘100% principle’ will protect closely profit-related householders for condominium modification in the multi-owned area. These three aspects of the analysis suggest that the establishment of the unit-based self-organization mechanism is a preferred and inevitable method to solve the problem of elevators addition to the existing condominium in China.

Keywords: aging in place, condominium, modification, multi own

Procedia PDF Downloads 148
3212 An Analysis of Gender Competencies of Project Managers in National Capital Region, Philippines using the Mann-Whitney U Test

Authors: Ryan Vincent Teodoro, Adrian Paul Virador, Jan Christopher Cardenas

Abstract:

In the field of construction, managerial positions are completely dominated by males. The researchers conducted this study to see if there is a significant difference between the competencies of male and female project managers in the construction field. To see if there is a significant difference, they subdivided the competency of project managers into three components; decision making, organizing skills, and resiliency. The researchers conducted a five-point Likert scale survey of 28 project managers in the construction field, 18 of them are males and 10 are females. The researchers used Cronbach’s alpha to translate the raw scores of the respondents into competency scores. Then, the competency scores are analyzed using the Mann-Whitney U Test to see if there is a significant difference between the male’s and female’s competency scores. A p-value of 0.808 was calculated, which is greater than 0.05, which means that the null hypothesis is accepted. Therefore, the researchers concluded that there is no significant difference between the competencies of male and female project managers in terms of decision making, organizing skills, and resiliency in the construction field in the National Capital Region, Philippines.

Keywords: competency, resiliency, project managers, Mann-Whitney U test

Procedia PDF Downloads 133
3211 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange

Procedia PDF Downloads 332
3210 A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort

Authors: Xiaohua Zou, Yongxin Su

Abstract:

The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty.

Keywords: HVAC, few-shot personalized thermal comfort, deep reinforcement learning, demand response

Procedia PDF Downloads 85
3209 Application of Groundwater Level Data Mining in Aquifer Identification

Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen

Abstract:

Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.

Keywords: aquifer identification, decision tree, groundwater, Fourier transform

Procedia PDF Downloads 157