Search results for: background reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9022

Search results for: background reduction

8062 Resin-coated Controlled Release Fertilizer (CRF) for Oil Palm: Laboratory and Main Nursery Evaluation

Authors: Umar Adli Amran, Tan Choon Chek, Mohd Shahkhirat Norizan, Then Kek Hoe

Abstract:

Controlled release fertilizer (CRF) enables a regulated nutrients release for more efficient plant uptake compared to the normal granular fertilizer. It reduces nutrients loss via surface run-off and leaching, hence promotes sustainable agriculture. Although the performance of CRF in providing consistent and timely nutrients supply is well known, its expensive price limits it usage in a large scale plantation. This study is conducted to evaluate the properties and performance of bio-based polyurethane (PU)-coated CRF via laboratory and oil palm main nursery trial. The CRF is produced by coating of a normal commercial compound granular fertilizer from FGV Fertiliser Sdn. Bhd., namely Felda 10 (10.5-8-20-3+0.5B), and designated as CRF FGV10. Based on laboratory evaluation, the CRF FGV10 can sustain nutrients release for more than 6 months. Vegetative growth parameters such as girth size, palm height, third frond length, and the total number of fronds produced were recorded. Besides that, dry biomass of the oil palm seedlings was also determined. From the evaluation, it is proved that at 50% reduction of nutrients application rate and for only two times application (T3), CRF FGV10 enabled the oil palm seedlings to achieve similar vegetative growth with the control samples (T1). It is also proven that only PU-coated CRF FGV10 had allowed the reduction of fertilizer rate and application rounds.

Keywords: nutrition, oil palm seedlings, polyurethane, sustainable manuring, vegetative growth

Procedia PDF Downloads 51
8061 Carbon Emission Reduction by Compact City Construction in Toyama, Japan

Authors: Benyan Jiang, Dawei Xia, Yong Li

Abstract:

Compact city construction is considered as an effective measure to reduce carbon emission in city lives. Toyama City started its compact city strategy in 2000 and was selected as a Japanese Environmental Model City in 2008 for its achievement. This paper takes Toyama as a study case, aiming to find how city polices affected people’s life styles and reduced carbon emission. The main materials used in this study are first-hand documents, like urban planning materials, government annual report and statistic data from transportation association. It is found that the main measures taken by Toyama City include the construction of light rail transit, increasing the frequency of buses, building park and ride parking lots. In addition to hardware facilities, it also offers flexible policies like passengers' coupons for the senior citizens and free use of parking lots by buying shopping vouchers. Besides, Toyama City encourages citizens to live within 500 meters of public transportation. People who buy an apartment near public transportation will receive 500,000 Japanese Yen. These measures have proven to their effects. Compared with 2005, in 2014, the transportation sector reduced emissions of 2.35 million tons of CO₂, 13.6%. This aspect is related to the increase in the number of cars in public transport and also related to fuel improvement.

Keywords: Toyama, compact city, public transportation, CO₂ reduction

Procedia PDF Downloads 136
8060 Organic Rankine Cycles (ORC) for Mobile Applications: Economic Feasibility in Different Transportation Sectors

Authors: Roberto Pili, Alessandro Romagnoli, Hartmut Spliethoff, Christoph Wieland

Abstract:

Internal combustion engines (ICE) are today the most common energy system to drive vehicles and transportation systems. Numerous studies state that 50-60% of the fuel energy content is lost to the ambient as sensible heat. ORC offers a valuable alternative to recover such waste heat from ICE, leading to fuel energy savings and reduced emissions. In contrast, the additional weight of the ORC affects the net energy balance of the overall system and the ORC occupies additional volume that competes with vehicle transportation capacity. Consequently, a lower income from delivered freight or passenger tickets can be achieved. The economic feasibility of integrating an ORC into an ICE and the resulting economic impact of weight and volume have not been analyzed in open literature yet. This work intends to define such a benchmark for ORC applications in the transportation sector and investigates the current situation on the market. The applied methodology refers to the freight market, but it can be extended to passenger transportation as well. The economic parameter X is defined as the ratio between the variation of the freight revenues and the variation of fuel costs when an ORC is installed as a bottoming cycle for an ICE with respect to a reference case without ORC. A good economic situation is obtained when the reduction in fuel costs is higher than the reduction of revenues for the delivered freight, i.e. X<1. Through this constraint, a maximum allowable change of transport capacity for a given relative reduction in fuel consumption is determined. The specific fuel consumption is influenced by the ORC in two ways. Firstly because the transportable freight is reduced and secondly because the total weight of the vehicle is increased. Note, that the generated electricity of the ORC influences the size of the ICE and the fuel consumption as well. Taking the above dependencies into account, the limiting condition X = 1 results in a second order equation for the relative change in transported cargo. The described procedure is carried out for a typical city bus, a truck of 24-40 t of payload capacity, a middle-size freight train (1000 t), an inland water vessel (Va RoRo, 2500 t) and handysize-like vessel (25000 t). The maximum allowable mass and volume of the ORC are calculated in dependence of its efficiency in order to satisfy X < 1. Subsequently, these values are compared with weight and volume of commercial ORC products. For ships of any size, the situation appears already highly favorable. A different result is obtained for road and rail vehicles. For trains, the mass and the volume of common ORC products have to be reduced at least by 50%. For trucks and buses, the situation looks even worse. The findings of the present study show a theoretical and practical approach for the economic application of ORC in the transportation sector. In future works, the potential for volume and mass reduction of the ORC will be addressed, together with the integration of an economic assessment for the ORC.

Keywords: ORC, transportation, volume, weight

Procedia PDF Downloads 221
8059 Deciphering Suitability of Rhamnolipids as Emulsifying Agent for Hydrophobic Pollutants

Authors: Asif Jamal, Samia Sakindar, Ramla Rehman

Abstract:

Biosurfactants are amphiphilic surface active compounds obtained from natural resources such as plants and microorganisms. Because of their diverse physicochemical characteristics biosurfactant are replacing synthetic compounds in various commercial applications. In present study, a strain of P. aeruginosa was isolated from crude oil contaminated soil as efficient biosurfactant producers. The biosurfactant production was analyzed as a function of surface tension reduction, oil spreading capacity, emulsification index and hemolysis assay. This bacterial strain showed excellent emulsion activity of EI24 85%, surface tension reduction up to 28.6 mNm-1 and 7.0 mm oil displacement zone. Physicochemical and biological properties of extracted rhamnolipid were also investigated in current study. The chemical composition of product from strain PSS was analyzed by FTIR spectroscopy. The results revealed that extracted biosurfactant was rhamnolipid type in nature having RL-1 and RL-2 homologues. The surface behavior of rhamnolipid in aqueous phase was investigated varying extreme pH, temperature, salt conditions and with various hydrocarbons. The results indicated that biosurfactant produced by strain PSS Which showed stability during high temperature up to 121 C, salt concentrations up to 20% and pH range between (4—14). The emulsification activity with different hydrocarbons was also remarkable. It was concluded that rhamnolipid biosurfactant produced by strain PSS has excellent potential as emulsifying/remediation agent for broad range of hydrophobic pollutants.

Keywords: P. aeruginosa, bioremediation, rhamnolipid, surfactants

Procedia PDF Downloads 270
8058 Water Productivity and Sensitivity Tolerance Stress Indices in Five Soybean Cultivars (Glycine max L.) at Different Levels of Water Deficit

Authors: Hassan Masoumi, Rashed Alavi, Mahmoud Reza Khorshidian

Abstract:

In order to measure the water deficit stress effects on seed yield and water productivity of soybean cultivars, a two field experiments wad conducted out via split plot in a randomized complete block design with four replications in 2011 and 2012. Irrigation treatments were three levels (S1; 50, S2; 62.5 and S3; 150 mm) that applied based on evaporation from the ‘class A’ pan. Cultivars were L17, Clean, T.M.S, Williams×Chippewa and M9, too. The results showed that, only extreme water deficit stresses (S3) was reduced number of pods per plants, dry weight, seed yield and also water productivity and water economic productivity, significantly. Among cultivars and at the first and second levels of irrigation (S1, S2) cultivar of L17 and at the third level (S3) cultivar of Wiiliams*Chippwea had the highest seed yield, water productivity and water economic productivity. There were observed a positive and significant correlation between seed yield with number of pods per plants and plants dry weight, too. Also, despite the reduction in water consumption at level of S2 than S1 and due to the lack of a significant reduction in seed yield, water productivity and water economic productivity was also increased, significantly (P < 0.01). All indices of sensitivity and tolerance (SSI, STI and GMP) investigated in this study showed that at the moderate and extreme water deficit stresses (S2, S3), the cultivars of L17 and Wiiliams * Chippwea had the highest tolerance and lowest sensitivity among the cultivars.

Keywords: drought, sensitivity indices, yield components, seed

Procedia PDF Downloads 397
8057 Performance Improvement of Electric Vehicle Using K - Map Constructed Rule Based Energy Management Strategy for Battery/Ultracapacitor Hybrid Energy Storage System

Authors: Jyothi P. Phatak, L. Venkatesha, C. S. Raviprasad

Abstract:

The performance improvement of Hybrid Energy Storage System (HESS) in Electric Vehicle (EV) has been in discussion over the last decade. The important issues in terms of performance parameters addressed are, range of vehicle and battery (BA) peak current. Published literature has either addressed battery peak current reduction or range improvement in EV. Both the issues have not been specifically discussed and analyzed. This paper deals with both range improvement in EV and battery peak current reduction by applying a new Karnaugh Map (K-Map) constructed rule based energy management strategy to proposed HESS. The strategy allows Ultracapacitor (UC) to assist battery when the vehicle accelerates there by reducing the burden on battery. Simulation is carried out for various operating modes of EV considering both urban and highway driving conditions. Simulation is done for different values of UC by keeping battery rating constant for each driving cycle and results are presented. Feasible value of UC is selected based on simulation results. The results of proposed HESS show an improvement in performance parameters compared to Battery only Energy Storage System (BESS). Battery life is improved to considerable extent and there is an overall development in the performance of electric vehicle.

Keywords: electric vehicle, PID controller, energy management strategy, range, battery current, ultracapacitor

Procedia PDF Downloads 110
8056 Concepts in the Design of Lateral-Load Systems in High Rise Buildings to Reduce Operational Energy Consumption

Authors: Mohamed Ali MiladKrem Salem, Sergio F.Breña, Sanjay R. Arwade, Simi T. Hoque

Abstract:

The location of the main lateral‐load resisting system in high-rise buildings may have positive impacts on sustainability through a reduction in operational energy consumption, and this paper describes an assessment of the accompanying effects on structural performance. It is found that there is a strong influence of design for environmental performance on the structural performance the building, and that systems selected primarily with an eye towards energy use reduction may require substantial additional structural stiffening to meet safety and serviceability limits under lateral load cases. We present a framework for incorporating the environmental costs of meeting structural design requirements through the embodied energy of the core structural materials and also address the issue of economic cost brought on by incorporation of environmental concerns into the selection of the structural system. We address these issues through four case study high-rise buildings with differing structural morphologies (floor plan and core arrangement) and assess each of these building models for cost and embodied energy when the base structural system, which has been suggested by architect Kenneth Yeang based on environmental concerns, is augmented to meet lateral drift requirements under the wind loads prescribed by ASCE 7-10.

Keywords: sustainable, embodied, Outrigger, skyscraper, morphology, efficiency

Procedia PDF Downloads 461
8055 Suggestion of Two-Step Traction Therapy for Safer and More Effective Conservative Treatment for Low Back Pain

Authors: Won Man Park, Dae Kyung Choi, Kyungsoo Kim, Yoon Hyuk Kim

Abstract:

Traction therapy has been used in the treatment of spinal pain for decades. However, a case study reported the occurrence of large disc protrusion during motorized traction therapy. In this study, we hypothesized that additional local decompression with a global axial traction could be helpful for risk reduction of intervertebral disc damage. A validated three dimensional finite element model of the lumbar spine was used. Two-step traction therapy using the axial global traction (the first step) with 1/3 body weight and the additional local decompression (the second step) with 7 mm translation of L4 spinal bone was determined for the traction therapy. During two-step traction therapy, the sacrum was constrained in all translational directions. Reduced lordosis angle by the global axial traction recovered with the additional local decompression. Stress on fibers of the annulus fibrosus by the axial global traction decreased with the local decompression by 17%~96% in the posterior region of intervertebral disc. Stresses on ligaments except anterior longitudinal ligaments in all motion segments decreased till 4.9 mm~5.6 mm translation of L4 spinal bone. The results of this study showed that the additional local decompression is very useful for reducing risk of damage in the intervertebral disc and ligaments caused by the global axial traction force. Moreover, the local decompression could be used to enhance reduction of intradiscal pressure.

Keywords: lumbar spine, traction-therapy, biomechanics, finite element analysis

Procedia PDF Downloads 477
8054 The Impacts of the Sit-Stand Workplace Intervention on Cardiometabolic Risk

Authors: Rebecca M. Dagger, Katy Hadgraft, Matthew Teggart, Peter Angell

Abstract:

Background: There is a growing body of evidence that demonstrates the association between sedentary behaviour, cardiometabolic risk and all-cause mortality. Since full time working adults spend approximately 8 hours per day in the workplace, interventions to reduce sedentary behaviour at work may alleviate some of the negative health outcomes associated with sedentary behaviour. The aims of this pilot study were to assess the impacts of using a Sit-Stand workstation on markers of cardiometabolic health in a cohort of desk workers. Methods: Twenty eight participants were recruited and randomly assigned to a control (n=5 males, 9 females, mean age 37 years ± 9.4 years) or intervention group (n= 5 males, 9 females, mean age 42 years ± 12.7 years). All participants attended the labs on 2 occasion’s pre and post intervention, following baseline measurements the intervention participants had the Sit Stand Workstations (Ergotron, USA) installed for a 10 week intervention period. The Sit Stand workstations allow participants to stand or sit at their usual workstation and participants were encouraged to the use the desk in a standing position at regular intervals throughout the working day. Cardiometabolic risk markers assessed were body mass, body composition (using bio impedance analysis; Tanita, Tokyo), fasting blood Total Cholesterol (TC), lipid profiles (HDL-C, LDL-C, TC: HDL-C ratio), triglycerides and fasting glucose (Cholestech LDX), resting systolic and diastolic blood pressure and resting heart rate. ANCOVA controlling for baseline values was used to assess the group difference in changes in risk markers between pre and post intervention. Results: The 10 week intervention was associated with significant reductions in some cardiometabolic risk factors. There were significant group effects on change in body mass (F (1,25)=5.915, p<0.05), total body fat percentage (F(1,25)=12.615, p<0.01), total fat mass (F (1,25)=6.954, p<0.05), and systolic blood pressure (F (1,25)=5.012, p<0.05). There were no other significant group effects on changes in other cardiometabolic risk markers. Conclusion: This pilot study highlights the importance of reducing sedentary behaviour in the workplace for reduction in cardiometabolic risk markers. Further research is required to support these findings.

Keywords: sedentary behaviour, caridometabolic risk, evidence, risk makers

Procedia PDF Downloads 438
8053 Sustainable Development of HV Substation in Urban Areas Considering Environmental Aspects

Authors: Mahdi Naeemi Nooghabi, Mohammad Tofiqu Arif

Abstract:

Gas Insulated Switchgears by using an insulation material named SF6 (Sulphur Hexafluoride) and its significant dielectric properties have been the only choice in urban areas and other polluted industries. However, the initial investment of GIS is more than conventional AIS substation, its total life cycle costs caused to reach huge amounts of electrical market share. SF6 environmental impacts on global warming, atmosphere depletion, and decomposing to toxic gases in high temperature situation, and highest rate in Global Warming Potential (GWP) with 23900 times of CO2e and a 3200-year period lifetime was the only undeniable concern of GIS substation. Efforts of international environmental institute and their politic supports have been able to lead SF6 emission reduction legislation. This research targeted to find an appropriate alternative for GIS substations to meet all advantages in land occupation area and to improve SF6 environmental impacts due to its leakage and emission. An innovative new conceptual design named Multi-Storey prepared a new AIS design similar in land occupation, extremely low Sf6 emission, and maximum greenhouse gas emission reduction. Surprisingly, by considering economic benefits due to carbon price saving, it can earn more than $675 million during the 30-year life cycle by replacing of just 25% of total annual worldly additional GIS switchgears.

Keywords: AIS substation, GIS substation, SF6, greenhouse gas, global warming potential, carbon price, emission

Procedia PDF Downloads 299
8052 Effects of Rockdust as a Soil Stabilizing Agent on Poor Subgrade Soil

Authors: Muhammad Munawar

Abstract:

Pavement destruction is normally associated with the horizontal relocation of subgrade because of pavement engrossing water and inordinate avoidance and differential settlement of material underneath the pavement. The aim of the research is to study the effect of the additives (rockdust) on the stability and the increase of bearing capacity of selected soils in Mardan City. The physical, chemical and designing properties of soil were contemplated, and the soil was treated with added admixture rockdust with the goal of stabilizing the local soil. The stabilization or modification of soil is done by blending of rock dust to soils in the scope of 0 to 85% by the rate increment of 5%, 10%, and 15% individually. The following test was done for treated sample: Atterberg limits (liquid limit, plasticity index, plastic limit), standard compaction test, the California bearing test and the direct shear test. The results demonstrated that the gradation of soil is narrow from the particle size analysis. Plasticity index (P.I), Liquid limit (L.L) and plastic limit (P.L) were shown reduction with the addition of Rock dust. It was concluded that the maximum dry density is increasing with the addition of rockdust up to 10%, beyond 10%, it shows reduction in their content. It was discovered that the Cohesion C diminished, the angle of internal friction and the California bearing ratio (C.B.R) was improved with the addition of Rock dust. The investigation demonstrated that the best stabilizer for the contextual investigation (Toru road Mardan) is the rock dust and the ideal dosage is 10 %.

Keywords: rockdust, stabilization, modification, CBR

Procedia PDF Downloads 270
8051 Rapid Biosynthesis of Silver Nanoparticles Using Trachyspermum Ammi

Authors: Rajesh Kumar Meena, Suman Jhajharia, Goutam Chakraborty

Abstract:

Plasmonic silver nanoparticles (Ag NPs) was synthesized by chemical reduction method using Trachyspermum Ammi (TA, Ajwain) seeds extract in aqueous medium and AgNO3 solution at different time interval. Reaction time, and concentration of AgNO3 and TA could accelerate the reduction rate of Ag+ and affect AgNPs size and concentration of NPs. Surface plasmon resonance band centered at 420-430 nm (88.78nm) was recognised as first exitonic peak of UV-Vis absorption spectra of AgNPs that used to calculate the particle size (10-30 nm). FTIR results TA supported AgNPs showed decrease in intensity of peaks at 3394, 1716 and 1618 cm-1 with respect to the plain TA indicating the involvement of O-H, carbonyl group and C=C stretching in formation of TA-AgNPs aggregates. The C-O-C and C-N stretching suggested the presence of many phytochemicals on the surface of the NPs. Impedance study reveals that at low concentration of TA the rate of charge transfer is in TA-AgNPs aggregates, found higher than the higher TA concentration condition that confirms the stability of AgNPs in water. Extract reduce silver ions into silver nanoparticles (NPs) of size 6-50nm. Pronounce effect of the time on Ag NPs concentration and particle size, was exhibited by the system These biogenic Ag NPs are characterized using UV- Vis spectrophotometry (UV-Visible), Fourier transformation infrared (FTIR) and XRD. These studies give us inside view of the most probable mechanism of biosynthesis and optoelectronic properties of the as synthesised Ag NPs.

Keywords: antimicrobial activity, bioreduction, capping agent, silver nanoparticles

Procedia PDF Downloads 317
8050 Moving beyond the Gender Pay Gap: An Investigation of Pension Gender Inequalities across European Counties

Authors: Enva Doda

Abstract:

Recent statistical analyses within the European Union (EU) underscore the enduring significance of the Gender Pay Gap in amplifying the Gender Pension Gap, a phenomenon resisting proportional reduction over time. This study meticulously calculates the Pension Gap, scrutinizing contributing variables within diverse pension systems. Furthermore, it investigates whether the "unexplained" segment of the Gender Gap correlates with political institutions, economic systems, historical events, or discrimination, utilizing quantitative methods and the Blinder-Oaxaca Decomposition Method to pinpoint potential discriminatory factors. The descriptive analysis reveals a conspicuous Gender Pension Gap across European nations, displaying notable variation. While an overall reduction in the Gender Gap is observed, the degree of improvement varies among countries. Subsequent analyses will delve into the specific reasons or variables influencing distinct Gender Gap percentages, forming the basis for nuanced policy recommendations. This comprehensive research enriches the ongoing discourse on gender equality and economic equity. By focusing on the root causes of the Pension Gap, the study has the potential to instigate policy adjustments, urging policymakers to reassess systemic structures and contribute to informed decision-making. Emphasizing gender equality as essential for a flourishing and resilient economy, the research aspires to drive positive change on academic and policy fronts.

Keywords: blinder Oaxaca decomposition method, discrimination, gender pension gap, quantitative methods, unexplained gender gap

Procedia PDF Downloads 35
8049 A Review of Digital Twins to Reduce Emission in the Construction Industry

Authors: Zichao Zhang, Yifan Zhao, Samuel Court

Abstract:

The carbon emission problem of the traditional construction industry has long been a pressing issue. With the growing emphasis on environmental protection and advancement of science and technology, the organic integration of digital technology and emission reduction has gradually become a mainstream solution. Among various sophisticated digital technologies, digital twins, which involve creating virtual replicas of physical systems or objects, have gained enormous attention in recent years as tools to improve productivity, optimize management and reduce carbon emissions. However, the relatively high implementation costs including finances, time, and manpower associated with digital twins have limited their widespread adoption. As a result, most of the current applications are primarily concentrated within a few industries. In addition, the creation of digital twins relies on a large amount of data and requires designers to possess exceptional skills in information collection, organization, and analysis. Unfortunately, these capabilities are often lacking in the traditional construction industry. Furthermore, as a relatively new concept, digital twins have different expressions and usage methods across different industries. This lack of standardized practices poses a challenge in creating a high-quality digital twin framework for construction. This paper firstly reviews the current academic studies and industrial practices focused on reducing greenhouse gas emissions in the construction industry using digital twins. Additionally, it identifies the challenges that may be encountered during the design and implementation of a digital twin framework specific to this industry and proposes potential directions for future research. This study shows that digital twins possess substantial potential and significance in enhancing the working environment within the traditional construction industry, particularly in their ability to support decision-making processes. It proves that digital twins can improve the work efficiency and energy utilization of related machinery while helping this industry save energy and reduce emissions. This work will help scholars in this field to better understand the relationship between digital twins and energy conservation and emission reduction, and it also serves as a conceptual reference for practitioners to implement related technologies.

Keywords: digital twins, emission reduction, construction industry, energy saving, life cycle, sustainability

Procedia PDF Downloads 82
8048 ORR Electrocatalyst for Batteries and Fuel Cells Development with SiO2/Carbon Black Based Composite Nanomaterials

Authors: Maryam Kiani

Abstract:

This study focuses on the development of composite nanomaterials based on SiO2 and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO2/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO2 into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO2 facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO2/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.

Keywords: oxygen reduction reaction, batteries, fuel cells, electrrocatalyst

Procedia PDF Downloads 93
8047 Hydrothermal Aging Behavior of Continuous Carbon Fiber Reinforced Polyamide 6 Composites

Authors: Jifeng Zhang , Yongpeng Lei

Abstract:

Continuous carbon fiber reinforced polyamide 6 (CF/PA6) composites are potential for application in the automotive industry due to their high specific strength and stiffness. However, PA6 resin is sensitive to the moisture in the hydrothermal environment and CF/PA6 composites might undergo several physical and chemical changes, such as plasticization, swelling, and hydrolysis, which induces a reduction of mechanical properties. So far, little research has been reported on the assessment of the effects of hydrothermal aging on the mechanical properties of continuous CF/PA6 composite. This study deals with the effects of hydrothermal aging on moisture absorption and mechanical properties of polyamide 6 (PA6) and polyamide 6 reinforced with continuous carbon fibers composites (CF/PA6) by immersion in distilled water at 30 ℃, 50 ℃, 70 ℃, and 90 ℃. Degradation of mechanical performance has been monitored, depending on the water absorption content and the aging temperature. The experimental results reveal that under the same aging condition, the PA6 resin absorbs more water than the CF/PA6 composite, while the water diffusion coefficient of CF/PA6 composite is higher than that of PA6 resin because of interfacial diffusion channel. In mechanical properties degradation process, an exponential reduction in tensile strength and elastic modulus are observed in PA6 resin as aging temperature and water absorption content increases. The degradation trend of flexural properties of CF/PA6 is the same as that of tensile properties of PA6 resin. Moreover, the water content plays a decisive role in mechanical degradation compared with aging temperature. In contrast, hydrothermal environment has mild effect on the tensile properties of CF/PA6 composites. The elongation at breakage of PA6 resin and CF/PA6 reaches the highest value when their water content reaches 6% and 4%, respectively. Dynamic mechanical analysis (DMA) and scanning electron microscope (SEM) were also used to explain the mechanism of mechanical properties alteration. After exposed to the hydrothermal environment, the Tg (glass transition temperature) of samples decreases dramatically with water content increase. This reduction can be ascribed to the plasticization effect of water. For the unaged specimens, the fibers surface is coated with resin and the main fracture mode is fiber breakage, indicating that a good adhesion between fiber and matrix. However, with absorbed water content increasing, the fracture mode transforms to fiber pullout. Finally, based on Arrhenius methodology, a predictive model with relate to the temperature and water content has been presented to estimate the retention of mechanical properties for PA6 and CF/PA6.

Keywords: continuous carbon fiber reinforced polyamide 6 composite, hydrothermal aging, Arrhenius methodology, interface

Procedia PDF Downloads 116
8046 Performance of BLDC Motor under Kalman Filter Sensorless Drive

Authors: Yuri Boiko, Ci Lin, Iluju Kiringa, Tet Yeap

Abstract:

The performance of a BLDC motor controlled by the Kalman filter-based position-sensorless drive is studied in terms of its dependence on the system’s parameters' variations. The effects of system’s parameters changes on the dynamic behavior of state variables are verified. Simulated is a closed-loop control scheme with a Kalman filter in the feedback line. Distinguished are two separate data sampling modes in analyzing feedback output from the BLDC motor: (1) equal angular separation and (2) equal time intervals. In case (1), the data are collected via equal intervals Δθ of rotor’s angular position θᵢ, i.e., keeping Δθ=const. In case (2), the data collection time points tᵢ are separated by equal sampling time intervals Δt=const. Demonstrated are the effects of the parameters changes on the sensorless control flow, in particular, reduction of the torque ripples, switching spikes, torque load balancing. It is specifically shown that an efficient suppression of commutation induced torque ripples is achievable selection of the sampling rate in the Kalman filter settings above certain critical value. The computational cost of such suppression is shown to be higher for the motors with lower induction values of the windings.

Keywords: BLDC motor, Kalman filter, sensorless drive, state variables, torque ripples reduction, sampling rate

Procedia PDF Downloads 139
8045 Estimation of Energy Efficiency of Blue Hydrogen Production Onboard of Ships

Authors: Li Chin Law, Epaminondas Mastorakos, Mohd Roslee Othman, Antonis Trakakis

Abstract:

The paper introduces an alternative concept of carbon capture for shipping by using pre-combustion carbon capture technology (Pre-CCS), which was proven to be less energy intensive than post-combustion carbon capture from the engine exhaust. Energy assessment on amine-based post-combustion CCS on LNG-fuelled ships showed that the energy efficiency of CCS ships reduced from 48% to 36.6%. Then, an energy assessment was carried out to compare the power and heat requirements of the most used hydrogen production methods and carbon capture technologies. Steam methane reformer (SMR) was found to be 20% more energy efficient and achieved a higher methane conversion than auto thermal reaction and methane decomposition. Next, pressure swing adsorber (PSA) has shown a lower energy requirement than membrane separation, cryogenic separation, and amine absorption in pre-combustion carbon capture. Hence, an integrated system combining SMR and PSA (SMR-PSA) with waste heat integration (WHR) was proposed. This optimized SMR-based integrated system has achieved 65% of CO₂ reduction with less than 7-percentage point of energy penalty (41.7% of energy efficiency). Further integration of post-combustion CCS with the SMR-PSA integrated system improved carbon capture rate to 86.3% with 9-percentage points of energy penalty (39% energy efficiency). The proposed system was shown to be able to meet the carbon reduction targets set by International Maritime Organization (IMO) with certain energy penalties.

Keywords: shipping, decarbonisation, alternative fuels, low carbon, hydrogen, carbon capture

Procedia PDF Downloads 67
8044 Investigating the Impact of Migration Background on Pregnancy Outcomes During the End of Period of COVID-19 Pandemic: A Mixed-Method Study

Authors: Charlotte Bach, Albrecht Jahn, Mahnaz Motamedi, Maryam Karimi-Ghahfarokhi

Abstract:

Background: Maternal and infant deaths are most prevalent in the first month after birth, emphasizing the critical need for quality healthcare services during this period. Immigrant women, who are more susceptible to adverse pregnancy outcomes, often face neglect in accessing proper healthcare. The lack of adequate postpartum care significantly contributes to mortality rates. Therefore, utilizing maternal health care services and implementing postpartum care is crucial in reducing maternal and child mortality. Aims: This study aims to evaluate the assessment of pre- and postnatal care among women with and without migration background. In addition, the study explores the impact of COVID-19 procedures on women's experiences during pregnancy, birth, and the postpartum period. Methods: This research employs a cross-sectional Mixed-Method design. Data collection was facilitated through structured questionnaires administered to participants, alongside the utilization of patient bases, including Maternity and child medical records. Following the assumption that the investigator aimed to gain comprehensive insights, qualitative sampling focused on individuals with substantial experiences related to COVID-19, regarded as rich cases. Results: our study highlighted the influence of educational level, marital status, and consensual partnerships on the likelihood of Cesarean deliveries. Regarding breastfeeding practices, migrant women exhibited higher rates of breastfeeding initiation and continuation. Contraception utilization revealed interesting patterns, with non-migrants displaying higher odds of contraceptive use. The qualitative component of our research adds depth to the exploration of women's experiences during the COVID-19 pandemic, revealing nuanced challenges related to anxiety, hospital restrictions, breastfeeding support, and postnatal ward routines. Conclusion: Dissimilarity among studies toward cesarean rate between migrants and non-migrants underscores the importance of targeted interventions considering the diverse needs of distinct population groups. It also acknowledges potential cultural, contextual, and healthcare system influences on the association between mode of delivery and infant feeding practices. Studies acknowledge the influence of contextual variables on contraceptive preferences among migrants and non-migrants, emphasizing the need for tailored healthcare policies. The findings contribute to existing research, highlighting the need for a nuanced understanding of the impact of birth preparation courses on maternal and infant outcomes. Furthermore, they emphasize the universality of certain maternity care experiences, regardless of pandemic contexts, reinforcing the importance of patient-centred approaches in healthcare delivery.

Keywords: migration background, pregnancy outcome, covid-19, postpartum

Procedia PDF Downloads 38
8043 Potentiality of Biohythane Process for the Gaseous Energy Recovery from Organic Wastes

Authors: Debabrata Das, Preeti Mishra

Abstract:

A two-phase anaerobic process combining biohydrogen followed by biomethane (biohythane technology) serves as an environment-friendly and economically sustainable approach for the improved valorization of organic wastes. Suitability of the pure cultures like Klebsiela pneumonia, C. freundii, B. coagulan, etc. and mixed acidogenic cultures for the biohydrogen production was already studied. The characteristics of organic wastes play a critical role in biohydrogen production. The choice of an appropriate combination of complementary organic wastes can vastly improve the bioenergy generation besides achieving the significant cost reduction. Suitability and economic viability of using the groundnut deoiled cake (GDOC), mustard deoiled cake (MDOC), distillers’ dried grain with soluble (DDGS) and algal biomass (AB) as a co-substrate were studied for a biohythane production. Results show that maximum gaseous energy of 20.7, 9.3, 16.7 and 15.6 % was recovered using GDOC, MDOC, DDGS and AB in the two stage biohythane production, respectively. Both GDOC and DDGS were found to be better co-substrates as compared to MDOC and AB in terms of hythane production, respectively. The maximum cumulative hydrogen and methane production of 150 and 64 mmol/L were achieved using GDOC. Further, 98 % reduction in substrate input cost (SIC) was achieved using the co-supplementation procedure.

Keywords: Biohythane, algal biomass, distillers’ dried grain with soluble (DDGS), groundnut deoiled cake (GDOC), mustard deoiled cake (MDOC)

Procedia PDF Downloads 190
8042 Optimization of Air Pollution Control Model for Mining

Authors: Zunaira Asif, Zhi Chen

Abstract:

The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.

Keywords: air pollution, linear programming, mining, optimization, treatment technologies

Procedia PDF Downloads 199
8041 Improvements and Implementation Solutions to Reduce the Computational Load for Traffic Situational Awareness with Alerts (TSAA)

Authors: Salvatore Luongo, Carlo Luongo

Abstract:

This paper discusses the implementation solutions to reduce the computational load for the Traffic Situational Awareness with Alerts (TSAA) application, based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology. In 2008, there were 23 total mid-air collisions involving general aviation fixed-wing aircraft, 6 of which were fatal leading to 21 fatalities. These collisions occurred during visual meteorological conditions, indicating the limitations of the see-and-avoid concept for mid-air collision avoidance as defined in the Federal Aviation Administration’s (FAA). The commercial aviation aircraft are already equipped with collision avoidance system called TCAS, which is based on classic transponder technology. This system dramatically reduced the number of mid-air collisions involving air transport aircraft. In general aviation, the same reduction in mid-air collisions has not occurred, so this reduction is the main objective of the TSAA application. The major difference between the original conflict detection application and the TSAA application is that the conflict detection is focused on preventing loss of separation in en-route environments. Instead TSAA is devoted to reducing the probability of mid-air collision in all phases of flight. The TSAA application increases the flight crew traffic situation awareness providing alerts of traffic that are detected in conflict with ownship in support of the see-and-avoid responsibility. The relevant effort has been spent in the design process and the code generation in order to maximize the efficiency and performances in terms of computational load and memory consumption reduction. The TSAA architecture is divided into two high-level systems: the “Threats database” and the “Conflict detector”. The first one receives the traffic data from ADS-B device and provides the memorization of the target’s data history. Conflict detector module estimates ownship and targets trajectories in order to perform the detection of possible future loss of separation between ownship and each target. Finally, the alerts are verified by additional conflict verification logic, in order to prevent possible undesirable behaviors of the alert flag. In order to reduce the computational load, a pre-check evaluation module is used. This pre-check is only a computational optimization, so the performances of the conflict detector system are not modified in terms of number of alerts detected. The pre-check module uses analytical trajectories propagation for both target and ownship. This allows major accuracy and avoids the step-by-step propagation, which requests major computational load. Furthermore, the pre-check permits to exclude the target that is certainly not a threat, using an analytical and efficient geometrical approach, in order to decrease the computational load for the following modules. This software improvement is not suggested by FAA documents, and so it is the main innovation of this work. The efficiency and efficacy of this enhancement are verified using fast-time and real-time simulations and by the execution on a real device in several FAA scenarios. The final implementation also permits the FAA software certification in compliance with DO-178B standard. The computational load reduction allows the installation of TSAA application also on devices with multiple applications and/or low capacity in terms of available memory and computational capabilities

Keywords: traffic situation awareness, general aviation, aircraft conflict detection, computational load reduction, implementation solutions, software certification

Procedia PDF Downloads 270
8040 The Millennium Development Goals and Algerian Economic Policy: Some Evidences

Authors: Abdelkader Guendouz, Fatima Zohra Adel

Abstract:

Even if both the economic and the human development are an axial pillar in its global policy, Algerian government seems to be more and more engaged in the international context aiming to reach of the so called millennium development goals, and this since its beginning. By looking closely at the Algerian economic policy, it is easy to mention the existence of several programs in which both economic and social realisations including among others, poverty reduction, enhancement of education level and conditions, woman statute and gender equity amelioration targets. The efforts of Algerian government in the field of these targets had been acheminated through three main plans, which are: -PSRE (Plan de Soutien à la Relance Economique), for the period of 2001 to 2004, initiated with about 7 billion US dollar, had been focused on three objectives, namely, poverty reduction, job creation and regional equilibrium with rural areas revitalization. -PCSC (le Programme complémentaire de soutien à la croissance économique), for the period of 2005 to 2009, with a starting funding of 114 billion US dollar. This program aims to develop public services and supporting public investments, especially in which concerns social infrastructures. Now, and at the end of the maturity of the MDGs agenda, an important question is to be asked: what are the main realizations regarding these MDGs? In order to answer this question, the present paper tries to examine the Algerian economic policy (but also the social one) by considering the MDGs challenges, for the period from 2000 to 2010, but also until 2015. This examination is focused on three main targets, namely poverty, education, and health. Firstly, statistical assessment for the Algerian economic and social situation shows that almost all MDGs had been reached during the period of 2000 to 2009 and it continues to maintain and improve them. This observation can be endorsed by invoking some achievements. Starting by the reduction of poverty, the proportion of population living with less than 1 US dollar per a day passed from 8.0 % in 2000 to 0.5 % in 2009, and 0.3 % in 2015. For education sphere, the enrolment ratio of six-year child, which is the most significant index for school attendance, is about 98 % for 2009 against 93 % in 1999, and only 43 % in 1966. Concluding with health care and relevant services; the Algerian government has accomplished big steps in providing easy access to this sector for the population. Moreover, the percentage of assisted accouchement had been raised from 91.2 % in 2000 to 97.2 % in 2009.

Keywords: Algerian economic policy, MDGs, poverty, education, health

Procedia PDF Downloads 248
8039 The Impact of a Five-Day Basic Disaster Management Training on Disaster Risk Reduction: Case Study of Indonesia Defense University

Authors: Jazmi Adlan Bohari, I. Dewa Ketut Kerta Widana

Abstract:

Education on disaster management has been made as a mainstream focus of many countries. In Indonesia, this has been emphasized with the direct order of the President of Indonesia to implement disaster education at all levels in both formal and informal education. Indonesia Defense University (IDU) executes this order through Three Pillars of Higher Education, which consists of research, education, and community service. One of them is a five-day disaster management training for 105 participants divided into three batches that consist of faculty members and graduate students. This training uses the 2018 Basic Disaster Management Training Modul issued by the Indonesia National Disaster Management Agency (BNPB). This research aims to analyze the impact of this short training on the trainee’s knowledge and understanding of basic disaster management. This study is a qualitative research with case study approach. The research shows that after five days of training, there as a significant increase in knowledge and understanding of basic disaster management experienced by the trainees with a 61,73% overall increase. The post-training data shows that 61% of the trainees have a very good understanding, 24% with good understanding, 13% with adequate understanding, and 2% with poor understanding. The result suggests that a short-time education with a structured curriculum can successfully increase the knowledge and understanding of disaster management on a basic level and can hypothetically contribute to the effort to reduce disaster risks.

Keywords: disaster education, basic disaster management training, three Pillars of Higher Education, disaster risk reduction

Procedia PDF Downloads 121
8038 The Implementation of the Lean Six Sigma Production Process in a Telecommunications Company in Brazil

Authors: Carlos Fontanillas

Abstract:

The implementation of the lean six sigma methodology aims to implement practices to systematically improve processes by eliminating defects, making them cheaper. The implementation of projects with the methodology uses a division into five phases: definition, measurement, analysis, implementation, and control. In this process, it is understood that the implementation of said methodology generates benefits to organizations that adhere through the improvement of their processes. In the case of a telecommunications company, it was realized that the implementation of a lean six sigma project contributed to the improvement of the presented process, generating a financial return with the avoided cost. However, such study has limitations such as a specific segment of performance and procedure, i.e., it can not be defined that return under other circumstances will be the same. It is also concluded that lean six sigma projects tend to contribute to improved processes evaluated due to their methodology that is based on statistical analysis and quality management tools and can generate a financial return. It is hoped that the present study can be used to provide a clearer view of the methodology for entrepreneurs who wish to implement process improvement actions in their companies, as well as to provide a foundation for professionals working with lean six sigma projects. After the review of the processes, the completion of the project stages and the monitoring for three months in partnership with the owner of the process to ensure the effectiveness of the actions, the project was completed with the objective reached. There was an average of 60% reduction with the issuance of undue invoices generated after the deactivation and it was possible to extend the project to other companies, which allowed a reduction well above the initially stipulated target.

Keywords: quality, process, lean six sigma, organization

Procedia PDF Downloads 124
8037 Heat Transfer Enhancement of Structural Concretes Made of Macro-Encapsulated Phase Change Materials

Authors: Ehsan Mohseni, Waiching Tang, Shanyong Wang

Abstract:

Low thermal conductivity of phase change materials (PCMs) affects the thermal performance and energy storage efficiency of latent heat thermal energy storage systems. In the current research, a structural lightweight concrete with function of indoor temperature control was developed using thermal energy storage aggregates (TESA) and nano-titanium (NT). The macro-encapsulated technique was served to incorporate the PCM into the lightweight aggregate through vacuum impregnation. The compressive strength was measured, and the thermal performance of concrete panel was evaluated by using a self-designed environmental chamber. The impact of NT on microstructure was also assessed via scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) tests. The test results indicated that NT was able to increase the compressive strength by filling the micro pores and making the microstructure denser and more homogeneous. In addition, the environmental chamber experiment showed that introduction of NT into TESA improved the heat transfer of composites noticeably. The changes were illustrated by the reduction in peak temperatures in the centre, outside and inside surfaces of concrete panels by the inclusion of NT. It can be concluded that NT particles had the capability to decrease the energy consumption and obtain higher energy storage efficiency by the reduction of indoor temperature.

Keywords: heat transfer, macro-encapsulation, microstructure properties, nanoparticles, phase change material

Procedia PDF Downloads 97
8036 Combustion Chamber Sizing for Energy Recovery from Furnace Process Gas: Waste to Energy

Authors: Balram Panjwani, Bernd Wittgens, Jan Erik Olsen, Stein Tore Johansen

Abstract:

The Norwegian ferroalloy industry is a world leader in sustainable production of ferrosilicon, silicon and manganese alloys with the lowest global specific energy consumption. One of the byproducts during the metal reduction process is energy rich off-gas and usually this energy is not harnessed. A novel concept for sustainable energy recovery from ferroalloy off-gas is discussed. The concept is founded on the idea of introducing a combustion chamber in the off-gas section in which energy rich off-gas mainly consisting of CO will be combusted. This will provide an additional degree of freedom for optimizing energy recovery. A well-controlled and high off-gas temperature will assure a significant increase in energy recovery and reduction of emissions to the atmosphere. Design and operation of the combustion chamber depend on many parameters, including the total power capacity of the combustion chamber, sufficient residence time for combusting the complex Poly Aromatic Hydrocarbon (PAH), NOx, as well as converting other potential pollutants. The design criteria for the combustion chamber have been identified and discussed and sizing of the combustion chamber has been carried out considering these design criteria. Computational Fluid Dynamics (CFD) has been utilized extensively for sizing the combustion chamber. The results from our CFD simulations of the flow in the combustion chamber and exploring different off-gas fuel composition are presented. In brief, the paper covers all aspect which impacts the sizing of the combustion chamber, including insulation thickness, choice of insulating material, heat transfer through extended surfaces, multi-staging and secondary air injection.

Keywords: CFD, combustion chamber, arc furnace, energy recovery

Procedia PDF Downloads 309
8035 Effect of Resistance Training on BDNF and Inflammatory Markers in Healthy Older Adults

Authors: Obinna Afamefuna Echi

Abstract:

Background: The global increase in the elderly population is anticipated to reach significant levels by 2050, presenting extensive economic, social, and healthcare challenges. Age-related cognitive decline, alterations in brain anatomy, and systemic inflammation are profound concerns that diminish the quality of life and increase susceptibility to diseases like Alzheimer's and cardiovascular diseases. Resistance training is presently studied for its potential neuroprotective and anti-inflammatory benefits in older adults. Objectives: This study aimed to explore the effects of different resistance training modalities on neurotrophic factors, inflammatory markers, and cognitive functions in the elderly. Methods: A controlled trial was conducted with 60 male participants aged 60-75, assigned to either 12 weeks of high-intensity blood flow restriction training (BFRT), muscle damaging resistance training (MDRT), or a non-exercising control group. Cognitive function, neurotrophic factors such as BDNF, and inflammatory markers including IL-6 and TNF were measured before and after the intervention period. Setting: Participants were recruited from Kaunas, Lithuania, with sessions facilitated at the Lithuanian Sports University and health assessments conducted at the Lithuanian University of Health Sciences. Results: Preliminary data suggested did not show significant improvements in BDNF levels and cognitive functions in the BFRT and MDRT groups compared to controls. However, there was a notable reduction in inflammatory markers, indicating potential health benefits beyond cognitive enhancement. Conclusion: The incorporation of resistance training can be a strategic intervention to mitigate age-associated cognitive decline and systemic inflammation, thereby enhancing overall health and quality of life in older adults. The results advocate for wider adoption and further study of resistance training as a preventive measure in ageing populations. Funding: The Lithuanian Sports University, the Research Council of Lithuania and the Lithuanian University of Health Sciences.

Keywords: ageing, resistance training, BDNF, cognitive function

Procedia PDF Downloads 40
8034 Clinical Outcomes of Toric Implantable Collamer Lens (T-ICL) and Toric Implantable Phakic Contact Lens (IPCL) for Correction of High Myopia with Astigmatism: Comparative Study

Authors: Mohamed Salah El-Din Mahmoud, Heba Radi Atta Allah

Abstract:

Background: Our study assesses the safety profile and efficacy of toric Implantable Collamer Lens (T-ICL) and toric implantable phakic contact lens (IPCL) for the correction of high myopia with astigmatism. Methods: A prospective interventional randomized comparative study included 60 myopic eyes divided into 2 groups, group A including 30 eyes that were implanted with T-ICL, and group B including 30 eyes that were implanted with toric IPCL. The refractive results, visual acuity, corneal endothelial cell count, and intraocular pressure (IOP) were evaluated at baseline and at 1, 6, and 9 months post-surgery. Any complications either during or after surgery were assessed. Results: A significant reduction in both spherical and cylindrical refractive errors with good predictability was reported in both groups compared with preoperative values. Regarding the predictability, In T-ICL group (A), the median spherical and cylindrical errors were significantly improved from (-10 D & -4.5 D) pre-operatively to (-0.25 D & - 0.3 D) at the end of 9 months follow up period. Similarly, in the toric IPCL group (B), the median spherical and cylindrical errors were significantly improved from (-11 D & -4.5 D) pre-operatively to (-0.25 D & - 0.3 D) at the end of 9 months follow up period. A statistically significant improvement of UCDVA at 9 months postoperatively was found in both groups, as median preoperative Log Mar UCDVA was 1.1 and 1.3 in groups A and B respectively, which was significantly improved to 0.2 in both groups at the end of follow-up period. Regarding IOP, no significant difference was found between both groups, either pre-operatively or during the postoperative period. Regarding the endothelial count, no significant differences were found during the pre-operative and postoperative follow-up periods between the two groups. Fortunately, no intra or postoperative complications as cataract, keratitis or lens decentration had occurred. Conclusions: Toric IPCL is a suitable alternative to T-ICL for the management of high myopia with astigmatism, especially in developing countries, as it is cheaper and easier for implantation than T-ICL. However, data over longer follow-up periods are needed to confirm its safety and stability.

Keywords: T-ICL, Toric IPCL, IOP, corneal endothelium

Procedia PDF Downloads 142
8033 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadiractha Indica) Leaf Extract and Investigate Its Antibacterial Activities

Authors: Elmineh Tsegahun Gedif

Abstract:

Zinc oxide nanoparticles (ZnO NPs) have attracted huge attention due to catalytic, optical, photonic, and antibacterial activity. Zinc oxide nanoparticles were successfully synthesized via a fast, non-toxic, cost-effective, and eco-friendly method by biologically reducing Zn(NO3)2.6H2O solution with Neem (Azadirachta indica) leaf extract under optimum conditions (pH = 9). The presence of active flavonoids, phenolic groups, alkaloids, terpenoids, and tannins, which were in the biomass of the Neem leaf extract before and after reduction, was identified using qualitative screening methods (observing the color changes) and FT-IR Spectroscopy. The formation of ZnO NPs was visually indicated by the color changes from colorless to light yellow color. Biosynthesized nanoparticles were also characterized by UV-visible, FT-IR, and XRD spectroscopies. The reduction process was simple and convenient to handle and was monitored by UV-visible spectroscopy that showed surface plasmon resonance (SPR) of the ZnO NPs at 321 nm. This result clearly revealed the formation of ZnO NPs. X-ray diffraction was used to investigate the crystal structure. The average particle size of ZnO powder and around 20 nm using the line width of the plane, and the refraction peak using Scherrer’s equation. The synthesized zinc oxide nanoparticles were evaluated for antimicrobial activities against Gram-positive and Gram-negative bacteria. Zinc nanoparticles exhibited the maximum zone of inhibition against Escherichia coli (15 mm), while the least activity was seen against Staphylococcus aureus.

Keywords: antimicrobial activity, azadirachta indica, green synthesis, ZnO NPs

Procedia PDF Downloads 95