Search results for: active distribution network (ADN)
11587 The Role of Physical Education and Fitness for Active Ageing
Authors: A. Lakshya
Abstract:
The main aim of this paper is to interpret physical education for children from 5 to 18 years. Schools have the ability to promote positive mental health by developing physical education, which helps to build individual growth, goal setting, decision making, helps in muscular development, self-discipline, stresses relief, leadership qualities that can arise with new skills, prosocial behavior and problem-solving skills. But mostly the children at these early ages ought to hold the disorders as heart attack, diabetes and obesity disorders may increase in large number. The data of P.E has got a very least place, where children are with feeble minds and they acquired a state of inactiveness. Globally, 81% of adolescents aged 11-18 years were insufficiently physically active in the year 2016. Adolescent girls were less active than boys, with the percentage of 85% vs. 78% as well. A recent study of California schools found that students are sedentary most of the time during PE classes, with just four minutes of every half-hour spent in vigorous physical activity. Additionally, active PE time decreases with larger class sizes. Students in classes with more than forty-five students are half as active as students in smaller class sizes. The children in adolescence age they acquire more creative ideas hence they create new hairstyles, cooking styles and dressing styles. Instead, all the children are engaging themselves to TV (television) and video games. The development of physical quality not only improves students ’ physical fitness but is also conducive to the psychological development of the students. Physical education teaching should pay more attention to the training of physical quality in the future.Keywords: physical education, prosocial behavior, leadership, goal setting
Procedia PDF Downloads 13811586 Study on Concentration and Temperature Measurement with 760 nm Diode Laser in Combustion System Using Tunable Diode Laser Absorption Spectroscopy
Authors: Miyeon Yoo, Sewon Kim, Changyeop Lee
Abstract:
It is important to measure the internal temperature or temperature distribution precisely in combustion system to increase energy efficiency and reduce the pollutants. Especially in case of large combustion systems such as power plant boiler and reheating furnace of steel making process, it is very difficult to measure those physical properties in detail. Tunable diode laser absorption spectroscopy measurement and analysis can be attractive method to overcome the difficulty. In this paper, TDLAS methods are used to measure the oxygen concentration and temperature distribution in various experimental conditions.Keywords: tunable diode laser absorption Spectroscopy, temperature distribution, gas concentration
Procedia PDF Downloads 38611585 Analysis of Exponential Distribution under Step Stress Partially Accelerated Life Testing Plan Using Adaptive Type-I Hybrid Progressive Censoring Schemes with Competing Risks Data
Authors: Ahmadur Rahman, Showkat Ahmad Lone, Ariful Islam
Abstract:
In this article, we have estimated the parameters for the failure times of units based on the sampling technique adaptive type-I progressive hybrid censoring under the step-stress partially accelerated life tests for competing risk. The failure times of the units are assumed to follow an exponential distribution. Maximum likelihood estimation technique is used to estimate the unknown parameters of the distribution and tampered coefficient. Confidence interval also obtained for the parameters. A simulation study is performed by using Monte Carlo Simulation method to check the authenticity of the model and its assumptions.Keywords: adaptive type-I hybrid progressive censoring, competing risks, exponential distribution, simulation, step-stress partially accelerated life tests
Procedia PDF Downloads 34311584 Proposal of Data Collection from Probes
Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik
Abstract:
In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.Keywords: communication, computer network, data collection, probe
Procedia PDF Downloads 36011583 A Novel Solution Methodology for Transit Route Network Design Problem
Authors: Ghada Moussa, Mamoud Owais
Abstract:
Transit Route Network Design Problem (TrNDP) is the most important component in Transit planning, in which the overall cost of the public transportation system highly depends on it. The main purpose of this study is to develop a novel solution methodology for the TrNDP, which goes beyond pervious traditional sophisticated approaches. The novelty of the solution methodology, adopted in this paper, stands on the deterministic operators which are tackled to construct bus routes. The deterministic manner of the TrNDP solution relies on using linear and integer mathematical formulations that can be solved exactly with their standard solvers. The solution methodology has been tested through Mandl’s benchmark network problem. The test results showed that the methodology developed in this research is able to improve the given network solution in terms of number of constructed routes, direct transit service coverage, transfer directness and solution reliability. Although the set of routes resulted from the methodology would stand alone as a final efficient solution for TrNDP, it could be used as an initial solution for meta-heuristic procedures to approach global optimal. Based on the presented methodology, a more robust network optimization tool would be produced for public transportation planning purposes.Keywords: integer programming, transit route design, transportation, urban planning
Procedia PDF Downloads 27311582 Bioengineering System for Prediction and Early Prenosological Diagnostics of Stomach Diseases Based on Energy Characteristics of Bioactive Points with Fuzzy Logic
Authors: Mahdi Alshamasin, Riad Al-Kasasbeh, Nikolay Korenevskiy
Abstract:
We apply mathematical models for the interaction of the internal and biologically active points of meridian structures. Amongst the diseases for which reflex diagnostics are effective are those of the stomach disease. It is shown that use of fuzzy logic decision-making yields good results for the prediction and early diagnosis of gastrointestinal tract diseases, depending on the reaction energy of biologically active points (acupuncture points). It is shown that good results for the prediction and early diagnosis of diseases from the reaction energy of biologically active points (acupuncture points) are obtained by using fuzzy logic decision-making.Keywords: acupuncture points, fuzzy logic, diagnostically important points (DIP), confidence factors, membership functions, stomach diseases
Procedia PDF Downloads 46711581 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks
Authors: N. Nalini, Lokesh B. Bhajantri
Abstract:
In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology
Procedia PDF Downloads 45211580 Effect of Active Compounds Extracted From Tagetes Erecta Against Plant-Parasitic Nematodes
Authors: Deepika, Kashika Kapoor, Nistha Khanna, Lakshmi, Archna Kumar
Abstract:
Plant-parasitic nematodes cause major loss in global food production and destroying at least 21.3% of food annually. About 4100 species of plant-parasitic nematodes are reported, out of this, Meloidogyne species is prominent and worldwide in distribution. Observing the harmful effects of chemical based nematicides, there is a great need for an eco-friendly, highly efficient, sustainable control measure for Meloidogyne. Therefore, In vitro study was carried out to observe the impact of volatile cues obtained from the Tagetes erecta leaves on plant parasitic nematodes. Volatile cues were collected from marigold leaves. For chemical characterization, GCMS (Gas Chromatography Mass Spectrometry) profiling was conducted. VOCs (Volatile Organic Compounds) profile of marigold indicated the presence of several types of alkanes, alkenes varying in number and quantity. Status of nematodes population by counting the live and dead individuals after applying a definite volume (100µl) of extract was recorded at different concentrations (100%, 50%, 25%) with contrast of control (hexane) during different time durations i.e.,24hr, 48hr and 72hr. Result indicated that mortality increases with increasing time (72hr) and concentration (100%) i.e., 50%. Thus, application of prominent compound present in Marigold in pure form may be tested individually or in combination to find out the most efficient active compound/s, which may be highly useful in eco-friendly management of targeted plant parasitic nematode.Keywords: plant-parasitic nematode, meloidogyne, tagetes erecta, volatile organic compounds
Procedia PDF Downloads 16911579 Clove Oil Incorporated Biodegradable Film for Active Food Packaging
Authors: Shubham Sharma, Sandra Barkauskaite, Brendan Duffy, Swarna Jaiswal, Amit K. Jaiswal
Abstract:
Food packaging protects food from temperature, light, and humidity; preserves food and guarantees the safety and the integrity of the food. Advancement in packaging research leads to development of active packaging system with numerous properties such as oxygen scavengers, carbon-dioxide generating systems, antimicrobial active packaging, moisture control packaging, ethylene scavengers etc. In the active packaging, several additives such as essential oils, polyphenols etc. are incorporated into packaging film or within the packaging material to achieve the desired properties. This study investigates the effect on the structural, thermal and functional properties of different poly(lactide) – poly (butylene adipate-co-terephthalate) (PLA-PBAT) blend films incorporated with clove essential oil. The PLA-PBAT films were prepared by a solution casting method and then characterized based on their optical, mechanical properties, surface hydrophobicity, chemical composition, antimicrobial activity against S. aureus and E. coli, and inhibition of biofilm formation of E. coli. Results showed that, the developed packaging film containing clove oil has significant UV-blocking property (80%). However, incorporation of clove oil resulted in reduced transparency and tensile strength of the film as the concentration of clove oil increased. The surface hydrophobicity of packaging film was improved with the increasing concentration of essential oil. Similarly, thickness of the clove oil containing films increased from 36.71 µm to 106.67 µm as the concentration increases. The antimicrobial activity and biofilm inhibition study showed that the clove-incorporated PLA-PBAT composite film was effective against tested bacteria E. coli and S. aureus. This study showed that the PLA-PBAT – Clove oil composite film has significant antimicrobial and UV-blocking properties and can be used as an active food packaging film.Keywords: active packaging, clove oil, poly(butylene adipate-co-terephthalate), poly(lactide)
Procedia PDF Downloads 15111578 Dynamics Characterizations of Dielectric Electro- Active Polymer Pull Actuator for Vibration Control
Authors: A. M. Wahab, E. Rustighi
Abstract:
Elastomeric dielectric material has recently become a new alternative for actuator technology. The characteristics of dielectric elastomers placed between two electrodes to withstand large strain when electrodes are charged has attracted the attention of many researcher to study this material for actuator technology. Thus, in the past few years Danfoss Ventures A/S has established their own dielectric electro-active polymer (DEAP), which was called PolyPower. The main objective of this work was to investigate the dynamic characteristics for vibration control of a PolyPower actuator folded in ‘pull’ configuration. A range of experiments was carried out on the folded actuator including passive (without electrical load) and active (with electrical load) testing. For both categories static and dynamic testing have been done to determine the behavior of folded DEAP actuator. Voltage-Strain experiments show that the DEAP folded actuator is a non-linear system. It is also shown that the voltage supplied has no effect on the natural frequency. Finally, varying AC voltage with different amplitude and frequency shows the parameters that influence the performance of DEAP folded actuator. As a result, the actuator performance dominated by the frequency dependence of the elastic response and was less influenced by dielectric properties.Keywords: dielectric electro-active polymer, pull actuator, static, dynamic, electromechanical
Procedia PDF Downloads 25111577 Integrating Dynamic Brain Connectivity and Transcriptomic Imaging in Major Depressive Disorder
Authors: Qingjin Liu, Jinpeng Niu, Kangjia Chen, Jiao Li, Huafu Chen, Wei Liao
Abstract:
Functional connectomics is essential in cognitive science and neuropsychiatry, offering insights into the brain's complex network structures and dynamic interactions. Although neuroimaging has uncovered functional connectivity issues in Major Depressive Disorder (MDD) patients, the dynamic shifts in connectome topology and their link to gene expression are yet to be fully understood. To explore the differences in dynamic connectome topology between MDD patients and healthy individuals, we conducted an extensive analysis of resting-state functional magnetic resonance imaging (fMRI) data from 434 participants (226 MDD patients and 208 controls). We used multilayer network models to evaluate brain module dynamics and examined the association between whole-brain gene expression and dynamic module variability in MDD using publicly available transcriptomic data. Our findings revealed that compared to healthy individuals, MDD patients showed lower global mean values and higher standard deviations, indicating unstable patterns and increased regional differentiation. Notably, MDD patients exhibited more frequent module switching, primarily within the executive control network (ECN), particularly in the left dorsolateral prefrontal cortex and right fronto-insular regions, whereas the default mode network (DMN), including the superior frontal gyrus, temporal lobe, and right medial prefrontal cortex, displayed lower variability. These brain dynamics predicted the severity of depressive symptoms. Analyzing human brain gene expression data, we found that the spatial distribution of MDD-related gene expression correlated with dynamic module differences. Cell type-specific gene analyses identified oligodendrocytes (OPCs) as major contributors to the transcriptional relationships underlying module variability in MDD. To the best of our knowledge, this is the first comprehensive description of altered brain module dynamics in MDD patients linked to depressive symptom severity and changes in whole-brain gene expression profiles.Keywords: major depressive disorder, module dynamics, magnetic resonance imaging, transcriptomic
Procedia PDF Downloads 2611576 Simulation of Human Heart Activation Based on Diffusion Tensor Imaging
Authors: Ihab Elaff
Abstract:
Simulating the heart’s electrical stimulation is essential in modeling and evaluating the electrophysiology behavior of the heart. For achieving that, there are two structures in concern: the ventricles’ Myocardium, and the ventricles’ Conduction Network. Ventricles’ Myocardium has been modeled as anisotropic material from Diffusion Tensor Imaging (DTI) scan, and the Conduction Network has been extracted from DTI as a case-based structure based on the biological properties of the heart tissues and the working methodology of the Magnetic Resonance Imaging (MRI) scanner. Results of the produced activation were much similar to real measurements of the reference model that was presented in the literature.Keywords: diffusion tensor, DTI, heart, conduction network, excitation propagation
Procedia PDF Downloads 26611575 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa
Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam
Abstract:
Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines
Procedia PDF Downloads 51511574 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks
Authors: Sami Baraketi, Jean Marie Garcia, Olivier Brun
Abstract:
Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods.Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic
Procedia PDF Downloads 52711573 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network
Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim
Abstract:
In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt
Procedia PDF Downloads 35411572 Distribution-Free Exponentially Weighted Moving Average Control Charts for Monitoring Process Variability
Authors: Chen-Fang Tsai, Shin-Li Lu
Abstract:
Distribution-free control chart is an oncoming area from the statistical process control charts in recent years. Some researchers have developed various nonparametric control charts and investigated the detection capability of these charts. The major advantage of nonparametric control charts is that the underlying process is not specifically considered the assumption of normality or any parametric distribution. In this paper, two nonparametric exponentially weighted moving average (EWMA) control charts based on nonparametric tests, namely NE-S and NE-M control charts, are proposed for monitoring process variability. Generally, weighted moving average (GWMA) control charts are extended by utilizing design and adjustment parameters for monitoring the changes in the process variability, namely NG-S and NG-M control charts. Statistical performance is also investigated on NG-S and NG-M control charts with run rules. Moreover, sensitivity analysis is performed to show the effects of design parameters under the nonparametric NG-S and NG-M control charts.Keywords: Distribution-free control chart, EWMA control charts, GWMA control charts
Procedia PDF Downloads 27211571 Social Economical Aspect of the City of Kigali Road Network Functionality
Authors: David Nkurunziza, Rahman Tafahomi
Abstract:
The population growth rate of the city of Kigali is increasing annually. In 1960 the population was six thousand, in 1990 it became two hundred thousand and is supposed to be 4 to 5 million incoming twenty years. With the increase in the residents living in the city of Kigali, there is also a need for an increase in social and economic infrastructures connected by the road networks to serve the residents effectively. A road network is a route that connects people to their needs and has to facilitate people to reach the social and economic facilities easily. This research analyzed the social and economic aspects of three selected roads networks passing through all three districts of the city of Kigali, whose center is the city center roundabout, thorough evaluation of the proximity of the social and economic facilities to the road network. These road networks are the city center to nyabugogo to karuruma, city center to kanogo to Rwanda to kicukiro center to Nyanza taxi park, and city center to Yamaha to kinamba to gakinjiro to kagugu health center road network. This research used a methodology of identifying and quantifying the social and economic facilities within a limited distance of 300 meters along each side of the road networks. Social facilities evaluated are the health facilities, education facilities, institution facilities, and worship facilities, while the economic facilities accessed are the commercial zones, industries, banks, and hotels. These facilities were evaluated and graded based on their distance from the road and their value. The total scores of each road network per kilometer were calculated and finally, the road networks were ranked based on their percentage score per one kilometer—this research was based on field surveys and interviews to collect data with forms and questionnaires. The analysis of the data collected declared that the road network from the city center to Yamaha to kinamba to gakinjiro to the kagugu health center is the best performer, the second is the road network from the city center to nyabugogo to karuruma, while the third is the road network from the city center to kanogo to rwandex to kicukiro center to nyaza taxi park.Keywords: social economical aspect, road network functionality, urban road network, economic and social facilities
Procedia PDF Downloads 16011570 Reducing Hazardous Materials Releases from Railroad Freights through Dynamic Trip Plan Policy
Authors: Omar A. Abuobidalla, Mingyuan Chen, Satyaveer S. Chauhan
Abstract:
Railroad transportation of hazardous materials freights is important to the North America economics that supports the national’s supply chain. This paper introduces various extensions of the dynamic hazardous materials trip plan problems. The problem captures most of the operational features of a real-world railroad transportations systems that dynamically initiates a set of blocks and assigns each shipment to a single block path or multiple block paths. The dynamic hazardous materials trip plan policies have distinguishing features that are integrating the blocking plan, and the block activation decisions. We also present a non-linear mixed integer programming formulation for each variant and present managerial insights based on a hypothetical railroad network. The computation results reveal that the dynamic car scheduling policies are not only able to take advantage of the capacity of the network but also capable of diminishing the population, and environment risks by rerouting the active blocks along the least risky train services without sacrificing the cost advantage of the railroad. The empirical results of this research illustrate that the issue of integrating the blocking plan, and the train makeup of the hazardous materials freights must receive closer attentions.Keywords: dynamic car scheduling, planning and scheduling hazardous materials freights, airborne hazardous materials, gaussian plume model, integrated blocking and routing plans, box model
Procedia PDF Downloads 20511569 Impact of Node Density and Transmission Range on the Performance of OLSR and DSDV Routing Protocols in VANET City Scenarios
Authors: Yassine Meraihi, Dalila Acheli, Rabah Meraihi
Abstract:
Vehicular Ad hoc Network (VANET) is a special case of Mobile Ad hoc Network (MANET) used to establish communications and exchange information among nearby vehicles and between vehicles and nearby fixed infrastructure. VANET is seen as a promising technology used to provide safety, efficiency, assistance and comfort to the road users. Routing is an important issue in Vehicular Ad Hoc Network to find and maintain communication between vehicles due to the highly dynamic topology, frequently disconnected network and mobility constraints. This paper evaluates the performance of two most popular proactive routing protocols OLSR and DSDV in real city traffic scenario on the basis of three metrics namely Packet delivery ratio, throughput and average end to end delay by varying vehicles density and transmission range.Keywords: DSDV, OLSR, quality of service, routing protocols, VANET
Procedia PDF Downloads 47111568 Estimating Anthropometric Dimensions for Saudi Males Using Artificial Neural Networks
Authors: Waleed Basuliman
Abstract:
Anthropometric dimensions are considered one of the important factors when designing human-machine systems. In this study, the estimation of anthropometric dimensions has been improved by using Artificial Neural Network (ANN) model that is able to predict the anthropometric measurements of Saudi males in Riyadh City. A total of 1427 Saudi males aged 6 to 60 years participated in measuring 20 anthropometric dimensions. These anthropometric measurements are considered important for designing the work and life applications in Saudi Arabia. The data were collected during eight months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining 15 dimensions were set to be the measured variables (Model’s outcomes). The hidden layers varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was able to estimate the body dimensions of Saudi male population in Riyadh City. The network's mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found to be 0.0348 and 3.225, respectively. These results were found less, and then better, than the errors found in the literature. Finally, the accuracy of the developed neural network was evaluated by comparing the predicted outcomes with regression model. The ANN model showed higher coefficient of determination (R2) between the predicted and actual dimensions than the regression model.Keywords: artificial neural network, anthropometric measurements, back-propagation
Procedia PDF Downloads 48711567 Capitalizing on Differential Network Ties: Unpacking Individual Creativity from Social Capital Perspective
Authors: Yuanyuan Wang, Chun Hui
Abstract:
Drawing on social capital theory, this article discusses how individuals may utilize network ties to come up with creativity. Social capital theory elaborates how network ties enhances individual creativity from three dimensions: structural access, and relational and cognitive mechanisms. We categorize network ties into strong and weak in terms of tie strength. With less structural constraints, weak ties allow diverse and heterogeneous knowledge to prosper, further facilitating individuals to build up connections among diverse even distant ideas. On the other hand, strong ties with the relational mechanism of cooperation and trust may benefit the accumulation of psychological capital, ultimately to motivate and sustain creativity. We suggest that differential ties play different roles for individual creativity: Weak ties deliver informational benefit directly rifling individual creativity from informational resource aspect; strong ties offer solidarity benefits to reinforce psychological capital, which further inspires individual creativity engagement from a psychological viewpoint. Social capital embedded in network ties influence individuals’ informational acquisition, motivation, as well as cognitive ability to be creative. Besides, we also consider the moderating effects constraining the relatedness between network ties and creativity, such as knowledge articulability. We hypothesize that when the extent of knowledge articulability is low, that is, with low knowledge codifiability, and high dependency and ambiguity, weak ties previous serving as knowledge reservoir will not become ineffective on individual creativity. Two-wave survey will be employed in Mainland China to empirically test mentioned propositions.Keywords: network ties, social capital, psychological capital, knowledge articulability, individual creativity
Procedia PDF Downloads 40511566 Spatial Distribution of Heavy Metals in Khark Island-Iran Using Geographic Information System
Authors: Abbas Hani, Maryam Jassasizadeh
Abstract:
The concentrations of Cd, Pb, and Ni were determined from 40 soil samples collected in surface soils of Khark Island. Geostatistic methods and GIS were used to identify heavy metal sources and their spatial pattern. Principal component analysis coupled with correlation between heavy metals showed that level of mentioned heavy metal was lower than the standard level. Then the data obtained from the soil analyzing were studied for the purposes of normal distribution. The best way of interior finding for cadmium and nickel was ordinary kriging and the best way of interpolation of lead was inverse distance weighted. The result of this study help us to understand heavy metals distribution and make decision for remediation of soil pollution.Keywords: geostatistics, ordinary kriging, heavy metals, GIS, Khark
Procedia PDF Downloads 16811565 Fish Is Back but Fishers Are Out: The Dilemma of the Education Methods Adapted for Co-management of the Fishery Resource
Authors: Namubiru Zula, Janice Desire Busingue
Abstract:
Pro-active educational approaches have lately been adapted Globally in the Conservation of Natural Resources. This led to the introduction of the co-management system, which worked for some European Countries on the conservation of sharks and other Natural resources. However, this approach has drastically failed in the Fishery sector on Lake Victoria; and the punitive education approach has been re-instated. Literature is readily available about the punitive educational approaches and scanty with the pro-active one. This article analyses the pro-active approach adopted by the Department of Fisheries for the orientation of BMU leaders in a co-management system. The study is interpreted using the social constructivist lens for co-management of the fishery resource to ensure that fishers are also back to fishing sustainably. It highlights some of the education methods used, methodological challenges that included the power and skills gap of the facilitators and program designers, and some implications to practice.Keywords: beach management units, fishers, education methods, proactive approach, punitive approach
Procedia PDF Downloads 12311564 Neural Network Analysis Applied to Risk Prediction of Early Neonatal Death
Authors: Amanda R. R. Oliveira, Caio F. F. C. Cunha, Juan C. L. Junior, Amorim H. P. Junior
Abstract:
Children deaths are traumatic events that most often can be prevented. The technology of prevention and intervention in cases of infant deaths is available at low cost and with solid evidence and favorable results, however, with low access cover. Weight is one of the main factors related to death in the neonatal period, so the newborns of low birth weight are a population at high risk of death in the neonatal period, especially early neonatal period. This paper describes the development of a model based in neural network analysis to predict the mortality risk rating in the early neonatal period for newborns of low birth weight to identify the individuals of this population with increased risk of death. The neural network applied was trained with a set of newborns data obtained from Brazilian health system. The resulting network presented great success rate in identifying newborns with high chances of death, which demonstrates the potential for using this tool in an integrated manner to the health system, in order to direct specific actions for improving prognosis of newborns.Keywords: low birth weight, neonatal death risk, neural network, newborn
Procedia PDF Downloads 44811563 Exploring the Connectedness of Ad Hoc Mesh Networks in Rural Areas
Authors: Ibrahim Obeidat
Abstract:
Reaching a fully-connected network of mobile nodes in rural areas got a great attention between network researchers. This attention rose due to the complexity and high costs while setting up the needed infrastructures for these networks, in addition to the low transmission range these nodes has. Terranet technology, as an example, employs ad-hoc mesh network where each node has a transmission range not exceed one kilometer, this means that every two nodes are able to communicate with each other if they are just one kilometer far from each other, otherwise a third-party will play the role of the “relay”. In Terranet, and as an idea to reduce network setup cost, every node in the network will be considered as a router that is responsible of forwarding data between other nodes which result in a decentralized collaborative environment. Most researches on Terranet presents the idea of how to encourage mobile nodes to become more cooperative by letting their devices in “ON” state as long as possible while accepting to play the role of relay (router). This research presents the issue of finding the percentage of nodes in ad-hoc mesh network within rural areas that should play the role of relay at every time slot, relating to what is the actual area coverage of nodes in order to have the network reach the fully-connectivity. Far from our knowledge, till now there is no current researches discussed this issue. The research is done by making an implementation that depends on building adjacency matrix as an indicator to the connectivity between network members. This matrix is continually updated until each value in it refers to the number of hubs that should be followed to reach from one node to another. After repeating the algorithm on different area sizes, different coverage percentages for each size, and different relay percentages for several times, results extracted shows that for area coverage less than 5% we need to have 40% of the nodes to be relays, where 10% percentage is enough for areas with node coverage greater than 5%.Keywords: ad-hoc mesh networks, network connectivity, mobile ad-hoc networks, Terranet, adjacency matrix, simulator, wireless sensor networks, peer to peer networks, vehicular Ad hoc networks, relay
Procedia PDF Downloads 28211562 Image Instance Segmentation Using Modified Mask R-CNN
Authors: Avatharam Ganivada, Krishna Shah
Abstract:
The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision
Procedia PDF Downloads 7311561 Implementing a Neural Network on a Low-Power and Mobile Cluster to Aide Drivers with Predictive AI for Traffic Behavior
Authors: Christopher Lama, Alix Rieser, Aleksandra Molchanova, Charles Thangaraj
Abstract:
New technologies like Tesla’s Dojo have made high-performance embedded computing more available. Although automobile computing has developed and benefited enormously from these more recent technologies, the costs are still high, prohibitively high in some cases for broader adaptation, particularly for the after-market and enthusiast markets. This project aims to implement a Raspberry Pi-based low-power (under one hundred Watts) highly mobile computing cluster for a neural network. The computing cluster built from off-the-shelf components is more affordable and, therefore, makes wider adoption possible. The paper describes the design of the neural network, Raspberry Pi-based cluster, and applications the cluster will run. The neural network will use input data from sensors and cameras to project a live view of the road state as the user drives. The neural network will be trained to predict traffic behavior and generate warnings when potentially dangerous situations are predicted. The significant outcomes of this study will be two folds, firstly, to implement and test the low-cost cluster, and secondly, to ascertain the effectiveness of the predictive AI implemented on the cluster.Keywords: CS pedagogy, student research, cluster computing, machine learning
Procedia PDF Downloads 10211560 Borrowing Performance: A Network Connectivity Analysis of Second-Tier Cities in Turkey
Authors: Eğinç Simay Ertürk, Ferhan Gezi̇ci̇
Abstract:
The decline of large cities and the rise of second-tier cities have been observed as a global trend with significant implications for economic development and urban planning. In this context, the concepts of agglomeration shadow and borrowed size have gained importance as network externalities that affect the growth and development of surrounding areas. Istanbul, Izmir, and Ankara are Turkey's most significant metropolitan cities and play a significant role in the country's economy. The surrounding cities rely on these metropolitan cities for economic growth and development. However, the concentration of resources and investment in a single location can lead to agglomeration shadows in the surrounding areas. On the other hand, network connectivity between metropolitan and second-tier cities can result in borrowed function and performance, enabling smaller cities to access resources, investment, and knowledge they would not otherwise have access. The study hypothesizes that the network connectivity between second-tier and metropolitan cities in Turkey enables second-tier cities to increase their urban performance by borrowing size through these networks. Regression analysis will be used to identify specific network connectivity parameters most strongly associated with urban performance. Network connectivity will be measured with parameters such as transportation nodes and telecommunications infrastructure, and urban performance will be measured with an index, including parameters such as employment, education, and industry entrepreneurship, with data at the province levels. The contribution of the study lies in its research on how networking can benefit second-tier cities in Turkey.Keywords: network connectivity, borrowed size, agglomeration shadow, secondary cities
Procedia PDF Downloads 8111559 The Fit of the Partial Pair Distribution Functions of BaMnFeF7 Fluoride Glass Using the Buckingham Potential by the Hybrid RMC Simulation
Authors: Sidi Mohamed Mesli, Mohamed Habchi, Arslane Boudghene Stambouli, Rafik Benallal
Abstract:
The BaMnMF7 (M=Fe,V, transition metal fluoride glass, assuming isomorphous replacement) have been structurally studied through the simultaneous simulation of their neutron diffraction patterns by reverse Monte Carlo (RMC) and by the Hybrid Reverse Monte Carlo (HRMC) analysis. This last is applied to remedy the problem of the artificial satellite peaks that appear in the partial pair distribution functions (PDFs) by the RMC simulation. The HRMC simulation is an extension of the RMC algorithm, which introduces an energy penalty term (potential) in acceptance criteria. The idea of this work is to apply the Buckingham potential at the title glass by ignoring the van der Waals terms, in order to make a fit of the partial pair distribution functions and give the most possible realistic features. When displaying the partial PDFs, we suggest that the Buckingham potential is useful to describe average correlations especially in similar interactions.Keywords: fluoride glasses, RMC simulation, hybrid RMC simulation, Buckingham potential, partial pair distribution functions
Procedia PDF Downloads 50311558 Study on the Layout of 15-Minute Community-Life Circle in the State of “Community Segregation” Based on Poi: Shengwei Community and Other Two Communities in Chongqing
Authors: Siyuan Cai
Abstract:
This paper takes community segregation during major infectious diseases as the background, based on the physiological needs and safety needs of citizens during home segregation, and based on the selection of convenient facilities and medical facilities as the main research objects. Based on the POI data of public facilities in Chongqing, the spatial distribution characteristics of the convenience and medical facilities in the 15-minute living circle centered on three neighborhoods in Shapingba, namely Shengwei Community, Anju Commmunity and Fengtian Garden Community, were explored by means of GIS spatial analysis. The results show that the spatial distribution of convenience and medical facilities in this area has significant clustering characteristics, with a point-like distribution pattern of "dense in the west and sparse in the east", and a grouped and multi-polar spatial structure. The spatial structure is multi-polar and has an obvious tendency to the intersections and residential areas with dense pedestrian flow. This study provides a preliminary exploration of the distribution of medical and convenience facilities within the 15-minute living circle of a segregated community, which makes up for the lack of spatial research in this area.Keywords: ArcGIS, community segregation, convenient facilities; distribution pattern, medical facilities, POI, 15-minute community life circle
Procedia PDF Downloads 120