Search results for: model building
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19903

Search results for: model building

10243 Designing Agile Product Development Processes by Transferring Mechanisms of Action Used in Agile Software Development

Authors: Guenther Schuh, Michael Riesener, Jan Kantelberg

Abstract:

Due to the fugacity of markets and the reduction of product lifecycles, manufacturing companies from high-wage countries are nowadays faced with the challenge to place more innovative products within even shorter development time on the market. At the same time, volatile customer requirements have to be satisfied in order to successfully differentiate from market competitors. One potential approach to address the explained challenges is provided by agile values and principles. These agile values and principles already proofed their success within software development projects in the form of management frameworks like Scrum or concrete procedure models such as Extreme Programming or Crystal Clear. Those models lead to significant improvements regarding quality, costs and development time and are therefore used within most software development projects. Motivated by the success within the software industry, manufacturing companies have tried to transfer agile mechanisms of action to the development of hardware products ever since. Though first empirical studies show similar effects in the agile development of hardware products, no comprehensive procedure model for the design of development iterations has been developed for hardware development yet due to different constraints of the domains. For this reason, this paper focusses on the design of agile product development processes by transferring mechanisms of action used in agile software development towards product development. This is conducted by decomposing the individual systems 'product development' and 'agile software development' into relevant elements and symbiotically composing the elements of both systems in respect of the design of agile product development processes afterwards. In a first step, existing product development processes are described following existing approaches of the system theory. By analyzing existing case studies from industrial companies as well as academic approaches, characteristic objectives, activities and artefacts are identified within a target-, action- and object-system. In partial model two, mechanisms of action are derived from existing procedure models of agile software development. These mechanisms of action are classified in a superior strategy level, in a system level comprising characteristic, domain-independent activities and their cause-effect relationships as well as in an activity-based element level. Within partial model three, the influence of the identified agile mechanism of action towards the characteristic system elements of product development processes is analyzed. For this reason, target-, action- and object-system of the product development are compared with the strategy-, system- and element-level of agile mechanism of action by using the graph theory. Furthermore, the necessity of existence of activities within iteration can be determined by defining activity-specific degrees of freedom. Based on this analysis, agile product development processes are designed in form of different types of iterations within a last step. By defining iteration-differentiating characteristics and their interdependencies, a logic for the configuration of activities, their form of execution as well as relevant artefacts for the specific iteration is developed. Furthermore, characteristic types of iteration for the agile product development are identified.

Keywords: activity-based process model, agile mechanisms of action, agile product development, degrees of freedom

Procedia PDF Downloads 207
10242 The Big Bang Was Not the Beginning, but a Repeating Pattern of Expansion and Contraction of the Spacetime

Authors: Amrit Ladhani

Abstract:

The cyclic universe theory is a model of cosmic evolution according to which the universe undergoes endless cycles of expansion and cooling, each beginning with a “big bang” and ending in a “big crunch”. In this paper, we propose a unique property of Space-time. This particular and marvelous nature of space shows us that space can stretch, expand, and shrink. This property of space is caused by the size of the universe change over time: growing or shrinking. The observed accelerated expansion, which relates to the stretching of Shrunk space for the new theory, is derived. This theory is based on three underlying notions: First, the Big Bang is not the beginning of Space-time, but rather, at the very beginning fraction of a second, there was an infinite force of infinite Shrunk space in the cosmic singularity that force gave rise to the big bang and caused the rapidly growing of space, and all other forms of energy are transformed into new matter and radiation and a new period of expansion and cooling begins. Second, there was a previous phase leading up to it, with multiple cycles of contraction and expansion that repeat indefinitely. Third, the two principal long-range forces are the gravitational force and the repulsive force generated by shrink space. They are the two most fundamental quantities in the universe that govern cosmic evolution. They may provide the clockwork mechanism that operates our eternal cyclic universe. The universe will not continue to expand forever; no need, however, for dark energy and dark matter. This new model of Space-time and its unique properties enables us to describe a sequence of events from the Big Bang to the Big Crunch.

Keywords: dark matter, dark energy, cosmology, big bang and big crunch

Procedia PDF Downloads 78
10241 Modified Model-Based Systems Engineering Driven Approach for Defining Complex Energy Systems

Authors: Akshay S. Dalvi, Hazim El-Mounayri

Abstract:

The internal and the external interactions between the complex structural and behavioral characteristics of the complex energy system result in unpredictable emergent behaviors. These emergent behaviors are not well understood, especially when modeled using the traditional top-down systems engineering approach. The intrinsic nature of current complex energy systems has called for an elegant solution that provides an integrated framework in Model-Based Systems Engineering (MBSE). This paper mainly presents a MBSE driven approach to define and handle the complexity that arises due to emergent behaviors. The approach provides guidelines for developing system architecture that leverages in predicting the complexity index of the system at different levels of abstraction. A framework that integrates indefinite and definite modeling aspects is developed to determine the complexity that arises during the development phase of the system. This framework provides a workflow for modeling complex systems using Systems Modeling Language (SysML) that captures the system’s requirements, behavior, structure, and analytical aspects at both problem definition and solution levels. A system architecture for a district cooling plant is presented, which demonstrates the ability to predict the complexity index. The result suggests that complex energy systems like district cooling plant can be defined in an elegant manner using the unconventional modified MBSE driven approach that helps in estimating development time and cost.

Keywords: district cooling plant, energy systems, framework, MBSE

Procedia PDF Downloads 130
10240 Suspended Sediment Sources Fingerprinting in Ashebeka River Catchment, Assela, Central Ethiopia

Authors: Getachew Mekaa, Bezatu Mengisteb, Tena Alamirewc

Abstract:

Ashebeka River is the main source of drinking water supply for Assela City and its surrounding inhabitants. Apart from seasonal water reliability disruption, the cost of treating water downstream of the river has been increasing over time due to increased pollutants and suspended sediments. Therefore, this research aimed to identify geo-location and prioritize suspended sediment sources in the Ashebeka River catchment using sediment fingerprinting. We collected 58 composite soil samples and a river water sample for suspended sediment samples from the outlet, which were then filtered using Whatman filter paper. The samples were quantified for geochemical tracers with multi-element capability, and inductively coupled plasma-optical emission spectrometry (ICP-OES). Tracers with significant p-value and that passed the Kruskal-Wallis (KW) test were analyzed for stepwise discriminant function analysis (DFA). The DFA results revealed tracers with good discrimination were subsequently used for the mixed model analysis. The relative significant sediment source contributions from sub-catchments (km2): 3, 4, 1, and 2 were estimated as 49.31% (8), 26.71% (5), 23.65% (5.6), and 0.33% (28.4) respectively. The findings of this study will help the water utilities to prioritize areas of intervention, and the approach used could be followed for catchment prioritization in water safety plan development. Moreover, the findings of this research shed light on the integration of sediment fingerprinting into water safety plans to ensure the reliability of drinking water supplies.

Keywords: disruption of drinking water reliability, ashebeka river catchment, sediment fingerprinting, sediment source contribution, mixed model

Procedia PDF Downloads 24
10239 The Role of Information and Communication Technology to Enhance Transparency in Public Funds Management in the DR Congo

Authors: Itulelo Matiyabu Imaja, Manoj Maharaj, Patrick Ndayizigamiye

Abstract:

Lack of transparency in public funds management is observed in many African countries. The DR Congo is among the most corrupted countries in Africa, and this is due mainly to lack of transparency and accountability in public funds management. Corruption has a negative effect on the welfare of the country’s citizens and the national economic growth. Public funds collection and allocation are the major areas whereby malpractices such as bribe, extortion, embezzlement, nepotism and other practices related to corruption are prevalent. Hence, there is a need to implement strong mechanisms to enforce transparency in public funds management. Many researchers have suggested some control mechanisms in curbing corruption in public funds management focusing mainly on law enforcement and administrative reforms with little or no insight on the role that ICT can play in preventing and curbing the corrupt behaviour. In the Democratic Republic of Congo (DRC), there are slight indications that the government of the DR Congo is integrating ICT to fight corruption in public funds collection and allocation. However, such government initiatives are at an infancy stage, with no tangible evidence on how ICT could be used effectively to address the issue of corruption in the context of the country. Hence, this research assesses the role that ICT can play for transparency in public funds management and suggest a framework for its adoption in the Democratic Republic of Congo. This research uses the revised Capability model (Capability, Empowerment, Sustainability model) as the guiding theoretical framework. The study uses the exploratory design methodology coupled with a qualitative approach to data collection and purposive sampling as sampling strategy.

Keywords: corruption, DR congo, ICT, management, public funds, transparency

Procedia PDF Downloads 349
10238 Clean Sky 2 – Project PALACE: Aeration’s Experimental Sound Velocity Investigations for High-Speed Gerotor Simulations

Authors: Benoît Mary, Thibaut Gras, Gaëtan Fagot, Yvon Goth, Ilyes Mnassri-Cetim

Abstract:

A Gerotor pump is composed of an external and internal gear with conjugate cycloidal profiles. From suction to delivery ports, the fluid is transported inside cavities formed by teeth and driven by the shaft. From a geometric and conceptional side it is worth to note that the internal gear has one tooth less than the external one. Simcenter Amesim v.16 includes a new submodel for modelling the hydraulic Gerotor pumps behavior (THCDGP0). This submodel considers leakages between teeth tips using Poiseuille and Couette flows contributions. From the 3D CAD model of the studied pump, the “CAD import” tool takes out the main geometrical characteristics and the submodel THCDGP0 computes the evolution of each cavity volume and their relative position according to the suction or delivery areas. This module, based on international publications, presents robust results up to 6 000 rpm for pressure greater than atmospheric level. For higher rotational speeds or lower pressures, oil aeration and cavitation effects are significant and highly drop the pump’s performance. The liquid used in hydraulic systems always contains some gas, which is dissolved in the liquid at high pressure and tends to be released in a free form (i.e. undissolved as bubbles) when pressure drops. In addition to gas release and dissolution, the liquid itself may vaporize due to cavitation. To model the relative density of the equivalent fluid, modified Henry’s law is applied in Simcenter Amesim v.16 to predict the fraction of undissolved gas or vapor. Three parietal pressure sensors have been set up upstream from the pump to estimate the sound speed in the oil. Analytical models have been compared with the experimental sound speed to estimate the occluded gas content. Simcenter Amesim v.16 model was supplied by these previous analyses marks which have successfully improved the simulations results up to 14 000 rpm. This work provides a sound foundation for designing the next Gerotor pump generation reaching high rotation range more than 25 000 rpm. This improved module results will be compared to tests on this new pump demonstrator.

Keywords: gerotor pump, high speed, numerical simulations, aeronautic, aeration, cavitation

Procedia PDF Downloads 134
10237 Testing Nature Based Solutions for Air Quality Improvement: Aveiro Case Study

Authors: A. Ascenso, C. Silveira, B. Augusto, S. Rafael, S. Coelho, J. Ferreira, A. Monteiro, P. Roebeling, A. I. Miranda

Abstract:

Innovative nature-based solutions (NBSs) can provide answers to the challenges that urban areas are currently facing due to urban densification and extreme weather conditions. The effects of NBSs are recognized and include improved quality of life, mental and physical health and improvement of air quality, among others. Part of the work developed in the scope of the UNaLab project, which aims to guide cities in developing and implementing their own co-creative NBSs, intends to assess the impacts of NBSs on air quality, using Eindhoven city as a case study. The state-of-the-art online air quality modelling system WRF-CHEM was applied to simulate meteorological and concentration fields over the study area with a spatial resolution of 1 km2 for the year 2015. The baseline simulation (without NBSs) was validated by comparing the model results with monitored data retrieved from the Eindhoven air quality database, showing an adequate model performance. In addition, land use changes were applied in a set of simulations to assess the effects of different types of NBSs. Finally, these simulations were compared with the baseline scenario and the impacts of the NBSs were assessed. Reductions on pollutant concentrations, namely for NOx and PM, were found after the application of the NBSs in the Eindhoven study area. The present work is particularly important to support public planners and decision makers in understanding the effects of their actions and planning more sustainable cities for the future.

Keywords: air quality, modelling approach, nature based solutions, urban area

Procedia PDF Downloads 238
10236 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns

Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan

Abstract:

Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.

Keywords: composite, columns, experimental, finite element, fully encased, strength

Procedia PDF Downloads 290
10235 Enhancing Problem Communication and Management Using Civil Information Modeling for Infrastructure Projects

Authors: Yu-Cheng Lin, Yu-Chih Su

Abstract:

Generally, there are many numerous existing problems during the construction phase special in civil engineering. The problems communication and management (PCM) of civil engineering are important and necessary to enhance the performance of construction management. The civil information modelling (CIM) approach is used to retain information with digital format and assist easy updating and transferring of information in the 3D environment for all related civil and infrastructure projects. When the application of CIM technology is adopted in infrastructure projects, all the related project participants can discuss problems and obtain feedback and responds among project participants integrated with the assistance of CIM models 3D illustration. Usually, electronic mail (e-mail) is one of the most popular communication tools among all related participants for rapid transit system (MRT), also known as a subway or metro, construction project in Taiwan. Furthermore, all interfaces should be traced and managed effectively during the process. However, there are many problems with the use of e-mail for communication of all interfaces. To solve the above problems, this study proposes a CIM-based Problem Communication and Management (CPCM) system to improve performance of problem communication and management. The CPCM system is applied to a case study of an MRT project in Taiwan to identify its CPCM effectiveness. Case study results show that the proposed CPCM system and Markup-enabled CIM Viewer are effective CIM-based communication tools in CIM-supported PCM work of civil engineering. Finally, this study identifies conclusion, suggestion, benefits, and limitations for further applications.

Keywords: building information modeling, civil information modeling, infrastructure, general contractor

Procedia PDF Downloads 152
10234 Financial Markets Integration between Morocco and France: Implications on International Portfolio Diversification

Authors: Abdelmounaim Lahrech, Hajar Bousfiha

Abstract:

This paper examines equity market integration between Morocco and France and its consequent implications on international portfolio diversification. In the absence of stock market linkages, Morocco can act as a diversification destination to European investors, allowing higher returns at a comparable level of risk in developed markets. In contrast, this attractiveness is limited if both financial markets show significant linkage. The research empirically measures financial market’s integration in by capturing the conditional correlation between the two markets using the Generalized Autoregressive Conditionally Heteroscedastic (GARCH) model. Then, the research uses the Dynamic Conditional Correlation (DCC) model of Engle (2002) to track the correlations. The research findings show that there is no important increase over the years in the correlation between the Moroccan and the French equity markets, even though France is considered Morocco’s first trading partner. Failing to prove evidence of the stock index linkage between the two countries, the volatility series of each market were assumed to change over time separately. Yet, the study reveals that despite the important historical and economic linkages between Morocco and France, there is no evidence that equity markets follow. The small correlations and their stationarity over time show that over the 10 years studied, correlations were fluctuating around a stable mean with no significant change at their level. Different explanations can be attributed to the absence of market linkage between the two equity markets.

Keywords: equity market linkage, DCC GARCH, international portfolio diversification, Morocco, France

Procedia PDF Downloads 442
10233 Predicting Recessions with Bivariate Dynamic Probit Model: The Czech and German Case

Authors: Lukas Reznak, Maria Reznakova

Abstract:

Recession of an economy has a profound negative effect on all involved stakeholders. It follows that timely prediction of recessions has been of utmost interest both in the theoretical research and in practical macroeconomic modelling. Current mainstream of recession prediction is based on standard OLS models of continuous GDP using macroeconomic data. This approach is not suitable for two reasons: the standard continuous models are proving to be obsolete and the macroeconomic data are unreliable, often revised many years retroactively. The aim of the paper is to explore a different branch of recession forecasting research theory and verify the findings on real data of the Czech Republic and Germany. In the paper, the authors present a family of discrete choice probit models with parameters estimated by the method of maximum likelihood. In the basic form, the probits model a univariate series of recessions and expansions in the economic cycle for a given country. The majority of the paper deals with more complex model structures, namely dynamic and bivariate extensions. The dynamic structure models the autoregressive nature of recessions, taking into consideration previous economic activity to predict the development in subsequent periods. Bivariate extensions utilize information from a foreign economy by incorporating correlation of error terms and thus modelling the dependencies of the two countries. Bivariate models predict a bivariate time series of economic states in both economies and thus enhance the predictive performance. A vital enabler of timely and successful recession forecasting are reliable and readily available data. Leading indicators, namely the yield curve and the stock market indices, represent an ideal data base, as the pieces of information is available in advance and do not undergo any retroactive revisions. As importantly, the combination of yield curve and stock market indices reflect a range of macroeconomic and financial market investors’ trends which influence the economic cycle. These theoretical approaches are applied on real data of Czech Republic and Germany. Two models for each country were identified – each for in-sample and out-of-sample predictive purposes. All four followed a bivariate structure, while three contained a dynamic component.

Keywords: bivariate probit, leading indicators, recession forecasting, Czech Republic, Germany

Procedia PDF Downloads 248
10232 Modelling Exchange-Rate Pass-Through: A Model of Oil Prices and Asymmetric Exchange Rate Fluctuations in Selected African Countries

Authors: Fajana Sola Isaac

Abstract:

In the last two decades, we have witnessed an increased interest in exchange rate pass-through (ERPT) in developing economies and emerging markets. This is perhaps due to the acknowledged significance of the pattern of exchange rate pass-through as a key instrument in monetary policy design, principally in retort to a shock in exchange rate in literature. This paper analyzed Exchange Rate Pass-Through by A Model of Oil Prices and Asymmetric Exchange Rate Fluctuations in Selected African Countries. The study adopted A Non-Linear Autoregressive Distributed Lag approach using yearly data on Algeria, Burundi, Nigeria and South Africa from 1986 to 2022. The paper found asymmetry in exchange rate pass-through in net oil-importing and net oil-exporting countries in the short run during the period under review. An ERPT exhibited a complete pass-through in the short run in the case of net oil-importing countries but an incomplete pass-through in the case of the net oil-exporting countries that were examined. An extended result revealed a significant impact of oil price shock on exchange rate pass-through to domestic price in the long run only for net oil importing countries. The Wald restriction test also confirms the evidence of asymmetric with the role of oil price acting as an accelerator to exchange rate pass-through to domestic price in the countries examined. The study found the outcome to be very useful for gaining expansive knowledge on the external shock impact on ERPT and could be of critical value for national monetary policy decisions on inflation targeting, especially for countries examined and other developing net oil importers and exporters.

Keywords: pass through, exchange rate, ARDL, monetary policy

Procedia PDF Downloads 79
10231 Analyzing the Job Satisfaction of Silver Workers Using Structural Equation Modeling

Authors: Valentin Nickolai, Florian Pfeffel, Christian Louis Kühner

Abstract:

In many industrialized nations, the demand for skilled workers rises, causing the current market for employees to be more candidate-driven than employer-driven. Therefore, losing highly skilled and experienced employees due to early or partial retirement negatively impacts firms. Therefore, finding new ways to incentivize older employees (Silver Workers) to stay longer with the company and in their job can be crucial for the success of a firm. This study analyzes how working remotely can be a valid incentive for experienced Silver Workers to stay in their job and instead work from home with more flexible working hours. An online survey with n = 684 respondents, who are employed in the service sector, has been conducted based on 13 constructs that influence job satisfaction. These have been further categorized into three groups “classic influencing factors,” “influencing factors changed by remote working,” and new remote working influencing factors,” and were analyzed using structural equation modeling (SEM). Here, Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). It was shown in the SEM-analysis that the influencing factor on job satisfaction, “identification with the work,” is the most significant with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis also shows that the identification with the work is the most significant factor in all three work models mentioned above and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees between the ages of 56 and 65 years have the highest job satisfaction when working entirely from home or remotely. Furthermore, their job satisfaction score of 5.4 on a scale from 1 (very dissatisfied) to 7 (very satisfied) is the highest amongst all age groups in any of the three work models. Due to the significantly higher job satisfaction, it can be argued that giving Silver Workers the offer to work from home or remotely can incentivize them not to opt for early retirement or partial retirement but to stay in their job full-time Furthermore, these findings can indicate that employees in the Silver Worker age are much more inclined to leave their job for early retirement if they have to entirely work in the office.

Keywords: home office, remote work instead of early or partial retirement, silver worker, structural equation modeling

Procedia PDF Downloads 75
10230 Structural Damage Detection via Incomplete Model Data Using Output Data Only

Authors: Ahmed Noor Al-qayyim, Barlas Özden Çağlayan

Abstract:

Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on obtaining very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. This study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using “Two Points - Condensation (TPC) technique”. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices are obtained from optimization of the equation of motion using the measured test data. The current stiffness matrices are compared with original (undamaged) stiffness matrices. High percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element. Where two cases are considered, the method detects the damage and determines its location accurately in both cases. In addition, the results illustrate that these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can also be used for big structures.

Keywords: damage detection, optimization, signals processing, structural health monitoring, two points–condensation

Procedia PDF Downloads 365
10229 Geo-Collaboration Model between a City and Its Inhabitants to Develop Complementary Solutions for Better Household Waste Collection

Authors: Abdessalam Hijab, Hafida Boulekbache, Eric Henry

Abstract:

According to several research studies, the city as a whole is a complex, spatially organized system; its modeling must take into account several factors, socio-economic, and political, or geographical, acting at multiple scales of observation according to varied temporalities. Sustainable management and protection of the environment in this complex system require significant human and technical investment, particularly for monitoring and maintenance. The objective of this paper is to propose an intelligent approach based on the coupling of Geographic Information System (GIS) and Information and Communications Technology (ICT) tools in order to integrate the inhabitants in the processes of sustainable management and protection of the urban environment, specifically in the processes of household waste collection in urban areas. We are discussing a collaborative 'city/inhabitant' space. Indeed, it is a geo-collaborative approach, based on the spatialization and real-time geo-localization of topological and multimedia data taken by the 'active' inhabitant, in the form of geo-localized alerts related to household waste issues in their city. Our proposal provides a good understanding of the extent to which civil society (inhabitants) can help and contribute to the development of complementary solutions for the collection of household waste and the protection of the urban environment. Moreover, it allows the inhabitant to contribute to the enrichment of a data bank for future uses. Our geo-collaborative model will be tested in the Lamkansa sampling district of the city of Casablanca in Morocco.

Keywords: geographic information system, GIS, information and communications technology, ICT, geo-collaboration, inhabitants, city

Procedia PDF Downloads 116
10228 Influence of Protein Malnutrition and Different Stressful Conditions on Aluminum-Induced Neurotoxicity in Rats: Focus on the Possible Protection Using Epigallocatechin-3-Gallate

Authors: Azza A. Ali, Asmaa Abdelaty, Mona G. Khalil, Mona M. Kamal, Karema Abu-Elfotuh

Abstract:

Background: Aluminium (Al) is known as a neurotoxin environmental pollutant that can cause certain diseases as Dementia, Alzheimer's disease, and Parkinsonism. It is widely used in antacid drugs as well as in food additives and toothpaste. Stresses have been linked to cognitive impairment; Social isolation (SI) may exacerbate memory deficits while protein malnutrition (PM) increases oxidative damage in cortex, hippocampus and cerebellum. The risk of cognitive decline may be lower by maintaining social connections. Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea and has antioxidant, anti-inflammatory and anti-atherogenic effects as well as health-promoting effects in CNS. Objective: To study the influence of different stressful conditions as social isolation, electric shock (EC) and inadequate Nutritional condition as PM on neurotoxicity induced by Al in rats as well as to investigate the possible protective effect of EGCG in these stressful and PM conditions. Methods: Rats were divided into two major groups; protected group which was daily treated during three weeks of the experiment by EGCG (10 mg/kg, IP) or non-treated. Protected and non-protected groups included five subgroups as following: One normal control received saline and four Al toxicity groups injected daily for three weeks by ALCl3 (70 mg/kg, IP). One of them served as Al toxicity model, two groups subjected to different stresses either by isolation as mild stressful condition (SI-associated Al toxicity model) or by electric shock as high stressful condition (EC- associated Al toxicity model). The last was maintained on 10% casein diet (PM -associated Al toxicity model). Isolated rats were housed individually in cages covered with black plastic. Biochemical changes in the brain as acetyl cholinesterase (ACHE), Aβ, brain derived neurotrophic factor (BDNF), inflammatory mediators (TNF-α, IL-1β), oxidative parameters (MDA, SOD, TAC) were estimated for all groups. Histopathological changes in different brain regions were also evaluated. Results: Rats exposed to Al for three weeks showed brain neurotoxicity and neuronal degenerations. Both mild (SI) and high (EC) stressful conditions as well as inadequate nutrition (PM) enhanced Al-induced neurotoxicity and brain neuronal degenerations; the enhancement induced by stresses especially in its higher conditions (ES) was more pronounced than that of inadequate nutritional conditions (PM) as indicated by the significant increase in Aβ, ACHE, MDA, TNF-α, IL-1β together with the significant decrease in SOD, TAC, BDNF. On the other hand, EGCG showed more pronounced protection against hazards of Al in both stressful conditions (SI and EC) rather than in PM .The protective effects of EGCG were indicated by the significant decrease in Aβ, ACHE, MDA, TNF-α, IL-1β together with the increase in SOD, TAC, BDNF and confirmed by brain histopathological examinations. Conclusion: Neurotoxicity and brain neuronal degenerations induced by Al were more severe with stresses than with PM. EGCG can protect against Al-induced brain neuronal degenerations in all conditions. Consequently, administration of EGCG together with socialization as well as adequate protein nutrition is advised especially on excessive Al-exposure to avoid the severity of its neuronal toxicity.

Keywords: environmental pollution, aluminum, social isolation, protein malnutrition, neuronal degeneration, epigallocatechin-3-gallate, rats

Procedia PDF Downloads 391
10227 Students' Errors in Translating Algebra Word Problems to Mathematical Structure

Authors: Ledeza Jordan Babiano

Abstract:

Translating statements into mathematical notations is one of the processes in word problem-solving. However, based on the literature, students still have difficulties with this skill. The purpose of this study was to investigate the translation errors of the students when they translate algebraic word problems into mathematical structures and locate the errors via the lens of the Translation-Verification Model. Moreover, this qualitative research study employed content analysis. During the data-gathering process, the students were asked to answer a six-item algebra word problem questionnaire, and their answers were analyzed by experts through blind coding using the Translation-Verification Model to determine their translation errors. After this, a focus group discussion was conducted, and the data gathered was analyzed through thematic analysis to determine the causes of the students’ translation errors. It was found out that students’ prevalent error in translation was the interpretation error, which was situated in the Attribute construct. The emerging themes during the FGD were: (1) The procedure of translation is strategically incorrect; (2) Lack of comprehension; (3) Algebra concepts related to difficulty; (4) Lack of spatial skills; (5) Unprepared for independent learning; and (6) The content of the problem is developmentally inappropriate. These themes boiled down to the major concept of independent learning preparedness in solving mathematical problems. This concept has subcomponents, which include contextual and conceptual factors in translation. Consequently, the results provided implications for instructors and professors in Mathematics to innovate their teaching pedagogies and strategies to address translation gaps among students.

Keywords: mathematical structure, algebra word problems, translation, errors

Procedia PDF Downloads 49
10226 Degradation of Heating, Ventilation, and Air Conditioning Components across Locations

Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White

Abstract:

Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.

Keywords: climate, degradation, HVAC, neighborhood component analysis

Procedia PDF Downloads 431
10225 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments

Authors: David X. Dong, Qingming Zhang, Meng Lu

Abstract:

Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.

Keywords: optical sensor, regression model, nitrites, water quality

Procedia PDF Downloads 72
10224 From Conflicts to Synergies between Mitigation and Adaptation Strategies to Climate Change: The Case of Lisbon Downtown 2010-2030

Authors: Nuno M. Pereira

Abstract:

In the last thirty years, European cities have been addressing global climate change and its local impacts by implementing mitigation and adaptation strategies. Lisbon Downtown is no exception with 10 plans under implementation since 2010 with completion scheduled for 2030 valued 1 billion euros of public investment. However, the gap between mitigation and adaptation strategies is not yet sufficiently studied alongside with its nuances- vulnerability and risk mitigation, resilience and adaptation. In Lisbon Downtown, these plans are being implemented separately, therefore compromising the effectiveness of public investment. The research reviewed the common ground of mitigation and adaptation strategies of the theoretical framework and analyzed the current urban development actions in Lisbon Downtown in order to identify potential conflicts and synergies. The empirical fieldwork supported by a sounding board of experts has been developed during two years and the results suggest that the largest public investment in Lisbon on flooding mitigation will conflict with the new Cruise ship terminal and old Downton building stock, therefore increasing risk and vulnerability factors. The study concludes that the Lisbon Downtown blue infrastructure plan should be redesigned in some areas in a trans- disciplinary and holistic approach and that the current theoretical framework on climate change should focus more on mitigation and adaptation synergies articulating the gray, blue and green infrastructures, combining old knowledge tested by resilient communities and new knowledge emerging from the digital era.

Keywords: adaptation, climate change, conflict, Lisbon Downtown, mitigation, synergy

Procedia PDF Downloads 200
10223 Learning-Oriented School Education: Indicator Construction and Taiwan's Implementation Performance

Authors: Meiju Chen, Chaoyu Guo, Chia Wei Tang

Abstract:

The present study's purpose is twofold: first, to construct indicators for learning-oriented school education and, second, to conduct a survey to examine how learning-oriented education has been implemented in junior high schools after the launch of the 12-year compulsory curriculum. For indicator system construction, we compiled relevant literature to develop a preliminary indicator list model and then conducted two rounds of a questionnaire survey to gain comprehensive feedback from experts to finalize our indicator model. In the survey's first round, 12 experts were invited to evaluate the indicators' appropriateness. Based on the experts' consensus, we determined our final indicator list and used it to develop the Fuzzy Delphi questionnaire to finalize the indicator system and each indicator's relative value. For the fact-finding survey, we collected 454 valid samples to examine how the concept of learning-oriented education is adopted and implemented in the junior high school context. We also used this data in our importance-performance analysis to explore the strengths and weaknesses of school education in Taiwan. The results suggest that the indicator system for learning-oriented school education must consist of seven dimensions and 34 indicators. Among the seven dimensions, 'student learning' and 'curriculum planning and implementation' are the most important yet underperforming dimensions that need immediate improvement. We anticipate that the indicator system will be a useful tool for other countries' evaluation of schools' performance in learning-oriented education.

Keywords: learning-oriented education, school education, fuzzy Delphi method, importance-performance analysis

Procedia PDF Downloads 143
10222 Accounting Quality and The Adoption of IFRS: Evidence from China

Authors: Khaldoon G. Albitar, Hassan Y. Kikhia, Jin P. Zhang

Abstract:

Since 2007, all companies listed on both Shanghai Stock Exchange and Shenzhen Stock Exchange are required to prepare their consolidated financial statements in accordance with International Financial Reporting Standards (IFRS). This study investigates the impact of adopting IFRS on accounting quality for a sample of listed on Chinese companies during the period 2003-2013 with sample of 10846 observations over a four-year period before and a five-year period after the adoption of IFRS. This study tests whether the level of earnings management is significantly lower after the adoption of IFRS, and reported earnings is more value relevant during the IFRS period by using the Ohlson model and Jones model, as modified by Dechow. The empirical results show that accounting quality improved with lower earnings management and higher value relevant after the adoption of IFRS in China. The current study contributes to the literature on IFRS adoption and earning quality in two ways. First, As most of the existing studies on earnings quality and IFRS have been conducted on data from the U.S and European countries, this study fills a gap in the existing literature by studying the effect of adoption of IFRS on earnings quality in an emerging market. Second, the findings of our study have important implications for policymakers, auditors, multinational firms, and users of financial reports. As the rapid growth of China's economy gains global recognition, the Chinese stock market is capturing the attention of international investor.

Keywords: international financial reporting standards (ifrs), accounting quality, earnings management, value relevance, china

Procedia PDF Downloads 335
10221 Modelling Heat Transfer Characteristics in the Pasteurization Process of Medium Long Necked Bottled Beers

Authors: S. K. Fasogbon, O. E. Oguegbu

Abstract:

Pasteurization is one of the most important steps in the preservation of beer products, which improves its shelf life by inactivating almost all the spoilage organisms present in it. However, there is no gain saying the fact that it is always difficult to determine the slowest heating zone, the temperature profile and pasteurization units inside bottled beer during pasteurization, hence there had been significant experimental and ANSYS fluent approaches on the problem. This work now developed Computational fluid dynamics model using COMSOL Multiphysics. The model was simulated to determine the slowest heating zone, temperature profile and pasteurization units inside the bottled beer during the pasteurization process. The results of the simulation were compared with the existing data in the literature. The results showed that, the location and size of the slowest heating zone is dependent on the time-temperature combination of each zone. The results also showed that the temperature profile of the bottled beer was found to be affected by the natural convection resulting from variation in density during pasteurization process and that the pasteurization unit increases with time subject to the temperature reached by the beer. Although the results of this work agreed with literatures in the aspects of slowest heating zone and temperature profiles, the results of pasteurization unit however did not agree. It was suspected that this must have been greatly affected by the bottle geometry, specific heat capacity and density of the beer in question. The work concludes that for effective pasteurization to be achieved, there is a need to optimize the spray water temperature and the time spent by the bottled product in each of the pasteurization zones.

Keywords: modeling, heat transfer, temperature profile, pasteurization process, bottled beer

Procedia PDF Downloads 203
10220 Impact of Proposed Modal Shift from Private Users to Bus Rapid Transit System: An Indian City Case Study

Authors: Rakesh Kumar, Fatima Electricwala

Abstract:

One of the major thrusts of the Bus Rapid Transit System is to reduce the commuter’s dependency on private vehicles and increase the shares of public transport to make urban transportation system environmentally sustainable. In this study, commuter mode choice analysis is performed that examines behavioral responses to the proposed Bus Rapid Transit System (BRTS) in Surat, with estimation of the probable shift from private mode to public mode. Further, evaluation of the BRTS scenarios, using Surat’s transportation ecological footprint was done. A multi-modal simulation model was developed in Biogeme environment to explicitly consider private users behaviors and non-linear environmental impact. The data of the different factors (variables) and its impact that might cause modal shift of private mode users to proposed BRTS were collected through home-interview survey using revealed and stated preference approach. A multi modal logit model of mode-choice was then calibrated using the collected data and validated using proposed sample. From this study, a set of perception factors, with reliable and predictable data base, to explain the variation in modal shift behaviour and their impact on Surat’s ecological environment has been identified. A case study of the proposed BRTS connecting the Surat Industrial Hub to the coastal area is provided to illustrate the approach.

Keywords: BRTS, private modes, mode choice models, ecological footprint

Procedia PDF Downloads 519
10219 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia PDF Downloads 156
10218 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice

Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 68
10217 Managerial Advice-Seeking and Supply Chain Resilience: A Social Capital Perspective

Authors: Ethan Nikookar, Yalda Boroushaki, Larissa Statsenko, Jorge Ochoa Paniagua

Abstract:

Given the serious impact that supply chain disruptions can have on a firm's bottom-line performance, both industry and academia are interested in supply chain resilience, a capability of the supply chain that enables it to cope with disruptions. To date, much of the research has focused on the antecedents of supply chain resilience. This line of research has suggested various firm-level capabilities that are associated with greater supply chain resilience. A consensus has emerged among researchers that supply chain flexibility holds the greatest potential to create resilience. Supply chain flexibility achieves resilience by creating readiness to respond to disruptions with little cost and time by means of reconfiguring supply chain resources to mitigate the impacts of the disruption. Decisions related to supply chain disruptions are made by supply chain managers; however, the role played by supply chain managers' reference networks has been overlooked in the supply chain resilience literature. This study aims to understand the impact of supply chain managers on their firms' supply chain resilience. Drawing on social capital theory and social network theory, this paper proposes a conceptual model to explore the role of supply chain managers in developing the resilience of supply chains. Our model posits that higher level of supply chain managers' embeddedness in their reference network is associated with increased resilience of their firms' supply chain. A reference network includes individuals from whom supply chain managers seek advice on supply chain related matters. The relationships between supply chain managers' embeddedness in reference network and supply chain resilience are mediated by supply chain flexibility.

Keywords: supply chain resilience, embeddedness, reference networks, social capitals

Procedia PDF Downloads 228
10216 Purple Spots on Historical Parchments: Confirming the Microbial Succession at the Basis of Biodeterioration

Authors: N. Perini, M. C. Thaller, F. Mercuri, S. Orlanducci, A. Rubechini, L. Migliore

Abstract:

The preservation of cultural heritage is one of the major challenges of today’s society, because of the fundamental right of future generations to inherit it as the continuity with their historical and cultural identity. Parchments, consisting of a semi-solid matrix of collagen produced from animal skin (i.e., sheep or goats), are a significant part of the cultural heritage, being used as writing material for many centuries. Due to their animal origin, parchments easily undergo biodeterioration. The most common biological damage is characterized by isolated or coalescent purple spots that often leads to the detachment of the superficial layer and the loss of the written historical content of the document. Although many parchments with the same biodegradative features were analyzed, no common causative agent has been found so far. Very recently, a study was performed on a purple-damaged parchment roll dated back 1244 A.D, the A.A. Arm. I-XVIII 3328, belonging to the oldest collection of the Vatican Secret Archive (Fondo 'Archivum Arcis'), by comparing uncolored undamaged and purple damaged areas of the same document. As a whole, the study gave interesting results to hypothesize a model of biodeterioration, consisting of a microbial succession acting in two main phases: the first one, common to all the damaged parchments, is characterized by halophilic and halotolerant bacteria fostered by the salty environment within the parchment maybe induced by bringing of the hides; the second one, changing with the individual history of each parchment, determines the identity of its colonizers. The design of this model was pivotal to this study, performed by different labs of the Tor Vergata University (Rome, Italy), in collaboration with the Vatican Secret Archive. Three documents, belonging to a collection of dramatically damaged parchments archived as 'Faldone Patrizi A 19' (dated back XVII century A.D.), were analyzed through a multidisciplinary approach, including three updated technologies: (i) Next Generation Sequencing (NGS, Illumina) to describe the microbial communities colonizing the damaged and undamaged areas, (ii) RAMAN spectroscopy to analyze the purple pigments, (iii) Light Transmitted Analysis (LTA) to evaluate the kind and entity of the damage to native collagen. The metagenomic analysis obtained from NGS revealed DNA sequences belonging to Halobacterium salinarum mainly in the undamaged areas. RAMAN spectroscopy detected pigments within the purple spots, mainly bacteriorhodopsine/rhodopsin-like pigments, a purple transmembrane protein containing retinal and present in Halobacteria. The LTA technique revealed extremely damaged collagen structures in both damaged and undamaged areas of the parchments. In the light of these data, the study represents a first confirmation of the microbial succession model described above. The demonstration of this model is pivotal to start any possible new restoration strategy to bring back historical parchments to their original beauty, but also to open opportunities for intervention on a huge amount of documents.

Keywords: biodeterioration, parchments, purple spots, ecological succession

Procedia PDF Downloads 171
10215 Predicting Personality and Psychological Distress Using Natural Language Processing

Authors: Jihee Jang, Seowon Yoon, Gaeun Son, Minjung Kang, Joon Yeon Choeh, Kee-Hong Choi

Abstract:

Background: Self-report multiple choice questionnaires have been widely utilized to quantitatively measure one’s personality and psychological constructs. Despite several strengths (e.g., brevity and utility), self-report multiple-choice questionnaires have considerable limitations in nature. With the rise of machine learning (ML) and Natural language processing (NLP), researchers in the field of psychology are widely adopting NLP to assess psychological constructs to predict human behaviors. However, there is a lack of connections between the work being performed in computer science and that psychology due to small data sets and unvalidated modeling practices. Aims: The current article introduces the study method and procedure of phase II, which includes the interview questions for the five-factor model (FFM) of personality developed in phase I. This study aims to develop the interview (semi-structured) and open-ended questions for the FFM-based personality assessments, specifically designed with experts in the field of clinical and personality psychology (phase 1), and to collect the personality-related text data using the interview questions and self-report measures on personality and psychological distress (phase 2). The purpose of the study includes examining the relationship between natural language data obtained from the interview questions, measuring the FFM personality constructs, and psychological distress to demonstrate the validity of the natural language-based personality prediction. Methods: The phase I (pilot) study was conducted on fifty-nine native Korean adults to acquire the personality-related text data from the interview (semi-structured) and open-ended questions based on the FFM of personality. The interview questions were revised and finalized with the feedback from the external expert committee, consisting of personality and clinical psychologists. Based on the established interview questions, a total of 425 Korean adults were recruited using a convenience sampling method via an online survey. The text data collected from interviews were analyzed using natural language processing. The results of the online survey, including demographic data, depression, anxiety, and personality inventories, were analyzed together in the model to predict individuals’ FFM of personality and the level of psychological distress (phase 2).

Keywords: personality prediction, psychological distress prediction, natural language processing, machine learning, the five-factor model of personality

Procedia PDF Downloads 79
10214 Model Evaluation of Action Potential Block in Whole-Animal Nerves Induced by Ultrashort, High-Intensity Electric Pulses

Authors: Jiahui Song

Abstract:

There have been decades of research into the action potential block in nerves. To our best knowledge electrical voltages can reversibly block the conduction of action potentials across whole animal nerves. Blocking biological electrical signaling pathways can have a variety of applications in muscular and sensory incapacitation and clinical research, including urethral pressure reduction and relieving chronic pain relief from a peripheral nerve injury. The cessation ability has been used in muscle activation and fatigue reduction. Ultrashort, high-intensity electric pulses modulate the membrane conductivity to block nerve conduction through the electroporation process. Nanopore formation on the membrane surface would increase the local membrane conductivity and effectively "short-out" the trans-membrane potential of a nerve that inhibits action potential propagation. This block would be similar in concept to stopping the propagation of an air-pressure wave down a "leaky" pipe. This research focuses on a distributed electrical model with an additional time-dependent membrane conductance to calculate the poration induced by the ultrashort, high-intensity electric pulses. The changes in membrane conductivity are used to predict changes in action potential transmission. A "strength-duration (SD)" curve is generated for action potential blockage and would be used as a design guide for benchmarking safety thresholds or setting the pulse voltage and/or durations necessary for neuro-muscular incapacitation.

Keywords: action potential, ultrashort, high-intensity, nerve, strength-duration

Procedia PDF Downloads 18