Search results for: learning goal orientation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10821

Search results for: learning goal orientation

1251 Acute Severe Hyponatremia in Patient with Psychogenic Polydipsia, Learning Disability and Epilepsy

Authors: Anisa Suraya Ab Razak, Izza Hayat

Abstract:

Introduction: The diagnosis and management of severe hyponatremia in neuropsychiatric patients present a significant challenge to physicians. Several factors contribute, including diagnostic shadowing and attributing abnormal behavior to intellectual disability or psychiatric conditions. Hyponatraemia is the commonest electrolyte abnormality in the inpatient population, ranging from mild/asymptomatic, moderate to severe levels with life-threatening symptoms such as seizures, coma and death. There are several documented fatal case reports in the literature of severe hyponatremia secondary to psychogenic polydipsia, often diagnosed only in autopsy. This paper presents a case study of acute severe hyponatremia in a neuropsychiatric patient with early diagnosis and admission to intensive care. Case study: A 21-year old Caucasian male with known epilepsy and learning disability was admitted from residential living with generalized tonic-clonic self-terminating seizures after refusing medications for several weeks. Evidence of superficial head injury was detected on physical examination. His laboratory data demonstrated mild hyponatremia (125 mmol/L). Computed tomography imaging of his brain demonstrated no acute bleed or space-occupying lesion. He exhibited abnormal behavior - restlessness, drinking water from bathroom taps, inability to engage, paranoia, and hypersexuality. No collateral history was available to establish his baseline behavior. He was loaded with intravenous sodium valproate and leveritircaetam. Three hours later, he developed vomiting and a generalized tonic-clonic seizure lasting forty seconds. He remained drowsy for several hours and regained minimal recovery of consciousness. A repeat set of blood tests demonstrated profound hyponatremia (117 mmol/L). Outcomes: He was referred to intensive care for peripheral intravenous infusion of 2.7% sodium chloride solution with two-hourly laboratory monitoring of sodium concentration. Laboratory monitoring identified dangerously rapid correction of serum sodium concentration, and hypertonic saline was switched to a 5% dextrose solution to reduce the risk of acute large-volume fluid shifts from the cerebral intracellular compartment to the extracellular compartment. He underwent urethral catheterization and produced 8 liters of urine over 24 hours. Serum sodium concentration remained stable after 24 hours of correction fluids. His GCS recovered to baseline after 48 hours with improvement in behavior -he engaged with healthcare professionals, understood the importance of taking medications, admitted to illicit drug use and drinking massive amounts of water. He was transferred from high-dependency care to ward level and was initiated on multiple trials of anti-epileptics before achieving seizure-free days two weeks after resolution of acute hyponatremia. Conclusion: Psychogenic polydipsia is often found in young patients with intellectual disability or psychiatric disorders. Patients drink large volumes of water daily ranging from ten to forty liters, resulting in acute severe hyponatremia with mortality rates as high as 20%. Poor outcomes are due to challenges faced by physicians in making an early diagnosis and treating acute hyponatremia safely. A low index of suspicion of water intoxication is required in this population, including patients with known epilepsy. Monitoring urine output proved to be clinically effective in aiding diagnosis. Early referral and admission to intensive care should be considered for safe correction of sodium concentration while minimizing risk of fatal complications e.g. central pontine myelinolysis.

Keywords: epilepsy, psychogenic polydipsia, seizure, severe hyponatremia

Procedia PDF Downloads 126
1250 From Dissection to Diagnosis: Integrating Radiology into Anatomy Labs for Medical Students

Authors: Julia Wimmers-Klick

Abstract:

At the Canadian University of British Columbia's Faculty of Medicine, anatomy has traditionally been taught through a combination of lectures and dissection labs in the first two years, with radiology taught separately through lectures and online modules. However, this separation may leave students underprepared for medical practice, as medical imaging is essential for diagnosing anatomical and pathological conditions. To address this, a pilot project was initiated aimed at integrating radiological imaging into anatomy dissection labs from day one of medical school. The incorporated radiological images correlated with the current dissection areas. Additional stations were added within the lab, tailored to the specific content being covered. These stations focused on bones, and quiz questions, along with light-box exercises using radiographs, CT scans, and MRIs provided by the radiology department. The images used were free of pathologies. Examples of these will be presented in the poster. Feedback from short interviews with students and instructors has been positive, particularly among second-year students who appreciated the integration compared to their first-year experience. This low-budget approach was easy to implement but faced challenges, as lab instructors were not radiologists and occasionally struggled to answer students' questions. Instructors expressed a desire for basic training or a refresher course in radiology image reading, particularly focused on identifying healthy landmarks. Overall, all participants agreed that integrating radiology with anatomy reinforces learning during dissection, enhancing students' understanding and preparation for clinical practice.

Keywords: quality improvement, radiology education, anatomy education, integration

Procedia PDF Downloads 18
1249 The Joy of Painless Maternity: The Reproductive Policy of the Bolsheviks in the 1930s

Authors: Almira Sharafeeva

Abstract:

In the Soviet Union of the 1930s, motherhood was seen as a natural need of women. The masculine Bolshevik state did not see the emancipated woman as free from her maternal burden. In order to support the idea of "joyful motherhood," a medical discourse on the anesthesia of childbirth emerges. In March 1935 at the IX Congress of obstetricians and gynecologists the People's Commissar of Public Health of the RSFSR G.N. Kaminsky raised the issue of anesthesia of childbirth. It was also from that year that medical, literary and artistic editions with enviable frequency began to publish articles, studies devoted to the issue, the goal - to anesthetize all childbirths in the USSR - was proclaimed. These publications were often filled with anti-German and anti-capitalist propaganda, through which the advantages of socialism over Capitalism and Nazism were demonstrated. At congresses, in journals, and at institute meetings, doctors' discussions around obstetric anesthesia were accompanied by discussions of shortening the duration of the childbirth process, the prevention and prevention of disease, the admission of nurses to the procedure, and the proper behavior of women during the childbirth process. With the help of articles from medical periodicals of the 1930s., brochures, as well as documents from the funds of the Institute of Obstetrics and Gynecology of the Academy of Medical Sciences of the USSR (TsGANTD SPb) and the Department of Obstetrics and Gynecology of the NKZ USSR (GARF) in this paper we will show, how the advantages of the Soviet system and the socialist way of life were constructed through the problem of childbirth pain relief, and we will also show how childbirth pain relief in the USSR was related to the foreign policy situation and how projects of labor pain relief were related to the anti-abortion policy of the state. This study also attempts to answer the question of why anesthesia of childbirth in the USSR did not become widespread and how, through this medical procedure, the Soviet authorities tried to take control of a female function (childbirth) that was not available to men. Considering this subject from the perspective of gender studies and the social history of medicine, it is productive to use the term "biopolitics. Michel Foucault and Antonio Negri, wrote that biopolitics takes under its wing the control and management of hygiene, nutrition, fertility, sexuality, contraception. The central issue of biopolitics is population reproduction. It includes strategies for intervening in collective existence in the name of life and health, ways of subjectivation by which individuals are forced to work on themselves. The Soviet state, through intervention in the reproductive lives of its citizens, sought to realize its goals of population growth, which was necessary to demonstrate the benefits of living in the Soviet Union and to train a pool of builders of socialism. The woman's body was seen as the object over which the socialist experiment of reproductive policy was being conducted.

Keywords: labor anesthesia, biopolitics of stalinism, childbirth pain relief, reproductive policy

Procedia PDF Downloads 74
1248 Improving Medication Understanding, Use and Self-Efficacy among Stroke Patients: A Randomised Controlled Trial; Study Protocol

Authors: Jamunarani Appalasamy, Tha Kyi Kyi, Quek Kia Fatt, Joyce Pauline Joseph, Anuar Zaini M. Zain

Abstract:

Background: The Health Belief Theory had always been associated with chronic disease management. Various health behaviour concepts and perception branching from this Health Belief Theory had involved with medication understanding, use, and self-efficacy which directly link to medication adherence. In a previous quantitative and qualitative study, stroke patients in Malaysia were found to be strongly believing information obtained by various sources such as the internet and social communication. This action leads to lower perception of their stroke preventative medication benefit which in long-term creates non-adherence. Hence, this study intends to pilot an intervention which uses audio-visual concept incorporated with mHealth service to enhance learning and self-reflection among stroke patients to manage their disease. Methods/Design: Twenty patients will be allocated to a proposed intervention whereas another twenty patients are allocated to the usual treatment. The intervention involves a series of developed audio-visual videos sent via mobile phone which later await for responses and feedback from the receiver (patient) via SMS or recorded calls. The primary outcome would be the medication understanding, use and self-efficacy measured over two months pre and post intervention. Secondary outcome is measured from changes of blood parameters and other self-reported questionnaires. Discussion: This study shall also assess uptake/attrition, feasibility, and acceptability of this intervention. Trial Registration: NMRR-15-851-24737 (IIR)

Keywords: health belief, medication understanding, medication use, self-efficacy

Procedia PDF Downloads 224
1247 Exclusive Value Adding by iCenter Analytics on Transient Condition

Authors: Zhu Weimin, Allegorico Carmine, Ruggiero Gionata

Abstract:

During decades of Baker Hughes (BH) iCenter experience, it is demonstrated that in addition to conventional insights on equipment steady operation conditions, insights on transient conditions can add significant and exclusive value for anomaly detection, downtime saving, and predictive maintenance. Our work shows examples from the BH iCenter experience to introduce the advantages and features of using transient condition analytics: (i) Operation under critical engine conditions: e.g., high level or high change rate of temperature, pressure, flow, vibration, etc., that would not be reachable in normal operation, (ii) Management of dedicated sub-systems or components, many of which are often bottlenecks for reliability and maintenance, (iii) Indirect detection of anomalies in the absence of instrumentation, (iv) Repetitive sequences: if data is properly processed, the engineering features of transients provide not only anomaly detection but also problem characterization and prognostic indicators for predictive maintenance, (v) Engine variables accounting for fatigue analysis. iCenter has been developing and deploying a series of analytics based on transient conditions. They are contributing to exclusive value adding in the following areas: (i) Reliability improvement, (ii) Startup reliability improvement, (iii) Predictive maintenance, (iv) Repair/overhaul cost down. Illustrative examples for each of the above areas are presented in our study, focusing on challenges and adopted techniques ranging from purely statistical approaches to the implementation of machine learning algorithms. The obtained results demonstrate how the value is obtained using transient condition analytics in the BH iCenter experience.

Keywords: analytics, diagnostics, monitoring, turbomachinery

Procedia PDF Downloads 78
1246 An Exploratory Study of Changing Organisational Practices of Third-Sector Organisations in Mandated Corporate Social Responsibility in India

Authors: Avadh Bihari

Abstract:

Corporate social responsibility (CSR) has become a global parameter to define corporates' ethical and responsible behaviour. It was a voluntary practice in India till 2013, driven by various guidelines, which has become a mandate since 2014 under the Companies Act, 2013. This has compelled the corporates to redesign their CSR strategies by bringing in structures, planning, accountability, and transparency in their processes with a mandate to 'comply or explain'. Based on the author's M.Phil. dissertation, this paper presents the changes in organisational practices and institutional mechanisms of third-sector organisations (TSOs) with the theoretical frameworks of institutionalism and co-optation. It became an interesting case as India is the only country to have a law on CSR, which is not only mandating the reporting but the spending too. The space of CSR in India is changing rapidly and affecting multiple institutions, in the context of the changing roles of the state, market, and TSOs. Several factors such as stringent regulation on foreign funding, mandatory CSR pushing corporates to look out for NGOs, and dependency of Indian NGOs on CSR funds have come to the fore almost simultaneously, which made it an important area of study. Further, the paper aims at addressing the gap in the literature on the effects of mandated CSR on the functioning of TSOs through the empirical and theoretical findings of this study. The author had adopted an interpretivist position in this study to explore changes in organisational practices from the participants' experiences. Data were collected through in-depth interviews with five corporate officials, eleven officials from six TSOs, and two academicians, located at Mumbai and Delhi, India. The findings of this study show the legislation has institutionalised CSR, and TSOs get co-opted in the process of implementing mandated CSR. Seventy percent of the corporates implement their CSR projects through TSOs in India; this has affected the organisational practices of TSOs to a large extent. They are compelled to recruit expert workforce, create new departments for monitoring & evaluation, communications, and adopt management practices of project implementation from corporates. These are attempts to institutionalise the TSOs so that they can produce calculated results as demanded by corporates. In this process, TSOs get co-opted in a struggle to secure funds and lose their autonomy. The normative, coercive, and mimetic isomorphisms of institutionalism come into play as corporates are mandated to take up CSR, thereby influencing the organisational practices of TSOs. These results suggest that corporates and TSOs require an understanding of each other's work culture to develop mutual respect and work towards the goal of sustainable development of the communities. Further, TSOs need to retain their autonomy and understanding of ground realities without which they become an extension of the corporate-funder. For a successful CSR project, engagement beyond funding is required from corporate, through their involvement and not interference. CSR-led community development can be structured by management practices to an extent, but cannot overshadow the knowledge and experience of TSOs.

Keywords: corporate social responsibility, institutionalism, organisational practices, third-sector organisations

Procedia PDF Downloads 117
1245 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks

Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas

Abstract:

Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.

Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model

Procedia PDF Downloads 67
1244 The Improved Therapeutic Effect of Trans-Cinnamaldehyde on Adipose-Derived Stem Cells without Chemical Induction

Authors: Karthyayani Rajamani, Yi-Chun Lin, Tung-Chou Wen, Jeanne Hsieh, Yi-Maun Subeq, Jen-Wei Liu, Po-Cheng Lin, Horng-Jyh Harn, Shinn-Zong Lin, Tzyy-Wen Chiou

Abstract:

Assuring cell quality is an essential parameter for the success of stem cell therapy, utilization of various components to improve this potential has been the primary goal of stem cell research. The aim of this study was not only to demonstrate the capacity of trans-cinnamaldehyde (TC) to reverse stress-induced senescence but also improve the therapeutic abilities of stem cells. Because of the availability and the promising application potential in regenerative medicine, adipose-derived stem cells (ADSCs) were chosen for the study. We found that H2O2 treatment resulted in the expression of senescence characteristics in the ADSCs, including decreased proliferation rate, increased senescence-associated- β-galactosidase (SA-β-gal) activity, decreased SIRT1 (silent mating type information regulation 2 homologs) expression and decreased telomerase activity. However, TC treatment was sufficient to rescue or reduce the effects of H2O2 induction, ultimately leading to an increased proliferation rate, a decrease in the percentage of SA-β-gal positive cells, upregulation of SIRT1 expression, and increased telomerase activity of the senescent ADSCs at the cellular level. Further recently it was observed that the ADSCs were treated with TC without induction of senescence, all the before said positives were observed. Moreover, a chemically induced liver fibrosis animal model was used to evaluate the functionality of these rescued cells in vivo. Liver dysfunction was established by injecting 200 mg/kg thioacetamide (TAA) intraperitoneally into Wistar rats every third day for 60 days. The experimental rats were separated into groups; normal group (rats without TAA induction), sham group (without ADSC transplantation), positive control group (transplanted with normal ADSCs); H2O2 group (transplanted with H2O2 -induced senescent ADSCs), H2O2+TC group (transplanted with ADSCs pretreated with H2O2 and then further treated with TC) and TC group (ADSC treated with TC without H2O2 treatment). In the transplantation group, 1 × 106 human ADSCs were introduced into each rat via direct liver injection. Based on the biochemical analysis and immunohistochemical staining results, it was determined that the therapeutic effects on liver fibrosis by the induced senescent ADSCs (H2O2 group) were not as significant as those exerted by the normal ADSCs (the positive control group). However, the H2O2+TC group showed significant reversal of liver damage when compared to the H2O2 group 1 week post-transplantation. Further ADSCs without H2O2 treatment but with just TC treatment performed much better than all the groups. These data confirmed that the TC treatment had the potential to improve the therapeutic effect of ADSCs. It is therefore suggested that TC has potential applications in maintaining stem cell quality and could possibly aid in the treatment of senescence-related disorders.

Keywords: senescence, SIRT1, adipose derived stem cells, liver fibrosis

Procedia PDF Downloads 262
1243 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets

Authors: Kothuri Sriraman, Mattupalli Komal Teja

Abstract:

In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).

Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm

Procedia PDF Downloads 353
1242 System-Driven Design Process for Integrated Multifunctional Movable Concepts

Authors: Oliver Bertram, Leonel Akoto Chama

Abstract:

In today's civil transport aircraft, the design of flight control systems is based on the experience gained from previous aircraft configurations with a clear distinction between primary and secondary flight control functions for controlling the aircraft altitude and trajectory. Significant system improvements are now seen particularly in multifunctional moveable concepts where the flight control functions are no longer considered separate but integral. This allows new functions to be implemented in order to improve the overall aircraft performance. However, the classical design process of flight controls is sequential and insufficiently interdisciplinary. In particular, the systems discipline is involved only rudimentarily in the early phase. In many cases, the task of systems design is limited to meeting the requirements of the upstream disciplines, which may lead to integration problems later. For this reason, approaching design with an incremental development is required to reduce the risk of a complete redesign. Although the potential and the path to multifunctional moveable concepts are shown, the complete re-engineering of aircraft concepts with less classic moveable concepts is associated with a considerable risk for the design due to the lack of design methods. This represents an obstacle to major leaps in technology. This gap in state of the art is even further increased if, in the future, unconventional aircraft configurations shall be considered, where no reference data or architectures are available. This means that the use of the above-mentioned experience-based approach used for conventional configurations is limited and not applicable to the next generation of aircraft. In particular, there is a need for methods and tools for a rapid trade-off between new multifunctional flight control systems architectures. To close this gap in the state of the art, an integrated system-driven design process for multifunctional flight control systems of non-classical aircraft configurations will be presented. The overall goal of the design process is to find optimal solutions for single or combined target criteria in a fast process from the very large solution space for the flight control system. In contrast to the state of the art, all disciplines are involved for a holistic design in an integrated rather than a sequential process. To emphasize the systems discipline, this paper focuses on the methodology for designing moveable actuation systems in the context of this integrated design process of multifunctional moveables. The methodology includes different approaches for creating system architectures, component design methods as well as the necessary process outputs to evaluate the systems. An application example of a reference configuration is used to demonstrate the process and validate the results. For this, new unconventional hydraulic and electrical flight control system architectures are calculated which result from the higher requirements for multifunctional moveable concept. In addition to typical key performance indicators such as mass and required power requirements, the results regarding the feasibility and wing integration aspects of the system components are examined and discussed here. This is intended to show how the systems design can influence and drive the wing and overall aircraft design.

Keywords: actuation systems, flight control surfaces, multi-functional movables, wing design process

Procedia PDF Downloads 145
1241 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification

Authors: Jianhong Xiang, Rui Sun, Linyu Wang

Abstract:

In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.

Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification

Procedia PDF Downloads 85
1240 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model

Procedia PDF Downloads 161
1239 English Test Success among Syrian Refugee Girls Attending Language Courses in Lebanon

Authors: Nina Leila Mussa

Abstract:

Background: The devastating effects of the war on Syria’s educational infrastructure has been widely reported, with millions of children denied access. However, among those who resettled in Lebanon, the impact of receiving educational assistance on their abilities to pass the English entrance exam is not well described. The aim of this study was to identify predictors of success among Syrian refugees receiving English language courses in a Lebanese university. Methods: The database of Syrian refugee girls matriculated in English courses at the American University of Beirut (AUB) was reviewed. The study period was 7/2018-09/2020. Variables compared included: family size and income, welfare status, parents’ education, English proficiency, access to the internet, and need for external help with homework. Results: For the study period, there were 28 girls enrolled. The average family size was 6 (range 4-9), with eight having completed primary, 14 secondary education, and 6 graduated high school. Eighteen were single-income families. After 12 weeks of English courses, 16 passed the Test of English as Foreign Language (TOEFL) from the first attempt, and 12 failed. Out of the 12, 8 received external help, and 6 passed on the second attempt, which brings the total number of successful passing to 22. Conclusion: Despite the tragedy of war, girls receiving assistance in learning English in Lebanon are able to pass the basic language test. Investment in enhancing those educational experiences will be determinantal in achieving widespread progress among those at-risk children.

Keywords: refugee girls, TOEFL, education, success

Procedia PDF Downloads 128
1238 The Four Pillars of Islamic Design: A Methodology for an Objective Approach to the Design and Appraisal of Islamic Urban Planning and Architecture Based on Traditional Islamic Religious Knowledge

Authors: Azzah Aldeghather, Sara Alkhodair

Abstract:

In the modern urban planning and architecture landscape, with western ideologies and styles becoming the mainstay of experience and definitions globally, the Islamic world requires a methodology that defines its expression, which transcends cultural, societal, and national styles. This paper will propose a methodology as an objective system to define, evaluate and apply traditional Islamic knowledge to Islamic urban planning and architecture, providing the Islamic world with a system to manifest its approach to design. The methodology is expressed as Four Pillars which are based on traditional meanings of Arab words roughly translated as Pillar One: The Principles (Al Mabade’), Pillar Two: The Foundations (Al Asas), Pillar Three: The Purpose (Al Ghaya), Pillar Four: Presence (Al Hadara). Pillar One: (The Principles) expresses the unification (Tawheed) pillar of Islam: “There is no God but God” and is comprised of seven principles listed as: 1. Human values (Qiyam Al Insan), 2. Universal language as sacred geometry, 3. Fortitude© and Benefitability©, 4. Balance and Integration: conjoining the opposites, 5. Man, time, and place, 6. Body, mind, spirit, and essence, 7. Unity of design expression to achieve unity, harmony, and security in design. Pillar Two: The Foundations is based on two foundations: “Muhammad is the Prophet of God” and his relationship to the renaming of Medina City as a prototypical city or place, which defines a center space for collection conjoined by an analysis of the Medina Charter as a base for the humanistic design. Pillar Three: The Purpose (Al Ghaya) is comprised of four criteria: The naming of the design as a title, the intention of the design as an end goal, the reasoning behind the design, and the priorities of expression. Pillar Four: Presence (Al Hadara) is usually translated as a civilization; in Arabic, the root of Hadara is to be present. This has five primary definitions utilized to express the act of design: Wisdom (Hikma) as a philosophical concept, Identity (Hawiya) of the form, and Dialogue (Hiwar), which are the requirements of the project vis-a-vis what the designer wishes to convey, Expression (Al Ta’abeer) the designer wishes to apply, and Resources (Mawarid) available. The Proposal will provide examples, where applicable, of past and present designs that exemplify the manifestation of the Pillars. The proposed methodology endeavors to return Islamic urban planning and architecture design to its a priori position as a leading design expression adaptable to any place, time, and cultural expression while providing a base for analysis that transcends the concept of style and external form as a definition and expresses the singularity of the esoteric “Spiritual” aspects in a rational, principled, and logical manner clearly addressed in Islam’s essence.

Keywords: Islamic architecture, Islamic design, Islamic urban planning, principles of Islamic design

Procedia PDF Downloads 109
1237 The Use of Image Analysis Techniques to Describe a Cluster Cracks in the Cement Paste with the Addition of Metakaolinite

Authors: Maciej Szeląg, Stanisław Fic

Abstract:

The impact of elevated temperatures on the construction materials manifests in change of their physical and mechanical characteristics. Stresses and thermal deformations that occur inside the volume of the material cause its progressive degradation as temperature increase. Finally, the reactions and transformations of multiphase structure of cementitious composite cause its complete destruction. A particularly dangerous phenomenon is the impact of thermal shock – a sudden high temperature load. The thermal shock leads to a high value of the temperature gradient between the outer surface and the interior of the element in a relatively short time. The result of mentioned above process is the formation of the cracks and scratches on the material’s surface and inside the material. The article describes the use of computer image analysis techniques to identify and assess the structure of the cluster cracks on the surfaces of modified cement pastes, caused by thermal shock. Four series of specimens were tested. Two Portland cements were used (CEM I 42.5R and CEM I 52,5R). In addition, two of the series contained metakaolinite as a replacement for 10% of the cement content. Samples in each series were made in combination of three w/b (water/binder) indicators of respectively 0.4; 0.5; 0.6. Surface cracks of the samples were created by a sudden temperature load at 200°C for 4 hours. Images of the cracked surfaces were obtained via scanning at 1200 DPI; digital processing and measurements were performed using ImageJ v. 1.46r software. In order to examine the cracked surface of the cement paste as a system of closed clusters – the dispersal systems theory was used to describe the structure of cement paste. Water is used as the dispersing phase, and the binder is used as the dispersed phase – which is the initial stage of cement paste structure creation. A cluster itself is considered to be the area on the specimen surface that is limited by cracks (created by sudden temperature loading) or by the edge of the sample. To describe the structure of cracks two stereological parameters were proposed: A ̅ – the cluster average area, L ̅ – the cluster average perimeter. The goal of this study was to compare the investigated stereological parameters with the mechanical properties of the tested specimens. Compressive and tensile strength testes were carried out according to EN standards. The method used in the study allowed the quantitative determination of defects occurring in the examined modified cement pastes surfaces. Based on the results, it was found that the nature of the cracks depends mainly on the physical parameters of the cement and the intermolecular interactions on the dispersal environment. Additionally, it was noted that the A ̅/L ̅ relation of created clusters can be described as one function for all tested samples. This fact testifies about the constant geometry of the thermal cracks regardless of the presence of metakaolinite, the type of cement and the w/b ratio.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, metakaolinite, stereological parameters

Procedia PDF Downloads 392
1236 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining

Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie

Abstract:

With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.

Keywords: classification, data mining, machine learning, online shopping, WEKA

Procedia PDF Downloads 354
1235 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models

Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai

Abstract:

Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.

Keywords: plant identification, CNN, image processing, vision transformer, classification

Procedia PDF Downloads 108
1234 Studying the Impact of Farmers Field School on Vegetable Production in Peshawar District of Khyber Pakhtunkhwa Province of Pakistan

Authors: Muhammad Zafarullah Khan, Sumeera Abbasi

Abstract:

The Farmers Field School (FFS) learning approach aims to improve knowledge of the farmers through integrated crop management and provide leadership in their decision making process. The study was conducted to assess the impact of FFS on vegetables production before and after FFS intervention in four villages of district Peshawar in cropping season 2012, by interviewing 80 FFS respondents, twenty from each selected village. It was observed from the study results that all the respondents were satisfied from the impact of FFS and they informed an increased in production in vegetables. It was further observed that after the implementation of FFS the sowing seed rate of tomato and cucumber were decreased from 0.185kg/kanal to 0.100 kg/ kanal and 0.120kg/kanal to 0.010kg/kanal where as the production of tomato and cucumber were increased from 8158.75kgs/kanal to 10302. 5kgs/kanal and 3230kgs/kanal to 5340kgs/kanal, respectively. The cost of agriculture inputs per kanal including seed cost, crop management, Farm Yard Manure, and weedicides in case of tomato were reduced by Rs.28, Rs. 3170, Rs.658and Rs 205 whereas in cucumber reduced by Rs.35, Rs.570, Rs 80 and Rs.430 respectively. Only fertilizers cost was increased by Rs. 2200 in case of tomato and Rs 465 in case of cucumber. Overall the cost was reduced to Rs 545 in tomato and Rs 490 in cucumber production.FFS provided a healthy vegetables and also reduced input cost by adopting integrated crop management. Therefore the promotion of FFS is needed to be planned for farmers to reduce cost of production, so that the more farmers should be benefited.

Keywords: impact, farmer field schools, vegetable production, Peshawar Khyber Pakhtunkhwa

Procedia PDF Downloads 260
1233 Comparative Study Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine

Procedia PDF Downloads 411
1232 Academic Literacy: A Study of L2 Academic Reading Literacy among a Group of EFL/ESL Postgraduate Arab Learners in a British University

Authors: Hanadi Khadawardi

Abstract:

The current study contributes to research on foreign/second language (L2) academic reading by presenting a significant case study, which seeks to investigate specific groups of international (Arab) postgraduate students’ L2 academic reading practices in the UK educational context. In particular, the study scrutinises postgraduate students’ L2 paper-based and digital-based academic reading strategies, and their use of digital aids while engaged in L2 academic reading. To this end, the study investigates Arab readers’ attitudes toward digital L2 academic reading. The study aims to compare between paper and digital L2 academic reading strategies that the students employ and which reading formats they prefer. This study tracks Masters-level students and examines the way in which their reading strategies and attitudes change throughout their Masters programme in the UK educational context. The academic reading strategies and attitudes of five students from four different disciplines (Health Science, Psychology, Management, and Education) are investigated at two points during their one-year Masters programmes. In addition, the study investigates the same phenomenon with 15 Saudi PhD students drawn from seven different disciplines (Computer Science, Engineering, Psychology, Management, Marketing, Health Science, and Applied Linguistics) at one period of their study in the same context. The study uses think-aloud protocol, field notes, stimulated recall, and semi-structured interviews to collect data. The data is analysed qualitatively. The results of the study will explain the process of learning in terms of reading L2 paper and digital academic texts in the L2 context.

Keywords: EFL: English as a foreign language, ESL: English as a second language, L: Language

Procedia PDF Downloads 385
1231 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia PDF Downloads 160
1230 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction

Authors: Arunima Verma, Padmabati Mondal

Abstract:

Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.

Keywords: allostery, CADD, MD simulations, MM-PBSA

Procedia PDF Downloads 90
1229 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm

Procedia PDF Downloads 307
1228 Dyadic Video Evidence on How Emotions in Parent Verbal Bids Affect Child Compliance in a British Sample

Authors: Iris Sirirada Pattara-Angkoon, Rory Devine, Anja Lindberg, Wendy Browne, Sarah Foley, Gabrielle McHarg, Claire Hughes

Abstract:

Introduction: The “Terrible Twos” is a phrase used to describe toddlers 18-30 months old. It characterizes a transition from high dependency to their caregivers in infancy to more autonomy and mastery of the body and environment. Toddlers at this age may also show more willfulness and stubbornness that could predict a future trajectory leading to conduct disorders. Thus, an important goal for this age group is to promote responsiveness to their caregivers (i.e., compliance). Existing literature tends to focus on praise to increase desirable child behavior. However, this relationship is not always straightforward as some studies have found no or negative association between praise and child compliance. Research suggests positive emotions and affection showed through body language (e.g., smiles) and actions (e.g., hugs, kisses) along with positive parent-child relationship can strengthen the praise and child compliance association. Nonetheless, few studies have examined the influences of positive emotionality within the speech. This is important as implementing verbal positive emotionality is easier than physical adjustments. The literature also tends not to include fathers in the study sample as mothers were traditionally the primary caregiver. However, as child-caring duties are increasing shared equally between mothers and fathers, it is important to include fathers within the study as studies have frequently found differences between female and male caregiver characteristics. Thus, the study will address the literary gap in two ways: 1. explore the influences of positive emotionality in parental speech and 2. include an equal sample of mothers and fathers. Positive emotionality is expected to positively correlate with and predict child compliance. Methodology: This study analyzed toddlers (18-24 months) in their dyadic interactions with mothers and fathers. A Duplo (block) task was used where parents had to work with their children to build the Duplo according to the given photo for four minutes. Then, they would be told to clean up the blocks. Parental positive emotionality in different speech types (e.g., bids, praises, affirmations) and child compliance were measured. Results: The study found that mothers (M = 28.92, SD = 12.01) were significantly more likely than fathers (M = 23.01, SD = 12.28) to use positive verbal emotionality in their speech, t(105) = 4.35, p< .001. High positive emotionality in bids during Duplo task and Clean Up was positively correlated with more child compliance in each task, r(273) = .35, p< .001 and r(264) = .58, p< .001, respectively. Overall, parental positive emotionality in speech significantly predicted child compliance, F(6, 218) = 13.33, p< .001, R² = .27) with emotionality in verbal bids (t = 6.20, p< .001) and affirmations (t = 3.12, p = .002) being significant predictors. Conclusion: Positive verbal emotions may be useful for increasing compliance in toddlers. This can be beneficial for compliance interventions as well as to the parent-child relationship quality through reduction of conflict and child defiance. As this study is correlational in nature, it will be important for future research to test the directional influence of positive emotionality within speech.

Keywords: child temperament, compliance, positive emotion, toddler, verbal bids

Procedia PDF Downloads 187
1227 Effect of Ausubel's Advance Organizer Model to Enhancing Meta-Cognition of Students at Secondary Level

Authors: Qaisara Parveen, M. Imran Yousuf

Abstract:

The purpose of this study was to find the effectiveness of the use of advance organizer model for enhancing meta-cognition of students in the subject of science. It was hypothesized that the students of experimental group taught through advance organizer model would show the better cognition than the students of control group taught through traditional teaching. The population of the study consisted of all secondary school students studying in government high school located in Rawalpindi. The sample of the study consisted of 50 students of 9th class of humanities group. The sample was selected on the basis of their pretest scores through matching, and the groups were randomly assigned for the treatment. The experimental group was taught through advance organizer model while the control group was taught through traditional teaching. The self-developed achievement test was used for the purpose of pretest and posttest. After collecting the pre-test score and post-test score, the data was analyzed and interpreted by use of descriptive statistics as mean and standard deviation and inferential statistics t-test. The findings indicate that students taught using advance organizers had a higher level of meta-cognition as compared to control group. Further, meta cognition level of boys was found higher than that of girls students. This study also revealed the fact that though the students at different meta-cognition level approached learning situations in a different manner, Advance organizer model is far superior to Traditional method of teaching.

Keywords: descriptive, experimental, humanities, meta-cognition, statistics, science

Procedia PDF Downloads 319
1226 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics

Authors: Ewa M. Laskowska, Jorn Vatn

Abstract:

Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.

Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL

Procedia PDF Downloads 95
1225 Monocoque Systems: The Reuniting of Divergent Agencies for Wood Construction

Authors: Bruce Wrightsman

Abstract:

Construction and design are inexorably linked. Traditional building methodologies, including those using wood, comprise a series of material layers differentiated and separated from each other. This results in the separation of two agencies of building envelope (skin) separate from the structure. However, from a material performance position reliant on additional materials, this is not an efficient strategy for the building. The merits of traditional platform framing are well known. However, its enormous effectiveness within wood-framed construction has seldom led to serious questioning and challenges in defining what it means to build. There are several downsides of using this method, which is less widely discussed. The first and perhaps biggest downside is waste. Second, its reliance on wood assemblies forming walls, floors and roofs conventionally nailed together through simple plate surfaces is structurally inefficient. It requires additional material through plates, blocking, nailers, etc., for stability that only adds to the material waste. In contrast, when we look back at the history of wood construction in airplane and boat manufacturing industries, we will see a significant transformation in the relationship of structure with skin. The history of boat construction transformed from indigenous wood practices of birch bark canoes to copper sheathing over wood to improve performance in the late 18th century and the evolution of merged assemblies that drives the industry today. In 1911, Swiss engineer Emile Ruchonnet designed the first wood monocoque structure for an airplane called the Cigare. The wing and tail assemblies consisted of thin, lightweight, and often fabric skin stretched tightly over a wood frame. This stressed skin has evolved into semi-monocoque construction, in which the skin merges with structural fins that take additional forces. It provides even greater strength with less material. The monocoque, which translates to ‘mono or single shell,’ is a structural system that supports loads and transfers them through an external enclosure system. They have largely existed outside the domain of architecture. However, this uniting of divergent systems has been demonstrated to be lighter, utilizing less material than traditional wood building practices. This paper will examine the role monocoque systems have played in the history of wood construction through lineage of boat and airplane building industries and its design potential for wood building systems in architecture through a case-study examination of a unique wood construction approach. The innovative approach uses a wood monocoque system comprised of interlocking small wood members to create thin shell assemblies for the walls, roof and floor, increasing structural efficiency and wasting less than 2% of the wood. The goal of the analysis is to expand the work of practice and the academy in order to foster deeper, more honest discourse regarding the limitations and impact of traditional wood framing.

Keywords: wood building systems, material histories, monocoque systems, construction waste

Procedia PDF Downloads 81
1224 Risks beyond Cyber in IoT Infrastructure and Services

Authors: Mattias Bergstrom

Abstract:

Significance of the Study: This research will provide new insights into the risks with digital embedded infrastructure. Through this research, we will analyze each risk and its potential negation strategies, especially for AI and autonomous automation. Moreover, the analysis that is presented in this paper will convey valuable information for future research that can create more stable, secure, and efficient autonomous systems. To learn and understand the risks, a large IoT system was envisioned, and risks with hardware, tampering, and cyberattacks were collected, researched, and evaluated to create a comprehensive understanding of the potential risks. Potential solutions have then been evaluated on an open source IoT hardware setup. This list shows the identified passive and active risks evaluated in the research. Passive Risks: (1) Hardware failures- Critical Systems relying on high rate data and data quality are growing; SCADA systems for infrastructure are good examples of such systems. (2) Hardware delivers erroneous data- Sensors break, and when they do so, they don’t always go silent; they can keep going, just that the data they deliver is garbage, and if that data is not filtered out, it becomes disruptive noise in the system. (3) Bad Hardware injection- Erroneous generated sensor data can be pumped into a system by malicious actors with the intent to create disruptive noise in critical systems. (4) Data gravity- The weight of the data collected will affect Data-Mobility. (5) Cost inhibitors- Running services that need huge centralized computing is cost inhibiting. Large complex AI can be extremely expensive to run. Active Risks: Denial of Service- It is one of the most simple attacks, where an attacker just overloads the system with bogus requests so that valid requests disappear in the noise. Malware- Malware can be anything from simple viruses to complex botnets created with specific goals, where the creator is stealing computer power and bandwidth from you to attack someone else. Ransomware- It is a kind of malware, but it is so different in its implementation that it is worth its own mention. The goal with these pieces of software is to encrypt your system so that it can only be unlocked with a key that is held for ransom. DNS spoofing- By spoofing DNS calls, valid requests and data dumps can be sent to bad destinations, where the data can be extracted for extortion or to corrupt and re-inject into a running system creating a data echo noise loop. After testing multiple potential solutions. We found that the most prominent solution to these risks was to use a Peer 2 Peer consensus algorithm over a blockchain to validate the data and behavior of the devices (sensors, storage, and computing) in the system. By the devices autonomously policing themselves for deviant behavior, all risks listed above can be negated. In conclusion, an Internet middleware that provides these features would be an easy and secure solution to any future autonomous IoT deployments. As it provides separation from the open Internet, at the same time, it is accessible over the blockchain keys.

Keywords: IoT, security, infrastructure, SCADA, blockchain, AI

Procedia PDF Downloads 108
1223 A Fine-Grained Scheduling Algorithm for Heterogeneous Supercomputing Clusters Based on Graph Convolutional Networks and Proximal Policy Optimization

Authors: Jiahao Zhou, Lei Wang

Abstract:

In heterogeneous supercomputing clusters, designing an efficient scheduling strategy is crucial for enhancing both energy efficiency and workflow execution performance. The dynamic allocation and reclamation of computing resources are essential for improving resource utilization. However, existing studies often allocate fixed resources to jobs prior to execution, maintaining these resources until job completion, which overlooks the importance of dynamic scheduling. This paper proposes a heterogeneous hierarchical fine-grained scheduling algorithm (HeHiFiS) based on graph convolutional networks (GCN) and proximal policy optimization (PPO) to address issues such as prolonged workflow completion times and low resource utilization in heterogeneous supercomputing clusters. Specifically, GCN is employed to extract task dependency features as part of the state information, and the PPO reinforcement learning algorithm is then used to train the scheduling policy. The trained scheduling policy dynamically adjusts scheduling actions during operation based on the continuously changing states of tasks and computing resources. Additionally, we developed a heterogeneous scheduling simulation platform to validate the effectiveness of the proposed algorithm. Experimental results indicate that HeHiFiS, by incorporating resource inheritance and intra-task parallel mechanisms, significantly improves resource utilization. Compared to existing scheduling algorithms, HeHiFiS achieves over a 50% improvement in both job completion and response performance metrics.

Keywords: heterogeneous, dynamic scheduling, GCN, PPO

Procedia PDF Downloads 5
1222 Graphene Metamaterials Supported Tunable Terahertz Fano Resonance

Authors: Xiaoyong He

Abstract:

The manipulation of THz waves is still a challenging task due to lack of natural materials interacted with it strongly. Designed by tailoring the characters of unit cells (meta-molecules), the advance of metamaterials (MMs) may solve this problem. However, because of Ohmic and radiation losses, the performance of MMs devices is subjected to the dissipation and low quality factor (Q-factor). This dilemma may be circumvented by Fano resonance, which arises from the destructive interference between a bright continuum mode and dark discrete mode (or a narrow resonance). Different from symmetric Lorentz spectral curve, Fano resonance indicates a distinct asymmetric line-shape, ultrahigh quality factor, steep variations in spectrum curves. Fano resonance is usually realized through symmetry breaking. However, if concentric double rings (DR) are placed closely to each other, the near-field coupling between them gives rise to two hybridized modes (bright and narrowband dark modes) because of the local asymmetry, resulting into the characteristic Fano line shape. Furthermore, from the practical viewpoint, it is highly desirable requirement that to achieve the modulation of Fano spectral curves conveniently, which is an important and interesting research topics. For current Fano systems, the tunable spectral curves can be realized by adjusting the geometrical structural parameters or magnetic fields biased the ferrite-based structure. But due to limited dispersion properties of active materials, it is still a tough work to tailor Fano resonance conveniently with the fixed structural parameters. With the favorable properties of extreme confinement and high tunability, graphene is a strong candidate to achieve this goal. The DR-structure possesses the excitation of so-called “trapped modes,” with the merits of simple structure and high quality of resonances in thin structures. By depositing graphene circular DR on the SiO2/Si/ polymer substrate, the tunable Fano resonance has been theoretically investigated in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that the obvious Fano peak can be efficiently modulated because of the strong coupling between incident waves and graphene ribbons. As Fermi level increases, the peak amplitude of Fano curve increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 30% if Fermi level changes in the scope of 0.1-1.0 eV. The optimum gap distance between DR is about 8-12 μm, where the value of figure of merit shows a peak. As the graphene ribbon width increases, the Fano spectral curves become broad, and the resonant peak denotes blue shift. The results are very helpful to develop novel graphene plasmonic devices, e.g. sensors and modulators.

Keywords: graphene, metamaterials, terahertz, tunable

Procedia PDF Downloads 346