Search results for: traditional harvesting network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9679

Search results for: traditional harvesting network

8749 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection

Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari

Abstract:

In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.

Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs

Procedia PDF Downloads 363
8748 Studying Medicinal Plants of Rajasthan Used by Tribes for Different Diseases

Authors: Rekha Vijayvergia

Abstract:

Around seven percent of tribal population of India lives in Rajasthan. Rajasthan has rich cultural diversity and biodiversity. Ethno-botany can be defined as the total natural and traditional relationship and the interactions between man and his surrounding plant wealth from times immemorial, due to sheer, necessity, intuition, observation, and experimentation. Medicinal plants are valuable and are used for the production of various drugs. These plants produce a high diversity of natural products or secondary metabolites like Mahanimbicine, Andrographine, murrayaline, lupeol, and limonin etc. with a prominent function in the protection against diseases like diabetes, kidney stones, osteoporosis, tumours, opthalmia, leucorrhoea, bronchial asthma, diarrhea, cancer, etc. The present report gives an account of traditional medicinal uses of common medicinal plants of Rajasthan. A total of 18 plant species belonging to 13 families are reported, that are being used for various purposes.

Keywords: ethno botany, Rajasthan, secondary metabolites, traditional medicines

Procedia PDF Downloads 489
8747 Effects of High-Intensity Interval Training versus Traditional Rehabilitation Exercises on Functional Outcomes in Patients with Knee Osteoarthritis: A Randomized Controlled Trial

Authors: Ahmed Torad

Abstract:

Background: Knee osteoarthritis (OA) is a prevalent musculoskeletal condition characterized by pain and functional impairment. While various rehabilitation approaches have been employed, the effectiveness of high-intensity interval training (HIIT) compared to traditional rehabilitation exercises remains unclear. Objective: This randomized controlled trial aimed to compare the effects of HIIT and traditional rehabilitation exercises on pain reduction, functional improvement, and quality of life in individuals with knee OA. Methods: A total of 120 participants diagnosed with knee OA were randomly allocated into two groups: the HIIT group (n=60) and the traditional rehabilitation group (n=60). The HIIT group participated in a 12-week supervised program consisting of high-intensity interval exercises, while the traditional rehabilitation group followed a conventional physiotherapy regimen. Outcome measures included visual analog scale (VAS) pain scores, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and the Short Form-36 Health Survey (SF-36) at baseline and after the intervention period. Results: Both groups showed significant improvements in pain scores, functional outcomes (WOMAC), and quality of life (SF-36) after 12 weeks of intervention. However, the HIIT group demonstrated superior pain reduction (p<0.001), functional improvement (p<0.001), and physical health-related quality of life (p=0.002) compared to the traditional rehabilitation group. No significant differences were observed in mental health-related quality of life between the two groups. Conclusion: High-intensity interval training appears to be a more effective rehabilitation approach than traditional exercises for individuals with knee osteoarthritis, resulting in greater pain reduction, improved function, and enhanced physical health-related quality of life. These findings suggest that HIIT may represent a promising intervention strategy for managing knee OA and enhancing the overall well-being of affected individuals.

Keywords: knee osteoarthritis, high-intensity interval training, traditional rehabilitation exercises, randomized controlled trial, pain reduction, functional improvement, quality of life

Procedia PDF Downloads 74
8746 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.

Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence

Procedia PDF Downloads 110
8745 Domestic Rooftop Rainwater Harvesting for Prevention of Urban Flood in the Gomti Nagar Region of Lucknow, Uttar Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

Urban flooding is a common occurrence throughout Asia. Almost every city is vulnerable to urban floods in some fashion, and city people are particularly vulnerable. Pluvial and fluvial flooding are the most prominent causes of urban flooding in the Gomti Nagar region of Lucknow, Uttar Pradesh, India. The pluvial flooding is regarded to be less damaging because it is caused by heavy rainfall, Seasonal rainfall fluctuations, water flows off concrete infrastructures, blockages of the drainage system, and insufficient drainage capacity or low infiltration capacity. However, this study considers pluvial flooding in Lucknow to be a significant source of cumulative damage over time, and the risks of such events are increasing as a result of changes in ageing infrastructure, hazard exposure, rapid urbanization, massive water logging and global warming. As a result, urban flooding has emerged as a critical field of study. The popularity of analytical approaches to project the spatial extent of flood dangers has skyrocketed. To address future urban flood resilience, more effort is needed to enhance both hydrodynamic models and analytical tools to simulate risks under present and forecast conditions. Proper urban planning with drainage system and ample space for high infiltration capacity are required to reduce urban flooding. A better India with no urban flooding is a pipe dream that can be realized by putting household rooftop rainwater collection systems in every structure. According to the current study, domestic RTRWHs are strongly recommended as an alternative source of water, as well as to prevent surface runoff and urban floods in this region of Lucknow, urban areas of India.

Keywords: rooftop rainwater harvesting, urban flood, pluvial flooding, fluvial flooding

Procedia PDF Downloads 84
8744 A Fast Community Detection Algorithm

Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun

Abstract:

Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.

Keywords: complex network, social network, community detection, network hierarchy

Procedia PDF Downloads 226
8743 Decision Support System for Diagnosis of Breast Cancer

Authors: Oluwaponmile D. Alao

Abstract:

In this paper, two models have been developed to ascertain the best network needed for diagnosis of breast cancer. Breast cancer has been a disease that required the attention of the medical practitioner. Experience has shown that misdiagnose of the disease has been a major challenge in the medical field. Therefore, designing a system with adequate performance for will help in making diagnosis of the disease faster and accurate. In this paper, two models: backpropagation neural network and support vector machine has been developed. The performance obtained is also compared with other previously obtained algorithms to ascertain the best algorithms.

Keywords: breast cancer, data mining, neural network, support vector machine

Procedia PDF Downloads 345
8742 Classifying Students for E-Learning in Information Technology Course Using ANN

Authors: Sirilak Areerachakul, Nat Ployong, Supayothin Na Songkla

Abstract:

This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.

Keywords: artificial neural network, classification, students, e-learning

Procedia PDF Downloads 424
8741 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection

Authors: Ashkan Zakaryazad, Ekrem Duman

Abstract:

A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.

Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent

Procedia PDF Downloads 473
8740 A Summary-Based Text Classification Model for Graph Attention Networks

Authors: Shuo Liu

Abstract:

In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.

Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network

Procedia PDF Downloads 99
8739 A Type-2 Fuzzy Model for Link Prediction in Social Network

Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi

Abstract:

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Keywords: social network, link prediction, granular computing, type-2 fuzzy sets

Procedia PDF Downloads 325
8738 Fault Detection of Pipeline in Water Distribution Network System

Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee

Abstract:

Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.

Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform

Procedia PDF Downloads 510
8737 Identifying Critical Links of a Transport Network When Affected by a Climatological Hazard

Authors: Beatriz Martinez-Pastor, Maria Nogal, Alan O'Connor

Abstract:

During the last years, the number of extreme weather events has increased. A variety of extreme weather events, including river floods, rain-induced landslides, droughts, winter storms, wildfire, and hurricanes, have threatened and damaged many different regions worldwide. These events have a devastating impact on critical infrastructure systems resulting in high social, economical and environmental costs. These events have a huge impact in transport systems. Since, transport networks are completely exposed to every kind of climatological perturbations, and its performance is closely related with these events. When a traffic network is affected by a climatological hazard, the quality of its service is threatened, and the level of the traffic conditions usually decreases. With the aim of understanding this process, the concept of resilience has become most popular in the area of transport. Transport resilience analyses the behavior of a traffic network when a perturbation takes place. This holistic concept studies the complete process, from the beginning of the perturbation until the total recovery of the system, when the perturbation has finished. Many concepts are included in the definition of resilience, such as vulnerability, redundancy, adaptability, and safety. Once the resilience of a transport network can be evaluated, in this case, the methodology used is a dynamic equilibrium-restricted assignment model that allows the quantification of the concept, the next step is its improvement. Through the improvement of this concept, it will be possible to create transport networks that are able to withstand and have a better performance under the presence of climatological hazards. Analyzing the impact of a perturbation in a traffic network, it is observed that the response of the different links, which are part of the network, can be completely different from one to another. Consequently and due to this effect, many questions arise, as what makes a link more critical before an extreme weather event? or how is it possible to identify these critical links? With this aim, and knowing that most of the times the owners or managers of the transport systems have limited resources, the identification of the critical links of a transport network before extreme weather events, becomes a crucial objective. For that reason, using the available resources in the areas that will generate a higher improvement of the resilience, will contribute to the global development of the network. Therefore, this paper wants to analyze what kind of characteristic makes a link a critical one when an extreme weather event damages a transport network and finally identify them.

Keywords: critical links, extreme weather events, hazard, resilience, transport network

Procedia PDF Downloads 285
8736 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data

Authors: Huinan Zhang, Wenjie Jiang

Abstract:

Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.

Keywords: Artificial intelligence, deep learning, data mining, remote sensing

Procedia PDF Downloads 61
8735 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.

Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics

Procedia PDF Downloads 55
8734 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma

Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu

Abstract:

The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.

Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter

Procedia PDF Downloads 99
8733 Mosque as a Sustainable Model in Iranian Traditional Urban Development: The Case Study of Vakil Mosque in Shiraz

Authors: Amir Hossein Ashari, Sedighe Erfan Manesh

Abstract:

When investigating Iranian traditional and historical urban development, such as that seen in Shiraz, our attention is drawn to mosques as a focal point. Vakil Mosque in Shiraz is completely consistent, coordinated and integrated with the Bazaar, square and school. This is a significant example of traditional urban development. The position of the mosque in the most important urban joint near bazaar in a way that it is considered part of the bazaar structure are factors that have given it social, political, and economic roles in addition to the original religious role. These are among characteristics of sustainable development. The mosque has had an important effect in formation of the city because it is connected to main gates. In terms of access, the mosque has different main and peripheral access paths from different parts of the city. The courtyard of the mosque was located next to the main elements of the city so that it was considered as an urban open space, which made it a more active and more dynamic place. This study is carried out via library and field research with the purpose of finding strategies for taking advantage of useful features of the mosque in traditional urban development. These features include its role as a gathering center for people and city in sustainable urban development. Mosque can be used as a center for enhancing social interactions and creating a sense of association that leads to sustainable social space. These can act as a model which leads us to sustainable cities in terms of social and economic factors.

Keywords: mosque, traditional urban development, sustainable social space, Vakil Mosque, Shiraz

Procedia PDF Downloads 403
8732 A Neural Network Control for Voltage Balancing in Three-Phase Electric Power System

Authors: Dana M. Ragab, Jasim A. Ghaeb

Abstract:

The three-phase power system suffers from different challenging problems, e.g. voltage unbalance conditions at the load side. The voltage unbalance usually degrades the power quality of the electric power system. Several techniques can be considered for load balancing including load reconfiguration, static synchronous compensator and static reactive power compensator. In this work an efficient neural network is designed to control the unbalanced condition in the Aqaba-Qatrana-South Amman (AQSA) electric power system. It is designed for highly enhanced response time of the reactive compensator for voltage balancing. The neural network is developed to determine the appropriate set of firing angles required for the thyristor-controlled reactor to balance the three load voltages accurately and quickly. The parameters of AQSA power system are considered in the laboratory model, and several test cases have been conducted to test and validate the proposed technique capabilities. The results have shown a high performance of the proposed Neural Network Control (NNC) technique for correcting the voltage unbalance conditions at three-phase load based on accuracy and response time.

Keywords: three-phase power system, reactive power control, voltage unbalance factor, neural network, power quality

Procedia PDF Downloads 194
8731 Modelling the Art Historical Canon: The Use of Dynamic Computer Models in Deconstructing the Canon

Authors: Laura M. F. Bertens

Abstract:

There is a long tradition of visually representing the art historical canon, in schematic overviews and diagrams. This is indicative of the desire for scientific, ‘objective’ knowledge of the kind (seemingly) produced in the natural sciences. These diagrams will, however, always retain an element of subjectivity and the modelling methods colour our perception of the represented information. In recent decades visualisations of art historical data, such as hand-drawn diagrams in textbooks, have been extended to include digital, computational tools. These tools significantly increase modelling strength and functionality. As such, they might be used to deconstruct and amend the very problem caused by traditional visualisations of the canon. In this paper, the use of digital tools for modelling the art historical canon is studied, in order to draw attention to the artificial nature of the static models that art historians are presented with in textbooks and lectures, as well as to explore the potential of digital, dynamic tools in creating new models. To study the way diagrams of the canon mediate the represented information, two modelling methods have been used on two case studies of existing diagrams. The tree diagram Stammbaum der neudeutschen Kunst (1823) by Ferdinand Olivier has been translated to a social network using the program Visone, and the famous flow chart Cubism and Abstract Art (1936) by Alfred Barr has been translated to an ontological model using Protégé Ontology Editor. The implications of the modelling decisions have been analysed in an art historical context. The aim of this project has been twofold. On the one hand the translation process makes explicit the design choices in the original diagrams, which reflect hidden assumptions about the Western canon. Ways of organizing data (for instance ordering art according to artist) have come to feel natural and neutral and implicit biases and the historically uneven distribution of power have resulted in underrepresentation of groups of artists. Over the last decades, scholars from fields such as Feminist Studies, Postcolonial Studies and Gender Studies have considered this problem and tried to remedy it. The translation presented here adds to this deconstruction by defamiliarizing the traditional models and analysing the process of reconstructing new models, step by step, taking into account theoretical critiques of the canon, such as the feminist perspective discussed by Griselda Pollock, amongst others. On the other hand, the project has served as a pilot study for the use of digital modelling tools in creating dynamic visualisations of the canon for education and museum purposes. Dynamic computer models introduce functionalities that allow new ways of ordering and visualising the artworks in the canon. As such, they could form a powerful tool in the training of new art historians, introducing a broader and more diverse view on the traditional canon. Although modelling will always imply a simplification and therefore a distortion of reality, new modelling techniques can help us get a better sense of the limitations of earlier models and can provide new perspectives on already established knowledge.

Keywords: canon, ontological modelling, Protege Ontology Editor, social network modelling, Visone

Procedia PDF Downloads 126
8730 Path Planning for Collision Detection between two Polyhedra

Authors: M. Khouil, N. Saber, M. Mestari

Abstract:

This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.

Keywords: path planning, collision detection, convex polyhedron, neural network

Procedia PDF Downloads 438
8729 Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory

Authors: Danilo López, Nelson Vera, Luis Pedraza

Abstract:

This paper analyzes fundamental ideas and concepts related to neural networks, which provide the reader a theoretical explanation of Long Short-Term Memory (LSTM) networks operation classified as Deep Learning Systems, and to explicitly present the mathematical development of Backward Pass equations of the LSTM network model. This mathematical modeling associated with software development will provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed users in wireless cognitive radio networks.

Keywords: neural networks, multilayer perceptron, long short-term memory, recurrent neuronal network, mathematical analysis

Procedia PDF Downloads 419
8728 The Effects of Stand Density, Standards and Species Composition on Biomass Production in Traditional Coppices

Authors: Marek Mejstřík, Radim Matula, Martin Šrámek

Abstract:

Traditional coppices and coppice-with-standards were widely used throughout Europe and Asia for centuries but were largely abandoned in the second half of the 19th century, especially in central and northwestern Europe. In the last decades, there has been a renewed interest in traditional coppicing for nature conservation and most often, for rapid woody biomass production. However, there is little information on biomass productivity of traditional coppices and what affects it. Here, we focused on the effects of stand density, standards and tree species composition on sprout biomass production in newly restored coppices in the Czech Republic. We measured sprouts and calculated sprout biomass 7 years after the harvest from 2013 resprouting stumps in two 4 ha experimental plots. Each plot was divided into 64 subplots with different densities of standards and sprouting stumps. Total sprout biomass declined with increasing density of standards, but the effect of standards differed significantly among studied species. Whereas increasing density of standards decreased sprout biomass in Quercus petraea and Carpinus betulus, it did not affect sprout biomass productivity in Acer campestre and Tilia cordata. Sprout biomass on stand-level increased linearly with an increasing number of sprouting stumps and we observed no leveling of this relationship even in the highest densities of stumps. We also found a significant shift in tree species composition with the steeply declining relative abundance of Quercus in favor of other studied tree species.

Keywords: traditional coppice, coppice with standards, sprout biomass, forest management

Procedia PDF Downloads 159
8727 Formation of Academia-Industry Collaborative Model to Improve the Quality of Teaching-Learning Process

Authors: M. Dakshayini, P. Jayarekha

Abstract:

In traditional output-based education system, class room lecture and laboratory are the traditional delivery methods used during the course. Written examination and lab examination have been used as a conventional tool for evaluating student’s performance. Hence, there are certain apprehensions that the traditional education system may not efficiently prepare the students for competent professional life. This has led for the change from Traditional output-based education to Outcome-Based Education (OBE). OBE first sets the ideal programme learning outcome consecutively on increasing degree of complexity that students are expected to master. The core curriculum, teaching methodologies and assessment tools are then designed to achieve the proposed outcomes mainly focusing on what students can actually attain after they are taught. In this paper, we discuss a promising applications based learning and evaluation component involving industry collaboration to improve the quality of teaching and student learning process. Incorporation of this component definitely improves the quality of student learning in engineering education and helps the student to attain the competency as per the graduate attributes. This may also reduce the Industry-academia gap.

Keywords: outcome-based education, programme learning outcome, teaching-learning process, evaluation, industry collaboration

Procedia PDF Downloads 448
8726 On Dialogue Systems Based on Deep Learning

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.

Keywords: dialogue management, response generation, deep learning, evaluation

Procedia PDF Downloads 165
8725 Research on Modern Semiconductor Converters and the Usage of SiC Devices in the Technology Centre of Ostrava

Authors: P. Vaculík, P. Kaňovský

Abstract:

The following article presents Technology Centre of Ostrava (TCO) in the Czech Republic. Describes the structure and main research areas realized by the project ENET-Energy Units for Utilization of non-traditional Energy Sources. More details are presented from the research program dealing with transformation, accumulation, and distribution of electric energy. Technology Centre has its own energy mix consisting of alternative sources of fuel sources that use of process gases from the storage part and also the energy from distribution network. The article will focus on the properties and application possibilities SiC semiconductor devices for power semiconductor converter for photo-voltaic systems.

Keywords: SiC, Si, technology centre of Ostrava, photovoltaic systems, DC/DC Converter, simulation

Procedia PDF Downloads 608
8724 Measures of Reliability and Transportation Quality on an Urban Rail Transit Network in Case of Links’ Capacities Loss

Authors: Jie Liu, Jinqu Cheng, Qiyuan Peng, Yong Yin

Abstract:

Urban rail transit (URT) plays a significant role in dealing with traffic congestion and environmental problems in cities. However, equipment failure and obstruction of links often lead to URT links’ capacities loss in daily operation. It affects the reliability and transport service quality of URT network seriously. In order to measure the influence of links’ capacities loss on reliability and transport service quality of URT network, passengers are divided into three categories in case of links’ capacities loss. Passengers in category 1 are less affected by the loss of links’ capacities. Their travel is reliable since their travel quality is not significantly reduced. Passengers in category 2 are affected by the loss of links’ capacities heavily. Their travel is not reliable since their travel quality is reduced seriously. However, passengers in category 2 still can travel on URT. Passengers in category 3 can not travel on URT because their travel paths’ passenger flow exceeds capacities. Their travel is not reliable. Thus, the proportion of passengers in category 1 whose travel is reliable is defined as reliability indicator of URT network. The transport service quality of URT network is related to passengers’ travel time, passengers’ transfer times and whether seats are available to passengers. The generalized travel cost is a comprehensive reflection of travel time, transfer times and travel comfort. Therefore, passengers’ average generalized travel cost is used as transport service quality indicator of URT network. The impact of links’ capacities loss on transport service quality of URT network is measured with passengers’ relative average generalized travel cost with and without links’ capacities loss. The proportion of the passengers affected by links and betweenness of links are used to determine the important links in URT network. The stochastic user equilibrium distribution model based on the improved logit model is used to determine passengers’ categories and calculate passengers’ generalized travel cost in case of links’ capacities loss, which is solved with method of successive weighted averages algorithm. The reliability and transport service quality indicators of URT network are calculated with the solution result. Taking Wuhan Metro as a case, the reliability and transport service quality of Wuhan metro network is measured with indicators and method proposed in this paper. The result shows that using the proportion of the passengers affected by links can identify important links effectively which have great influence on reliability and transport service quality of URT network; The important links are mostly connected to transfer stations and the passenger flow of important links is high; With the increase of number of failure links and the proportion of capacity loss, the reliability of the network keeps decreasing, the proportion of passengers in category 3 keeps increasing and the proportion of passengers in category 2 increases at first and then decreases; When the number of failure links and the proportion of capacity loss increased to a certain level, the decline of transport service quality is weakened.

Keywords: urban rail transit network, reliability, transport service quality, links’ capacities loss, important links

Procedia PDF Downloads 126
8723 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.

Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation

Procedia PDF Downloads 69
8722 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity. The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: short-term load forecasting, artificial neural networks, back propagation learning, hourly load demand

Procedia PDF Downloads 463
8721 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism

Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li

Abstract:

Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.

Keywords: keypoint detection, feature fusion, attention, semantic segmentation

Procedia PDF Downloads 117
8720 Redefinition of Village Landscape with Ruins-Taking Cunwei Village in Nanping City, Fujian Province as Example

Authors: Siyu Bu, Jie Wang, Yajing Jiang

Abstract:

Nowadays, villages still occupying 94.7% of the national territorial area (almost nine million square kilometers) of China. Some of them are meeting urbanization and grow as satellite; however, others are witnessing more and more citizens swarming into with nostalgia, seek enjoyment from the beautiful green countryside. In villages, new types of house come and we see billions of old houses lay unused, or even be dying at every second, which cause a lot of 'bad palaces', decadent and dangerous. In this context, there are lots of tries for gearing villages in China. This article deconstructs the traditional village house to excavate its’ landscape potential for future. By research in CunWei Village, Nanping City, Fujian Province, China, a method of reconstruction of old houses comes out: the wreckage will be a strong landscape, showing the great beauty of nature. It will be a better use of the old material as well as the space pattern. It was supposed to gain a juxtaposition of traditional village life and modern social life by offering possibilities of multiple event, replacing the bad space to attractive one by strengthen the old structures without destroy traditional patterns. Furthermore , this method acts as an exploring for building redefinition of village landscape that fit Chinese villages, using local nature resource and traditional construction logic.

Keywords: juxtaposition, replace, village, ruins

Procedia PDF Downloads 251