Search results for: recognition methods
15685 Finding the Association Rule between Nursing Interventions and Early Evaluation Results of In-Hospital Cardiac Arrest to Improve Patient Safety
Authors: Wei-Chih Huang, Pei-Lung Chung, Ching-Heng Lin, Hsuan-Chia Yang, Der-Ming Liou
Abstract:
Background: In-Hospital Cardiac Arrest (IHCA) threaten life of the inpatients, cause serious effect to patient safety, quality of inpatients care and hospital service. Health providers must identify the signs of IHCA early to avoid the occurrence of IHCA. This study will consider the potential association between early signs of IHCA and the essence of patient care provided by nurses and other professionals before an IHCA occurs. The aim of this study is to identify significant associations between nursing interventions and abnormal early evaluation results of IHCA that can assist health care providers in monitoring inpatients at risk of IHCA to increase opportunities of IHCA early detection and prevention. Materials and Methods: This study used one of the data mining techniques called association rules mining to compute associations between nursing interventions and abnormal early evaluation results of IHCA. The nursing interventions and abnormal early evaluation results of IHCA were considered to be co-occurring if nursing interventions were provided within 24 hours of last being observed in abnormal early evaluation results of IHCA. The rule based methods were utilized 23.6 million electronic medical records (EMR) from a medical center in Taipei, Taiwan. This dataset includes 733 concepts of nursing interventions that coded by clinical care classification (CCC) codes and 13 early evaluation results of IHCA with binary codes. The values of interestingness and lift were computed as Q values to measure the co-occurrence and associations’ strength between all in-hospital patient care measures and abnormal early evaluation results of IHCA. The associations were evaluated by comparing the results of Q values and verified by medical experts. Results and Conclusions: The results show that there are 4195 pairs of associations between nursing interventions and abnormal early evaluation results of IHCA with their Q values. The indication of positive association is 203 pairs with Q values greater than 5. Inpatients with high blood sugar level (hyperglycemia) have positive association with having heart rate lower than 50 beats per minute or higher than 120 beats per minute, Q value is 6.636. Inpatients with temporary pacemaker (TPM) have significant association with high risk of IHCA, Q value is 47.403. There is significant positive correlation between inpatients with hypovolemia and happened abnormal heart rhythms (arrhythmias), Q value is 127.49. The results of this study can help to prevent IHCA from occurring by making health care providers early recognition of inpatients at risk of IHCA, assist with monitoring patients for providing quality of care to patients, improve IHCA surveillance and quality of in-hospital care.Keywords: in-hospital cardiac arrest, patient safety, nursing intervention, association rule mining
Procedia PDF Downloads 27115684 The Queer Language: A Case Study of the Hyderabadi Queers
Authors: Sreerakuvandana Vandana
Abstract:
Although the term third gender is relatively new, the language that is in use has already made its way to the concept of identity. With the vast recognition and the transparency in expressing their identity without a tint of embarrassment, it is highly essential to take into account the idea of “identity” and “language”. The community however picks up language as a tool to assert their presence in the “mainstream”, albeit contradictory practices. The paper is an attempt to see how Koti claims and tries to be a language just like any other language. With that, it also identifies how the community wants to be identified as a unique group, but yet want to remain grounded to the ‘mainstream’. The work is an attempt to bring out the secret language of the LGBT community and understand their desire to be recognized as "main stream." The paper is also an attempt to bring into light this language and see if it qualifies to be a language at all.Keywords: identity, language, queer, transgender
Procedia PDF Downloads 54115683 Calibration of Syringe Pumps Using Interferometry and Optical Methods
Authors: E. Batista, R. Mendes, A. Furtado, M. C. Ferreira, I. Godinho, J. A. Sousa, M. Alvares, R. Martins
Abstract:
Syringe pumps are commonly used for drug delivery in hospitals and clinical environments. These instruments are critical in neonatology and oncology, where any variation in the flow rate and drug dosing quantity can lead to severe incidents and even death of the patient. Therefore it is very important to determine the accuracy and precision of these devices using the suitable calibration methods. The Volume Laboratory of the Portuguese Institute for Quality (LVC/IPQ) uses two different methods to calibrate syringe pumps from 16 nL/min up to 20 mL/min. The Interferometric method uses an interferometer to monitor the distance travelled by a pusher block of the syringe pump in order to determine the flow rate. Therefore, knowing the internal diameter of the syringe with very high precision, the travelled distance, and the time needed for that travelled distance, it was possible to calculate the flow rate of the fluid inside the syringe and its uncertainty. As an alternative to the gravimetric and the interferometric method, a methodology based on the application of optical technology was also developed to measure flow rates. Mainly this method relies on measuring the increase of volume of a drop over time. The objective of this work is to compare the results of the calibration of two syringe pumps using the different methodologies described above. The obtained results were consistent for the three methods used. The uncertainties values were very similar for all the three methods, being higher for the optical drop method due to setup limitations.Keywords: calibration, flow, interferometry, syringe pump, uncertainty
Procedia PDF Downloads 10915682 A Case Study on the Guidelines for Application of Project Management Methods in Infrastructure Projects
Authors: Fernanda Varella Borges, Silvio Burrattino Melhado
Abstract:
Motivated by the importance of public infrastructure projects in the civil construction chain, this research shows the study of project management methods and the infrastructure projects’ characteristics. The research aims at the objective of improving management efficiency by proposing guidelines for the application of project management methods in infrastructure projects. Through literature review and case studies, the research analyses two major infrastructure projects underway in Brazil, identifying the critical points for achieving its success. As a result, the proposed guidelines indicate that special attention should be given to the management of stakeholders, focusing on their knowledge and experience, their different interests, the efficient management of their communication, and their behavior in the day-by-day project management process.Keywords: construction, infrastructure, project management, public projects
Procedia PDF Downloads 49415681 Extraction of Text Subtitles in Multimedia Systems
Authors: Amarjit Singh
Abstract:
In this paper, a method for extraction of text subtitles in large video is proposed. The video data needs to be annotated for many multimedia applications. Text is incorporated in digital video for the motive of providing useful information about that video. So need arises to detect text present in video to understanding and video indexing. This is achieved in two steps. First step is text localization and the second step is text verification. The method of text detection can be extended to text recognition which finds applications in automatic video indexing; video annotation and content based video retrieval. The method has been tested on various types of videos.Keywords: video, subtitles, extraction, annotation, frames
Procedia PDF Downloads 60115680 Microwave and Ultrasound Assisted Extraction of Pectin from Mandarin and Lemon Peel: Comparisons between Sources and Methods
Authors: Pınar Karbuz, A. Seyhun Kıpcak, Mehmet B. Piskin, Emek Derun, Nurcan Tugrul
Abstract:
Pectin is a complex colloidal polysaccharide, found on the cell walls of all young plants such as fruit and vegetables. It acts as a thickening, stabilizing and gelling agent in foods. Pectin was extracted from mandarin and lemon peels using ultrasound and microwave assisted extraction methods to compare with these two different sources and methods of pectin production. In this work, the effect of microwave power (360, 600 W) and irradiation time (1, 2, 3 min) on the yield of extracted pectin from mandarin and lemon peels for microwave assisted extraction (MAE) were investigated. For ultrasound assisted extraction (UAE), parameters were determined as temperature (60, 75 °C) and sonication time (15, 30, 45 min) and hydrochloric acid (HCl) was used as an extracting agent for both extraction methods. The highest yields of extracted pectin from lemon peels were found to be 8.16 % (w/w) for 75 °C, 45 min by UAE and 8.58 % (w/w) for 360 W, 1 min by MAE. Additionally, the highest yields of extracted pectin from mandarin peels were found to be 11.29 % (w/w) for 75 °C, 45 min by UAE and 16.44 % (w/w) for 600 W, 1 min by MAE. The results showed that the use of microwave assisted extraction promoted a better yield when compared to the two extraction methods. On the other hand, according to the results of experiments, mandarin peels contain more pectin than lemon peels when the compared to the pectin product values of two sources. Therefore, these results suggested that MAE could be used as an efficient and rapid method for extraction of pectin and mandarin peels should be preferred as sources of pectin production compared to lemon peels.Keywords: mandarin peel, lemon peel, pectin, ultrasound, microwave, extraction
Procedia PDF Downloads 23415679 Estimation of Physico-Mechanical Properties of Tuffs (Turkey) from Indirect Methods
Authors: Mustafa Gok, Sair Kahraman, Mustafa Fener
Abstract:
In rock engineering applications, determining uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), and basic index properties such as density, porosity, and water absorption is crucial for the design of both underground and surface structures. However, obtaining reliable samples for direct testing, especially from rocks that weather quickly and have low strength, is often challenging. In such cases, indirect methods provide a practical alternative to estimate the physical and mechanical properties of these rocks. In this study, tuff samples collected from the Cappadocia region (Nevşehir) in Turkey were subjected to indirect testing methods. Over 100 tests were conducted, using needle penetrometer index (NPI), point load strength index (PLI), and disc shear index (BPI) to estimate the uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), density, and water absorption index of the tuffs. The relationships between the results of these indirect tests and the target physical properties were evaluated using simple and multiple regression analyses. The findings of this research reveal strong correlations between the indirect methods and the mechanical properties of the tuffs. Both uniaxial compressive strength and Brazilian tensile strength could be accurately predicted using NPI, PLI, and BPI values. The regression models developed in this study allow for rapid, cost-effective assessments of tuff strength in cases where direct testing is impractical. These results are particularly valuable for geological engineering applications, where time and resource constraints exist. This study highlights the significance of using indirect methods as reliable predictors of the mechanical behavior of weak rocks like tuffs. Further research is recommended to explore the application of these methods to other rock types with similar characteristics. Further research is required to compare the results with those of established direct test methods.Keywords: brazilian tensile strength, disc shear strength, indirect methods, tuffs, uniaxial compressive strength
Procedia PDF Downloads 1515678 A Social Network Analysis for Formulating Construction Defect Generation Mechanisms
Authors: Hamad Aljassmi, Sangwon Han
Abstract:
Various solutions for preventing construction defects have been suggested. However, a construction company may have difficulties adopting all these suggestions due to financial and practical constraints. Based on this recognition, this paper aims to identify the most significant defect causes and formulate their defect generation mechanism in order to help a construction company to set priorities of its defect prevention strategies. For this goal, we conducted a questionnaire survey of 106 industry professionals and identified five most significant causes including: (1) organizational culture, (2) time pressure and constraints, (3) workplace quality system, (4) financial constraints upon operational expenses and (5) inadequate employee training or learning opportunities.Keywords: defect, quality, failure, risk
Procedia PDF Downloads 62715677 A Trend Based Forecasting Framework of the ATA Method and Its Performance on the M3-Competition Data
Authors: H. Taylan Selamlar, I. Yavuz, G. Yapar
Abstract:
It is difficult to make predictions especially about the future and making accurate predictions is not always easy. However, better predictions remain the foundation of all science therefore the development of accurate, robust and reliable forecasting methods is very important. Numerous number of forecasting methods have been proposed and studied in the literature. There are still two dominant major forecasting methods: Box-Jenkins ARIMA and Exponential Smoothing (ES), and still new methods are derived or inspired from them. After more than 50 years of widespread use, exponential smoothing is still one of the most practically relevant forecasting methods available due to their simplicity, robustness and accuracy as automatic forecasting procedures especially in the famous M-Competitions. Despite its success and widespread use in many areas, ES models have some shortcomings that negatively affect the accuracy of forecasts. Therefore, a new forecasting method in this study will be proposed to cope with these shortcomings and it will be called ATA method. This new method is obtained from traditional ES models by modifying the smoothing parameters therefore both methods have similar structural forms and ATA can be easily adapted to all of the individual ES models however ATA has many advantages due to its innovative new weighting scheme. In this paper, the focus is on modeling the trend component and handling seasonality patterns by utilizing classical decomposition. Therefore, ATA method is expanded to higher order ES methods for additive, multiplicative, additive damped and multiplicative damped trend components. The proposed models are called ATA trended models and their predictive performances are compared to their counter ES models on the M3 competition data set since it is still the most recent and comprehensive time-series data collection available. It is shown that the models outperform their counters on almost all settings and when a model selection is carried out amongst these trended models ATA outperforms all of the competitors in the M3- competition for both short term and long term forecasting horizons when the models’ forecasting accuracies are compared based on popular error metrics.Keywords: accuracy, exponential smoothing, forecasting, initial value
Procedia PDF Downloads 17715676 From Shallow Semantic Representation to Deeper One: Verb Decomposition Approach
Authors: Aliaksandr Huminski
Abstract:
Semantic Role Labeling (SRL) as shallow semantic parsing approach includes recognition and labeling arguments of a verb in a sentence. Verb participants are linked with specific semantic roles (Agent, Patient, Instrument, Location, etc.). Thus, SRL can answer on key questions such as ‘Who’, ‘When’, ‘What’, ‘Where’ in a text and it is widely applied in dialog systems, question-answering, named entity recognition, information retrieval, and other fields of NLP. However, SRL has the following flaw: Two sentences with identical (or almost identical) meaning can have different semantic role structures. Let consider 2 sentences: (1) John put butter on the bread. (2) John buttered the bread. SRL for (1) and (2) will be significantly different. For the verb put in (1) it is [Agent + Patient + Goal], but for the verb butter in (2) it is [Agent + Goal]. It happens because of one of the most interesting and intriguing features of a verb: Its ability to capture participants as in the case of the verb butter, or their features as, say, in the case of the verb drink where the participant’s feature being liquid is shared with the verb. This capture looks like a total fusion of meaning and cannot be decomposed in direct way (in comparison with compound verbs like babysit or breastfeed). From this perspective, SRL looks really shallow to represent semantic structure. If the key point in semantic representation is an opportunity to use it for making inferences and finding hidden reasons, it assumes by default that two different but semantically identical sentences must have the same semantic structure. Otherwise we will have different inferences from the same meaning. To overcome the above-mentioned flaw, the following approach is suggested. Assume that: P is a participant of relation; F is a feature of a participant; Vcp is a verb that captures a participant; Vcf is a verb that captures a feature of a participant; Vpr is a primitive verb or a verb that does not capture any participant and represents only a relation. In another word, a primitive verb is a verb whose meaning does not include meanings from its surroundings. Then Vcp and Vcf can be decomposed as: Vcp = Vpr +P; Vcf = Vpr +F. If all Vcp and Vcf will be represented this way, then primitive verbs Vpr can be considered as a canonical form for SRL. As a result of that, there will be no hidden participants caught by a verb since all participants will be explicitly unfolded. An obvious example of Vpr is the verb go, which represents pure movement. In this case the verb drink can be represented as man-made movement of liquid into specific direction. Extraction and using primitive verbs for SRL create a canonical representation unique for semantically identical sentences. It leads to the unification of semantic representation. In this case, the critical flaw related to SRL will be resolved.Keywords: decomposition, labeling, primitive verbs, semantic roles
Procedia PDF Downloads 36615675 Contrasting The Water Consumption Estimation Methods
Authors: Etienne Alain Feukeu, L. W. Snyman
Abstract:
Water scarcity is becoming a real issue nowadays. Most countries in the world are facing it in their own way based on their own geographical coordinate and condition. Many countries are facing a challenge of a growing water demand as a result of not only an increased population, economic growth, but also as a pressure of the population dynamic and urbanization. In view to mitigate some of this related problem, an accurate method of water estimation and future prediction, forecast is essential to guarantee not only the sufficient quantity, but also a good water distribution and management system. Beside the fact that several works have been undertaken to address this concern, there is still a considerable disparity between different methods and standard used for water prediction and estimation. Hence this work contrast and compare two well-defined and established methods from two countries (USA and South Africa) to demonstrate the inconsistency when different method and standards are used interchangeably.Keywords: water scarcity, water estimation, water prediction, water forecast.
Procedia PDF Downloads 20115674 Comparison of Different Artificial Intelligence-Based Protein Secondary Structure Prediction Methods
Authors: Jamerson Felipe Pereira Lima, Jeane Cecília Bezerra de Melo
Abstract:
The difficulty and cost related to obtaining of protein tertiary structure information through experimental methods, such as X-ray crystallography or NMR spectroscopy, helped raising the development of computational methods to do so. An approach used in these last is prediction of tridimensional structure based in the residue chain, however, this has been proved an NP-hard problem, due to the complexity of this process, explained by the Levinthal paradox. An alternative solution is the prediction of intermediary structures, such as the secondary structure of the protein. Artificial Intelligence methods, such as Bayesian statistics, artificial neural networks (ANN), support vector machines (SVM), among others, were used to predict protein secondary structure. Due to its good results, artificial neural networks have been used as a standard method to predict protein secondary structure. Recent published methods that use this technique, in general, achieved a Q3 accuracy between 75% and 83%, whereas the theoretical accuracy limit for protein prediction is 88%. Alternatively, to achieve better results, support vector machines prediction methods have been developed. The statistical evaluation of methods that use different AI techniques, such as ANNs and SVMs, for example, is not a trivial problem, since different training sets, validation techniques, as well as other variables can influence the behavior of a prediction method. In this study, we propose a prediction method based on artificial neural networks, which is then compared with a selected SVM method. The chosen SVM protein secondary structure prediction method is the one proposed by Huang in his work Extracting Physico chemical Features to Predict Protein Secondary Structure (2013). The developed ANN method has the same training and testing process that was used by Huang to validate his method, which comprises the use of the CB513 protein data set and three-fold cross-validation, so that the comparative analysis of the results can be made comparing directly the statistical results of each method.Keywords: artificial neural networks, protein secondary structure, protein structure prediction, support vector machines
Procedia PDF Downloads 62115673 Current Medical and Natural Synchronization Methods in Small Ruminants
Authors: Mehmet Akoz, Mustafa Kul
Abstract:
Ewes and goats are seasonally polyestrus animals. Their reproductive activities are associated with the reduction or extending of daylight. Melatonin releasing from pineal gland regulates the sexual activities depending on daylight. In recent years, number of ewes decreased in our country. This situation dispatched to developing of some methods to increase productivity. Small ruminants can be synchronized with the natural and medical methods. known methods from natural light set with ram and goat participation. The most important natural methods of male influence, daylight is regulated and feed. On the other hand, progestagens, PGF2α, melatonin, and gonadotropins are commonly used for the purpose of estrus synchranization. But it is not effective PGF2α anestrous season The short-term and long-term progesterone treatment was effective to synchronize estrus in small ruminats during both breeding and anestrus seasons. Alternative choices of progesterone/progestagen have been controlled internal drug release (CIDR) devices, supplying natural progesterone, norgestomet implants, and orally active melengestrol acetate Melatonin anestrous season and should be applied during the transition period, but the season can be synchronized. Estrus synchronisation shortens anestrus season, decreases labor for mating/insemination and estrus pursuit, and induces multiple pregnancies.Keywords: ewes, goat, synchronization, progestagen, PGF2α
Procedia PDF Downloads 34215672 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification
Authors: Abdelhadi Lotfi, Abdelkader Benyettou
Abstract:
In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.Keywords: classification, probabilistic neural networks, network optimization, pattern recognition
Procedia PDF Downloads 26215671 Quartic Spline Method for Numerical Solution of Self-Adjoint Singularly Perturbed Boundary Value Problems
Authors: Reza Mohammadi
Abstract:
Using quartic spline, we develop a method for numerical solution of singularly perturbed two-point boundary-value problems. The purposed method is fourth-order accurate and applicable to problems both in singular and non-singular cases. The convergence analysis of the method is given. The resulting linear system of equations has been solved by using a tri-diagonal solver. We applied the presented method to test problems which have been solved by other existing methods in references, for comparison of presented method with the existing methods. Numerical results are given to illustrate the efficiency of our methods.Keywords: second-order ordinary differential equation, singularly-perturbed, quartic spline, convergence analysis
Procedia PDF Downloads 36015670 Analysis of Histogram Asymmetry for Waste Recognition
Authors: Janusz Bobulski, Kamila Pasternak
Abstract:
Despite many years of effort and research, the problem of waste management is still current. So far, no fully effective waste management system has been developed. Many programs and projects improve statistics on the percentage of waste recycled every year. In these efforts, it is worth using modern Computer Vision techniques supported by artificial intelligence. In the article, we present a method of identifying plastic waste based on the asymmetry analysis of the histogram of the image containing the waste. The method is simple but effective (94%), which allows it to be implemented on devices with low computing power, in particular on microcomputers. Such de-vices will be used both at home and in waste sorting plants.Keywords: waste management, environmental protection, image processing, computer vision
Procedia PDF Downloads 11915669 Influence of Distribution of Body Fat on Cholesterol Non-HDL and Its Effect on Kidney Filtration
Authors: Magdalena B. Kaziuk, Waldemar Kosiba
Abstract:
Background: In the XXI century we have to deal with the epidemic of obesity which is important risk factor for the cardiovascular and kidney diseases. Lipo proteins are directly involved in the atherosclerotic process. Non-high-density lipo protein (non-HDL) began following widespread recognition of its superiority over LDL as a measurement of vascular event risk. Non-HDL includes residual risk which persists in patients after achieved recommended level of LDL. Materials and Methods: The study covered 111 patients (52 females, 59 males, age 51,91±14 years), hospitalized on the intern department. Body composition was assessed using the bioimpendance method and anthropometric measurements. Physical activity data were collected during the interview. The nutritional status and the obesity type were determined with the Waist to Height Ratio and the Waist to Hip Ratio. A function of the kidney was evaluated by calculating the estimated glomerular filtration rate (eGFR) using MDRD formula. Non-HDL was calculated as a difference between concentration of the Total and HDL cholesterol. Results: 10% of patients were found to be underweight; 23.9 % had correct body weight; 15,08 % had overweight, while the remaining group had obesity: 51,02 %. People with the android shape have higher non-HDL cholesterol versus with the gynoid shape (p=0.003). The higher was non-HDL, the lower eGFR had studied subjects (p < 0.001). Significant correlation was found between high non-HDL and incorrect dietary habits in patients avoiding eating vegetables, fruits and having low physical activity (p < 0.005). Conclusions: Android type of figure raises the residual risk of the heart disease associated with higher levels of non-HDL. Increasing physical activity in these patients reduces the level of non-HDL. Non-HDL seems to be the best predictor among all cholesterol measures for the cardiovascular events and worsening eGFR.Keywords: obesity, non-HDL cholesterol, glomerular filtration rate, lifestyle
Procedia PDF Downloads 37315668 Airport Pavement Crack Measurement Systems and Crack Density for Pavement Evaluation
Authors: Ali Ashtiani, Hamid Shirazi
Abstract:
This paper reviews the status of existing practice and research related to measuring pavement cracking and using crack density as a pavement surface evaluation protocol. Crack density for pavement evaluation is currently not widely used within the airport community and its use by the highway community is limited. However, surface cracking is a distress that is closely monitored by airport staff and significantly influences the development of maintenance, rehabilitation and reconstruction plans for airport pavements. Therefore crack density has the potential to become an important indicator of pavement condition if the type, severity and extent of surface cracking can be accurately measured. A pavement distress survey is an essential component of any pavement assessment. Manual crack surveying has been widely used for decades to measure pavement performance. However, the accuracy and precision of manual surveys can vary depending upon the surveyor and performing surveys may disrupt normal operations. Given the variability of manual surveys, this method has shown inconsistencies in distress classification and measurement. This can potentially impact the planning for pavement maintenance, rehabilitation and reconstruction and the associated funding strategies. A substantial effort has been devoted for the past 20 years to reduce the human intervention and the error associated with it by moving toward automated distress collection methods. The automated methods refer to the systems that identify, classify and quantify pavement distresses through processes that require no or very minimal human intervention. This principally involves the use of a digital recognition software to analyze and characterize pavement distresses. The lack of established protocols for measurement and classification of pavement cracks captured using digital images is a challenge to developing a reliable automated system for distress assessment. Variations in types and severity of distresses, different pavement surface textures and colors and presence of pavement joints and edges all complicate automated image processing and crack measurement and classification. This paper summarizes the commercially available systems and technologies for automated pavement distress evaluation. A comprehensive automated pavement distress survey involves collection, interpretation, and processing of the surface images to identify the type, quantity and severity of the surface distresses. The outputs can be used to quantitatively calculate the crack density. The systems for automated distress survey using digital images reviewed in this paper can assist the airport industry in the development of a pavement evaluation protocol based on crack density. Analysis of automated distress survey data can lead to a crack density index. This index can be used as a means of assessing pavement condition and to predict pavement performance. This can be used by airport owners to determine the type of pavement maintenance and rehabilitation in a more consistent way.Keywords: airport pavement management, crack density, pavement evaluation, pavement management
Procedia PDF Downloads 18515667 The Role of Banks Funding and Promoting the Foreign Trade: Case of Turkey
Authors: Mikail Altan
Abstract:
International trust takes first place in the development of foreign trade in the country. They see an important role in ensuring that trust. Various payment methods that are developed in the banking system provide fast and reliable way to execution and promote foreign trade by financing the foreign trade. In this study, we investigate the influence of bank on foreign trade in Turkey. 26 years of data for 1990-2015 period have been used in this study. After correlation analysis, a simple regression model was established. Payment methods that are developed in the banking system make a positive contribution in Turkey’s foreign trade volume. In addition, the export of Turkey was affected positively more than import’s by these payment methods.Keywords: banks, export, foreign trade, import
Procedia PDF Downloads 35815666 High-Efficiency Comparator for Low-Power Application
Authors: M. Yousefi, N. Nasirzadeh
Abstract:
In this paper, dynamic comparator structure employing two methods for power consumption reduction with applications in low-power high-speed analog-to-digital converters have been presented. The proposed comparator has low consumption thanks to power reduction methods. They have the ability for offset adjustment. The comparator consumes 14.3 μW at 100 MHz which is equal to 11.8 fJ. The comparator has been designed and simulated in 180 nm CMOS. Layouts occupy 210 μm2.Keywords: efficiency, comparator, power, low
Procedia PDF Downloads 35815665 Application of Low-order Modeling Techniques and Neural-Network Based Models for System Identification
Authors: Venkatesh Pulletikurthi, Karthik B. Ariyur, Luciano Castillo
Abstract:
The system identification from the turbulence wakes will lead to the tactical advantage to prepare and also, to predict the trajectory of the opponents’ movements. A low-order modeling technique, POD, is used to predict the object based on the wake pattern and compared with pre-trained image recognition neural network (NN) to classify the wake patterns into objects. It is demonstrated that low-order modeling, POD, is able to predict the objects better compared to pretrained NN by ~30%.Keywords: the bluff body wakes, low-order modeling, neural network, system identification
Procedia PDF Downloads 18015664 Coordinated Voltage Control in a Radial Distribution System
Authors: Shivarudraswamy, Anubhav Shrivastava, Lakshya Bhat
Abstract:
Distributed generation has indeed become a major area of interest in recent years. Distributed Generation can address large number of loads in a power line and hence has better efficiency over the conventional methods. However there are certain drawbacks associated with it, increase in voltage being the major one. This paper addresses the voltage control at the buses for an IEEE 30 bus system by regulating reactive power. For carrying out the analysis, the suitable location for placing distributed generators (DG) is identified through load flow analysis and seeing where the voltage profile is dipping. MATLAB programming is used to regulate the voltage at all buses within +/-5% of the base value even after the introduction of DG’s. Three methods for regulation of voltage are discussed. A sensitivity based analysis is later carried out to determine the priority among the various methods listed in the paper.Keywords: distributed generators, distributed system, reactive power, voltage control
Procedia PDF Downloads 50015663 Effects of the Social Work Field Practicum on the Wellbeing of Non-Traditional and Underserved Students: A Mixed-Methods Study
Authors: Dana S. Smith, Angela Goins, Shahnaz Savani
Abstract:
Using a mixed-methods approach, this study explored costs to student wellbeing generated by the social work field practicum requirement. The project was conducted by faculty at a medium-sized university in the United States. Social work educators and field practicum instructors participated in interviews. Students and former students completed surveys on the topic. The data analysis revealed emotional burdens as well as threats to student wellbeing in association with the fieldwork required for those in pursuit of a social work degree. The study includes recommendations for anti-oppressive approaches for academic programs and implications for further research.Keywords: emotional wellbeing, field practicum, mixed-methods, social justice
Procedia PDF Downloads 10115662 Effects of the Social Work Field Practicum on the Wellbeing of Non-traditional and Underserved Students: A Mixed-Methods Study
Authors: Dana S. Smith, Angela Goins, Shahnaz Savani
Abstract:
Using a mixed-methods approach, this study explored costs to student wellbeing generated by the social work field practicum requirement. The project was conducted by faculty at a medium sized university in the United States. Social work educators and field practicum instructors participated in interviews. Students and former students completed surveys on the topic. The data analysis revealed emotional burdens as well as threats to student wellbeing in association with the fieldwork required for those in pursuit of a social work degree. The study includes recommendations of anti-oppressive approaches for academic programs and implications for further research.Keywords: emotional wellbeing, field practicum, mixed-methods, social justice
Procedia PDF Downloads 9015661 Laban Movement Analysis Using Kinect
Authors: Bernstein Ran, Shafir Tal, Tsachor Rachelle, Studd Karen, Schuster Assaf
Abstract:
Laban Movement Analysis (LMA), developed in the dance community over the past seventy years, is an effective method for observing, describing, notating, and interpreting human movement to enhance communication and expression in everyday and professional life. Many applications that use motion capture data might be significantly leveraged if the Laban qualities will be recognized automatically. This paper presents an automated recognition method of Laban qualities from motion capture skeletal recordings and it is demonstrated on the output of Microsoft’s Kinect V2 sensor.Keywords: Laban movement analysis, multitask learning, Kinect sensor, machine learning
Procedia PDF Downloads 34115660 The 'Saudade' Market and the Development of Tourism in the Azores: An Analysis of Travel Preferences of Azorean Emigrants
Authors: Silvia Rocha, Flavio Tiago, Maria Teresa Tiago, Sandra Faria, Joao Couto
Abstract:
The Azores have a tourist potential that has been developing, especially after an increase in promotion and the liberalization of airspace. However, there is still a gap with regard to the understanding of tourists from North America. Previous studies referred to the existence of two basic types of touristic flows: Emigrants and locals. Looking to help fill this gap, a study of travelers from North America was conducted. Using cluster analysis, it was determined the existence of three segments: nostalgic, regular and frequent. The recognition of these three segments is important to determine the necessary adjustments in tourist offerings to this market.Keywords: tourism, diaspora, nostalgia, culture
Procedia PDF Downloads 19315659 The Non-Linear Analysis of Brain Response to Visual Stimuli
Authors: H. Namazi, H. T. N. Kuan
Abstract:
Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to visual stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to visual stimuli but provide us with very good recommendations for clinical purposes.Keywords: visual stimuli, brain response, EEG signal, fractal dimension, hurst exponent, Jeffrey’s measure
Procedia PDF Downloads 56115658 Assessment of Treatment Methods to Remove Hazardous Dyes from Synthetic Wastewater
Authors: Abhiram Siva Prasad Pamula
Abstract:
Access to clean drinking water becomes scarce due to the increase in extreme weather events because of the rise in the average global temperatures and climate change. By 2030, approximately 47% of the world’s population will face water shortages due to uncertainty in seasonal rainfall. Over 10000 varieties of synthetic dyes are commercially available in the market and used by textile and paper industries, negatively impacting human health when ingested. Besides humans, textile dyes have a negative impact on aquatic ecosystems by increasing biological oxygen demand and chemical oxygen demand. This study assesses different treatment methods that remove dyes from textile wastewater while focusing on energy, economic, and engineering aspects of the treatment processes.Keywords: textile wastewater, dye removal, treatment methods, hazardous pollutants
Procedia PDF Downloads 9315657 Comparative Pre-treatment Analysis of RNA-Extraction Methods and Efficient Detection of SARS-COV-2 and PMMoV in Influents and 1ˢᵗ Sedimentation from a Wastewater Treatment Plan
Authors: Jesmin Akter, Chang Hyuk Ahn, Ilho Kim, Fumitake Nishimura, Jaiyeop Lee
Abstract:
This study aimed to compare two pre-treatment and two RNA extraction methods, namely PEG, and Nano bubble, Viral RNA Soil, and Mini Kit, in terms of their efficiency in detecting SARS-CoV-2 and PMMoV in influent and 1st sedimentation samples from a wastewater treatment plant. The extracted RNA samples were quantified and evaluated for purity, yield, and integrity. The results indicated that the nanobubble PEG method provided the highest yield of RNA, while the QIAamp Viral RNA Mini Kit produced the purest RNA samples. In terms of sensitivity and specificity, all these methods were able to detect SARS-CoV-2 and PMMoV in both influent and 1st sedimentation samples. However, the nanobubble PEG method showed slightly higher sensitivity compared to the other methods. These findings suggest that the choice of RNA extraction method should depend on the downstream application and the quality of the RNA required. The study also highlights the potential of wastewater-based epidemiology as an effective and non-invasive method for monitoring the spread of infectious diseases in a community.Keywords: influent, PMMoV, SARS-CoV-2, wastewater based epidemiology
Procedia PDF Downloads 9615656 Review on Effective Texture Classification Techniques
Authors: Sujata S. Kulkarni
Abstract:
Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases.Keywords: compressed sensing, feature extraction, image classification, texture analysis
Procedia PDF Downloads 434