Search results for: real time clock
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20756

Search results for: real time clock

19826 Performance Evaluation of Packet Scheduling with Channel Conditioning Aware Based on Wimax Networks

Authors: Elmabruk Laias, Abdalla M. Hanashi, Mohammed Alnas

Abstract:

Worldwide Interoperability for Microwave Access (WiMAX) became one of the most challenging issues, since it was responsible for distributing available resources of the network among all users this leaded to the demand of constructing and designing high efficient scheduling algorithms in order to improve the network utilization, to increase the network throughput, and to minimize the end-to-end delay. In this study, the proposed algorithm focuses on an efficient mechanism to serve non-real time traffic in congested networks by considering channel status.

Keywords: WiMAX, Quality of Services (QoS), OPNE, Diff-Serv (DS).

Procedia PDF Downloads 285
19825 Development and Validation of Thermal Stability in Complex System ABDM has two ASIC by NISA and COMSOL Tools

Authors: A. Oukaira, A. Lakhssassi, O. Ettahri

Abstract:

To make a good thermal management in an ABDM (Adapter Board Detector Module) card, we must first control temperature and its gradient from the first step in the design of integrated circuits ASIC of our complex system. In this paper, our main goal is to develop and validate the thermal stability in order to get an idea of the flow of heat around the ASIC in transient and thus address the thermal issues for integrated circuits at the ABDM card. However, we need heat sources simulations for ABDM card to establish its thermal mapping. This led us to perform simulations at each ASIC that will allow us to understand the thermal ABDM map and find real solutions for each one of our complex system that contains 36 ABDM map, taking into account the different layers around ASIC. To do a transient simulation under NISA, we had to build a function of power modulation in time TIMEAMP. The maximum power generated in the ASIC is 0.6 W. We divided the power uniformly in the volume of the ASIC. This power was applied for 5 seconds to visualize the evolution and distribution of heat around the ASIC. The DBC (Dirichlet Boundary conditions) method was applied around the ABDM at 25°C and just after these simulations in NISA tool we will validate them by COMSOL tool, wich is a numerical calculation software for a modular finite element for modeling a wide variety of physical phenomena characterizing a real problem. It will also be a design tool with its ability to handle 3D geometries for complex systems.

Keywords: ABDM, APD, thermal mapping, complex system

Procedia PDF Downloads 262
19824 Use of PACER Application as Physical Activity Assessment Tool: Results of a Reliability and Validity Study

Authors: Carine Platat, Fatima Qshadi, Ghofran Kayed, Nour Hussein, Amjad Jarrar, Habiba Ali

Abstract:

Nowadays, smartphones are very popular. They are offering a variety of easy-to-use and free applications among which step counters and fitness tests. The number of users is huge making of such applications a potentially efficient new strategy to encourage people to become more active. Nonetheless, data on their reliability and validity are very scarce and when available, they are often negative and contradictory. Besides, weight status, which is likely to introduce a bias in the physical activity assessment, was not often considered. Hence, the use of these applications as motivational tool, assessment tool and in research is questionable. PACER is one of the free step counters application. Even though it is one of the best rated free application by users, it has never been tested for reliability and validity. Prior any use of PACER, this remains to be investigated. The objective of this work is to investigate the reliability and validity of the smartphone application PACER in measuring the number of steps and in assessing the cardiorespiratory fitness by the 6 minutes walking test. 20 overweight or obese students (10 male and 10 female) were recruited at the United Arab Emirate University, aged between 18 and 25 years old. Reliability and validity were tested in real life conditions and in controlled conditions by using a treadmill. Test-retest experiments were done with PACER on 2 days separated by a week in real life conditions (24 hours each time) and in controlled conditions (30 minutes on treadmill, 3km/h). Validity was tested against the pedometer OMRON in the same conditions. During treadmill test, video was recorded and steps numbers were compared between PACER, pedometer and video. The validity of PACER in estimating the cardiorespiratory fitness (VO2max) as part of the 6 minutes walking test (6MWT) was studied against the 20m shuttle running test. Reliability was studied by calculating intraclass correlation coefficients (ICC), 95% confidence interval (95%CI) and by Bland-Altman plots. Validity was studied by calculating Spearman correlation coefficient (rho) and Bland-Altman plots. PACER reliability was good in both male and female in real life conditions (p≤10-3) but only in female in controlled conditions (p=0.01). PACER was valid against OMRON pedometer in male and female in real life conditions (rho=0.94, p≤10-3 ; rho=0.64, p=0.01, in male and female respectively). In controlled conditions, PACER was not valid against pedometer. But, PACER was valid against video in female (rho=0.72, p≤10-3). PACER was valid against the shuttle run test in male and female (rho-=0.66, p=0.01 ; rho=0.51, p=0.04) to estimate VO2max. This study provides data on the reliability and viability of PACER in overweight or obese male and female young adults. Globally, PACER was shown as reliable and valid in real life conditions in overweight or obese male and female to count steps and assess fitness. This supports the use of PACER to assess and promote physical activity in clinical follow-up and community interventions.

Keywords: smartphone application, pacer, reliability, validity, steps, fitness, physical activity

Procedia PDF Downloads 452
19823 An Experimental Study on the Variability of Nonnative and Native Inference of Word Meanings in Timed and Untimed Conditions

Authors: Swathi M. Vanniarajan

Abstract:

Reading research suggests that online contextual vocabulary comprehension while reading is an interactive and integrative process. One’s success in it depends on a variety of factors including the amount and the nature of available linguistic and nonlinguistic cues, his/her analytical and integrative skills, schema memory (content familiarity), and processing speed characterized along the continuum of controlled to automatic processing. The experiment reported here, conducted with 30 native speakers as one group and 30 nonnative speakers as another group (all graduate students), hypothesized that while working on (24) tasks which required them to comprehend an unfamiliar word in real time without backtracking, due to the differences in the nature of their respective reading processes, the nonnative subjects would be less able to construct the meanings of the unknown words by integrating the multiple but sufficient contextual cues provided in the text but the native subjects would be able to. The results indicated that there were significant inter-group as well as intra-group differences in terms of the quality of definitions given. However, when given additional time, while the nonnative speakers could significantly improve the quality of their definitions, the native speakers in general would not, suggesting that all things being equal, time is a significant factor for success in nonnative vocabulary and reading comprehension processes and that accuracy precedes automaticity in the development of nonnative reading processes also.

Keywords: reading, second language processing, vocabulary comprehension

Procedia PDF Downloads 165
19822 Optimization of SWL Algorithms Using Alternative Adder Module in FPGA

Authors: Tayab D. Memon, Shahji Farooque, Marvi Deshi, Imtiaz Hussain Kalwar, B. S. Chowdhry

Abstract:

Recently single-bit ternary FIR-like filter (SBTFF) hardware synthesize in FPGA is reported and compared with multi-bit FIR filter on similar spectral characteristics. Results shows that SBTFF dominates upon multi-bit filter overall. In this paper, an optimized adder module for ternary quantized sigma-delta modulated signal is presented. The adder is simulated using ModelSim for functional verification the area-performance of the proposed adder were obtained through synthesis in Xilinx and compared to conventional adder trees. The synthesis results show that the proposed adder tree achieves higher clock rates and lower chip area at higher inputs to the adder block; whereas conventional adder tree achieves better performance and lower chip area at lower number of inputs to the same adder block. These results enhance the usefulness of existing short word length DSP algorithms for fast and efficient mobile communication.

Keywords: short word length (SWL), DSP algorithms, FPGA, SBTFF, VHDL

Procedia PDF Downloads 344
19821 The Impact of Audit Committee on Real Earnings Management: Evidence from Netherlands

Authors: Sana Masmoudi, Yosra Makni

Abstract:

Regulators highlight the importance of the Audit Committee (AC) as a key internal corporate governance mechanism. One of the most important roles of this committee is to oversee the financial reporting process. The purpose of this paper is to examine the link between the characteristics of an audit committee and the financial reporting quality by investigating whether the formation of audit committees and their characteristics are associated with improved financial reporting quality. This study provides empirical evidence of the association between audit committee independence, financial expertise, gender diversity, and meetings and Real Earnings Management (REM) as a proxy of financial reporting quality. Using data from, with a sample of 80 companies listed on the Amsterdam Stock Exchange during 2010-2017, the study finds that independence and AC Gender diversity are strongly related to financial reporting quality. In fact, these two characteristics constrain REM. The results also suggest that AC-financial expertise reduces to some extent, the likelihood of engaging in REM. These conclusions provide support then to the audit committee requirement under the Dutch Corporate Governance Code rules regarding gender diversity and AC meetings.

Keywords: audit committee, financial expertise, independence, real earnings management

Procedia PDF Downloads 169
19820 Hierarchical Operation Strategies for Grid Connected Building Microgrid with Energy Storage and Photovoltatic Source

Authors: Seon-Ho Yoon, Jin-Young Choi, Dong-Jun Won

Abstract:

This paper presents hierarchical operation strategies which are minimizing operation error between day ahead operation plan and real time operation. Operating power systems between centralized and decentralized approaches can be represented as hierarchical control scheme, featured as primary control, secondary control and tertiary control. Primary control is known as local control, featuring fast response. Secondary control is referred to as microgrid Energy Management System (EMS). Tertiary control is responsible of coordinating the operations of multi-microgrids. In this paper, we formulated 3 stage microgrid operation strategies which are similar to hierarchical control scheme. First stage is to set a day ahead scheduled output power of Battery Energy Storage System (BESS) which is only controllable source in microgrid and it is optimized to minimize cost of exchanged power with main grid using Particle Swarm Optimization (PSO) method. Second stage is to control the active and reactive power of BESS to be operated in day ahead scheduled plan in case that State of Charge (SOC) error occurs between real time and scheduled plan. The third is rescheduling the system when the predicted error is over the limited value. The first stage can be compared with the secondary control in that it adjusts the active power. The second stage is comparable to the primary control in that it controls the error in local manner. The third stage is compared with the secondary control in that it manages power balancing. The proposed strategies will be applied to one of the buildings in Electronics and Telecommunication Research Institute (ETRI). The building microgrid is composed of Photovoltaic (PV) generation, BESS and load and it will be interconnected with the main grid. Main purpose of that is minimizing operation cost and to be operated in scheduled plan. Simulation results support validation of proposed strategies.

Keywords: Battery Energy Storage System (BESS), Energy Management System (EMS), Microgrid (MG), Particle Swarm Optimization (PSO)

Procedia PDF Downloads 247
19819 AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”

Authors: Thomas Monahan, Nicolas Gorius, Thanh Nguyen

Abstract:

Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus.

Keywords: deep learning, generative adversarial network, edge computing, atmospheric parameters retrieval

Procedia PDF Downloads 168
19818 Slope Stabilisation of Highly Fractured Geological Strata Consisting of Mica Schist Layers While Construction of Tunnel Shaft

Authors: Saurabh Sharma

Abstract:

Introduction: The case study deals with the ground stabilisation of Nabi Karim Metro Station in Delhi, India, wherein an extremely complex geology was encountered while excavating the tunnelling shaft for launching Tunnel Boring Machine. The borelog investigation and the Seismic Refraction Technique (SRT) indicated towards the presence of an extremely hard rocky mass from a depth of 3-4 m itself, and accordingly, the Geotechnical Interpretation Report (GIR) concluded the presence of Grade-IV rock from 3m onwards and presence of Grade-III and better rock from 5-6m onwards. Accordingly, it was planned to retain the ground by providing secant piles all around the launching shaft and then excavating the shaft vertically after leaving a berm of 1.5m to prevent secant piles from getting exposed. To retain the side slopes, rock bolting with shotcreting and wire meshing were proposed, which is a normal practice in such strata. However, with the increase in depth of excavation, the rock quality kept on decreasing at an unexpected and surprising pace, with the Grade-III rock mass at 5-6 m converting to conglomerate formation at the depth of 15m. This worsening of geology from high grade rock to slushy conglomerate formation can never be predicted and came as a surprise to even the best geotechnical engineers. Since the excavation had already been cut down vertically to manage the shaft size, the execution was continued with enhanced cautions to stabilise the side slopes. But, when the shaft work was about to finish, a collapse was encountered on one side of the excavation shaft. This collapse was unexpected and surprising since all measures to stabilise the side slopes had been taken after face mapping, and the grid size, diameter, and depth of the rockbolts had already been readjusted to accommodate rock fractures. The above scenario was baffling even to the best geologists and geotechnical engineers, and it was decided that any further slope stabilisation scheme shall have to be designed in such a way to ensure safe completion of works. Accordingly, following revisions to excavation scheme were made: The excavation would be carried while maintaining a slope based on type of soil/rock. The rock bolt type was changed from SN rockbolts to Self Drilling type anchor. The grid size of the bolts changed on real time assessment. the excavation carried out by implementing a ‘Bench Release Approach’. Aggressive Real Time Instrumentation Scheme. Discussion: The above case Study again asserts vitality of correct interpretation of the geological strata and the need of real time revisions of the construction schemes based on the actual site data. The excavation is successfully being done with the above revised scheme, and further details of the Revised Slope Stabilisation Scheme, Instrumentation Schemes, Monitoring results, along with the actual site photographs, shall form the part of the final Paper.

Keywords: unconfined compressive strength (ucs), rock mass rating (rmr), rock bolts, self drilling anchors, face mapping of rock, secant pile, shotcrete

Procedia PDF Downloads 65
19817 Patching and Stretching: Development of Policy Mixes for Entrepreneurship in China

Authors: Jian Shao

Abstract:

The effect of entrepreneurship on economic, innovation, and employment has been widely acknowledged by scholars and governments. As an essential factor of influencing entrepreneurship activities, entrepreneurship policy creates a conducive environment to support and develop entrepreneurship. However, the challenge in developing entrepreneurship policy is that policy is normally a combination of many different goals and instruments. Instead of examining the effect of individual policy instruments, we argue that attention to a policy mix is necessary. In recent years, much attention has been focused on comparing a single policy instrument to a policy mix, evaluating the interactions between different instruments within a mix or assessment of particular policy mixes. However, another required step in understanding policy mixes is to understand how and why mixes evolve and change over time and to determine whether any changes are an improvement. In this paper, we try to trace the development of the policy mix for entrepreneurship in China by mapping the policy goals and instruments and reveal the process of policy mix changing over time. We find two main process mechanisms of the entrepreneurship policy mix in China: patching and stretching. Compared with policy repackaging, patching and stretching are more realistic processes in the real world of the policy mix, and they are possible to achieve effectiveness by avoiding conflicts and promoting synergies among policy goals and instruments.

Keywords: entrepreneurship, China, policy design, policy mix, policy patching

Procedia PDF Downloads 196
19816 Protecting the Privacy and Trust of VIP Users on Social Network Sites

Authors: Nidal F. Shilbayeh, Sameh T. Khuffash, Mohammad H. Allymoun, Reem Al-Saidi

Abstract:

There is a real threat on the VIPs personal pages on the Social Network Sites (SNS). The real threats to these pages is violation of privacy and theft of identity through creating fake pages that exploit their names and pictures to attract the victims and spread of lies. In this paper, we propose a new secure architecture that improves the trusting and finds an effective solution to reduce fake pages and possibility of recognizing VIP pages on SNS. The proposed architecture works as a third party that is added to Facebook to provide the trust service to personal pages for VIPs. Through this mechanism, it works to ensure the real identity of the applicant through the electronic authentication of personal information by storing this information within content of their website. As a result, the significance of the proposed architecture is that it secures and provides trust to the VIPs personal pages. Furthermore, it can help to discover fake page, protect the privacy, reduce crimes of personality-theft, and increase the sense of trust and satisfaction by friends and admirers in interacting with SNS.

Keywords: social network sites, online social network, privacy, trust, security and authentication

Procedia PDF Downloads 380
19815 Implementation of Building Information Modelling to Monitor, Assess, and Control the Indoor Environmental Quality of Higher Education Buildings

Authors: Mukhtar Maigari

Abstract:

The landscape of Higher Education (HE) institutions, especially following the CVID-19 pandemic, necessitates advanced approaches to manage Indoor Environmental Quality (IEQ) which is crucial for the comfort, health, and productivity of students and staff. This study investigates the application of Building Information Modelling (BIM) as a multifaceted tool for monitoring, assessing, and controlling IEQ in HE buildings aiming to bridge the gap between traditional management practices and the innovative capabilities of BIM. Central to the study is a comprehensive literature review, which lays the foundation by examining current knowledge and technological advancements in both IEQ and BIM. This review sets the stage for a deeper investigation into the practical application of BIM in IEQ management. The methodology consists of Post-Occupancy Evaluation (POE) which encompasses physical monitoring, questionnaire surveys, and interviews under the umbrella of case studies. The physical data collection focuses on vital IEQ parameters such as temperature, humidity, CO2 levels etc, conducted by using different equipment including dataloggers to ensure accurate data. Complementing this, questionnaire surveys gather perceptions and satisfaction levels from students, providing valuable insights into the subjective aspects of IEQ. The interview component, targeting facilities management teams, offers an in-depth perspective on IEQ management challenges and strategies. The research delves deeper into the development of a conceptual BIM-based framework, informed by the insight findings from case studies and empirical data. This framework is designed to demonstrate the critical functions necessary for effective IEQ monitoring, assessment, control and automation with real time data handling capabilities. This BIM-based framework leads to the developing and testing a BIM-based prototype tool. This prototype leverages on software such as Autodesk Revit with its visual programming tool i.e., Dynamo and an Arduino-based sensor network thereby allowing for real-time flow of IEQ data for monitoring, control and even automation. By harnessing the capabilities of BIM technology, the study presents a forward-thinking approach that aligns with current sustainability and wellness goals, particularly vital in the post-COVID-19 era. The integration of BIM in IEQ management promises not only to enhance the health, comfort, and energy efficiency of educational environments but also to transform them into more conducive spaces for teaching and learning. Furthermore, this research could influence the future of HE buildings by prompting universities and government bodies to revaluate and improve teaching and learning environments. It demonstrates how the synergy between IEQ and BIM can empower stakeholders to monitor IEQ conditions more effectively and make informed decisions in real-time. Moreover, the developed framework has broader applications as well; it can serve as a tool for other sustainability assessments, like energy analysis in HE buildings, leveraging measured data synchronized with the BIM model. In conclusion, this study bridges the gap between theoretical research and real-world application by practicalizing how advanced technologies like BIM can be effectively integrated to enhance environmental quality in educational institutions. It portrays the potential of integrating advanced technologies like BIM in the pursuit of improved environmental conditions in educational institutions.

Keywords: BIM, POE, IEQ, HE-buildings

Procedia PDF Downloads 47
19814 Laser Registration and Supervisory Control of neuroArm Robotic Surgical System

Authors: Hamidreza Hoshyarmanesh, Hosein Madieh, Sanju Lama, Yaser Maddahi, Garnette R. Sutherland, Kourosh Zareinia

Abstract:

This paper illustrates the concept of an algorithm to register specified markers on the neuroArm surgical manipulators, an image-guided MR-compatible tele-operated robot for microsurgery and stereotaxy. Two range-finding algorithms, namely time-of-flight and phase-shift, are evaluated for registration and supervisory control. The time-of-flight approach is implemented in a semi-field experiment to determine the precise position of a tiny retro-reflective moving object. The moving object simulates a surgical tool tip. The tool is a target that would be connected to the neuroArm end-effector during surgery inside the magnet bore of the MR imaging system. In order to apply flight approach, a 905-nm pulsed laser diode and an avalanche photodiode are utilized as the transmitter and receiver, respectively. For the experiment, a high frequency time to digital converter was designed using a field-programmable gate arrays. In the phase-shift approach, a continuous green laser beam with a wavelength of 530 nm was used as the transmitter. Results showed that a positioning error of 0.1 mm occurred when the scanner-target point distance was set in the range of 2.5 to 3 meters. The effectiveness of this non-contact approach exhibited that the method could be employed as an alternative for conventional mechanical registration arm. Furthermore, the approach is not limited by physical contact and extension of joint angles.

Keywords: 3D laser scanner, intraoperative MR imaging, neuroArm, real time registration, robot-assisted surgery, supervisory control

Procedia PDF Downloads 286
19813 Multidirectional Product Support System for Decision Making in Textile Industry Using Collaborative Filtering Methods

Authors: A. Senthil Kumar, V. Murali Bhaskaran

Abstract:

In the information technology ground, people are using various tools and software for their official use and personal reasons. Nowadays, people are worrying to choose data accessing and extraction tools at the time of buying and selling their products. In addition, worry about various quality factors such as price, durability, color, size, and availability of the product. The main purpose of the research study is to find solutions to these unsolved existing problems. The proposed algorithm is a Multidirectional Rank Prediction (MDRP) decision making algorithm in order to take an effective strategic decision at all the levels of data extraction, uses a real time textile dataset and analyzes the results. Finally, the results are obtained and compared with the existing measurement methods such as PCC, SLCF, and VSS. The result accuracy is higher than the existing rank prediction methods.

Keywords: Knowledge Discovery in Database (KDD), Multidirectional Rank Prediction (MDRP), Pearson’s Correlation Coefficient (PCC), VSS (Vector Space Similarity)

Procedia PDF Downloads 285
19812 The Impact of Cloud Accounting on Boards of Directors in the Middle East and North African (MENA) Countries

Authors: Ahmad Alqatan

Abstract:

Purpose: The purpose of this study is to analyze how the adoption of cloud accounting systems influences the governance practices and performance of boards of directors in MENA countries. The research aims to identify the benefits and challenges associated with cloud accounting and its role in improving board efficiency and oversight. Methodology: This research employs a mixed-method approach, combining quantitative surveys and qualitative interviews with board members and financial officers from a diverse range of companies in the MENA region. The quantitative data is analyzed to determine patterns and correlations, while qualitative insights provide a deeper understanding of the contextual factors influencing cloud accounting adoption and its impacts. Findings: The findings indicate that cloud accounting significantly enhances the decision-making capabilities of boards by providing real-time financial information and facilitating better communication among board members. Companies using cloud accounting reports improved financial oversight and more timely and accurate financial reporting. However, the research also identifies challenges such as cybersecurity concerns, resistance to change, and the need for ongoing training and support. Practical Implications: The study suggests that MENA companies can benefit from investing in cloud accounting technologies to improve board governance and strategic decision-making. It highlights the importance of addressing cybersecurity issues and providing adequate training for board members to maximize the advantages of cloud accounting. Originality: This research contributes to the limited literature on cloud accounting in the MENA region, offering valuable insights for policymakers, business leaders, and academics. It underscores the transformative potential of cloud accounting for enhancing board performance and corporate governance in emerging markets.

Keywords: cloud accounting, board of directors, MENA region, corporate governance, financial transparency, real-time data, decision-making, cybersecurity, technology adoption

Procedia PDF Downloads 28
19811 Audit of Urgent and Non-Urgent Patient Visits to the Emergency: A Case-Control Study

Authors: Peri Harish Kumar, Rafique Umer Harvitkar

Abstract:

Background: The emergency department mandates maximum efficacy in the utilization of the available resources. Non-urgent patient visits pose a serious concern to the treatment, patient triage, and resources available. Aims and Objectives: We conducted a retrospective case-control study of the emergency department patient list from October 2019 to November 2022. A total of 839 patients formed part of the study. Somatic complaints, vital signs, diagnostic test results, admission to the hospital, etc., were some of the criteria used for the categorization of patients. Results: The proportion of non-urgent visits varied from 7.2% to 43%, with a median of 21%. Somatic complaints were the least associated with further hospital admissions (n=28%), while diagnostic test results were the most significant indicator of further hospital admissions (n=74%). Effective triage helped minimize emergency department admissions by 36%. Conclusion: Our study shows that effective triaging, patient counselling, and round-the-clock consumable monitoring helped in the effective management of patients admitted and also significantly helped provide treatment to the patients most in need.

Keywords: urgent visits, non-urgent visits, traiging, emergency department admissions

Procedia PDF Downloads 112
19810 A Novel Approach to Asynchronous State Machine Modeling on Multisim for Avoiding Function Hazards

Authors: Parisi L., Hamili D., Azlan N.

Abstract:

The aim of this study was to design and simulate a particular type of Asynchronous State Machine (ASM), namely a ‘traffic light controller’ (TLC), operated at a frequency of 0.5 Hz. The design task involved two main stages: firstly, designing a 4-bit binary counter using J-K flip flops as the timing signal and subsequently, attaining the digital logic by deploying ASM design process. The TLC was designed such that it showed a sequence of three different colours, i.e. red, yellow and green, corresponding to set thresholds by deploying the least number of AND, OR and NOT gates possible. The software Multisim was deployed to design such circuit and simulate it for circuit troubleshooting in order for it to display the output sequence of the three different colours on the traffic light in the correct order. A clock signal, an asynchronous 4-bit binary counter that was designed through the use of J-K flip flops along with an ASM were used to complete this sequence, which was programmed to be repeated indefinitely. Eventually, the circuit was debugged and optimized, thus displaying the correct waveforms of the three outputs through the logic analyzer. However, hazards occurred when the frequency was increased to 10 MHz. This was attributed to delays in the feedback being too high.

Keywords: asynchronous state machine, traffic light controller, circuit design, digital electronics

Procedia PDF Downloads 427
19809 Simulation-Based Learning: Cases at Slovak University of Technology, at Faculty of Materials Science and Technology

Authors: Gabriela Chmelikova, Ludmila Hurajova, Pavol Bozek

Abstract:

Current era has brought hand in hand with the vast and fast development of technologies enormous pressure on individuals to keep being well - oriented in their professional fields. Almost all projects in the real world require an interdisciplinary perspective. These days we notice some cases when students face that real requirements for jobs are in contrast to the knowledge and competences they gained at universities. Interlacing labor market and university programs is a big issue these days. Sometimes it seems that higher education only “chases” reality. Simulation-based learning can support students’ touch with real demand on competences and knowledge of job world. The contribution provided a descriptive study of some cases of simulation-based teaching environment in different courses at STU MTF in Trnava and discussed how students and teachers perceive this model of teaching-learning approach. Finally, some recommendations are proposed how to enhance closer relationship between academic world and labor market.

Keywords: interdisciplinary approach, simulation-based learning, students' job readiness, teaching environment in higher education

Procedia PDF Downloads 269
19808 A Parallel Computation Based on GPU Programming for a 3D Compressible Fluid Flow Simulation

Authors: Sugeng Rianto, P.W. Arinto Yudi, Soemarno Muhammad Nurhuda

Abstract:

A computation of a 3D compressible fluid flow for virtual environment with haptic interaction can be a non-trivial issue. This is especially how to reach good performances and balancing between visualization, tactile feedback interaction, and computations. In this paper, we describe our approach of computation methods based on parallel programming on a GPU. The 3D fluid flow solvers have been developed for smoke dispersion simulation by using combinations of the cubic interpolated propagation (CIP) based fluid flow solvers and the advantages of the parallelism and programmability of the GPU. The fluid flow solver is generated in the GPU-CPU message passing scheme to get rapid development of haptic feedback modes for fluid dynamic data. A rapid solution in fluid flow solvers is developed by applying cubic interpolated propagation (CIP) fluid flow solvers. From this scheme, multiphase fluid flow equations can be solved simultaneously. To get more acceleration in the computation, the Navier-Stoke Equations (NSEs) is packed into channels of texel, where computation models are performed on pixels that can be considered to be a grid of cells. Therefore, despite of the complexity of the obstacle geometry, processing on multiple vertices and pixels can be done simultaneously in parallel. The data are also shared in global memory for CPU to control the haptic in providing kinaesthetic interaction and felling. The results show that GPU based parallel computation approaches provide effective simulation of compressible fluid flow model for real-time interaction in 3D computer graphic for PC platform. This report has shown the feasibility of a new approach of solving the compressible fluid flow equations on the GPU. The experimental tests proved that the compressible fluid flowing on various obstacles with haptic interactions on the few model obstacles can be effectively and efficiently simulated on the reasonable frame rate with a realistic visualization. These results confirm that good performances and balancing between visualization, tactile feedback interaction, and computations can be applied successfully.

Keywords: CIP, compressible fluid, GPU programming, parallel computation, real-time visualisation

Procedia PDF Downloads 431
19807 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale

Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin

Abstract:

A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.

Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale

Procedia PDF Downloads 129
19806 An Information-Based Approach for Preference Method in Multi-Attribute Decision Making

Authors: Serhat Tuzun, Tufan Demirel

Abstract:

Multi-Criteria Decision Making (MCDM) is the modelling of real-life to solve problems we encounter. It is a discipline that aids decision makers who are faced with conflicting alternatives to make an optimal decision. MCDM problems can be classified into two main categories: Multi-Attribute Decision Making (MADM) and Multi-Objective Decision Making (MODM), based on the different purposes and different data types. Although various MADM techniques were developed for the problems encountered, their methodology is limited in modelling real-life. Moreover, objective results are hard to obtain, and the findings are generally derived from subjective data. Although, new and modified techniques are developed by presenting new approaches such as fuzzy logic; comprehensive techniques, even though they are better in modelling real-life, could not find a place in real world applications for being hard to apply due to its complex structure. These constraints restrict the development of MADM. This study aims to conduct a comprehensive analysis of preference methods in MADM and propose an approach based on information. For this purpose, a detailed literature review has been conducted, current approaches with their advantages and disadvantages have been analyzed. Then, the approach has been introduced. In this approach, performance values of the criteria are calculated in two steps: first by determining the distribution of each attribute and standardizing them, then calculating the information of each attribute as informational energy.

Keywords: literature review, multi-attribute decision making, operations research, preference method, informational energy

Procedia PDF Downloads 224
19805 One Step Further: Pull-Process-Push Data Processing

Authors: Romeo Botes, Imelda Smit

Abstract:

In today’s modern age of technology vast amounts of data needs to be processed in real-time to keep users satisfied. This data comes from various sources and in many formats, including electronic and mobile devices such as GPRS modems and GPS devices. They make use of different protocols including TCP, UDP, and HTTP/s for data communication to web servers and eventually to users. The data obtained from these devices may provide valuable information to users, but are mostly in an unreadable format which needs to be processed to provide information and business intelligence. This data is not always current, it is mostly historical data. The data is not subject to implementation of consistency and redundancy measures as most other data usually is. Most important to the users is that the data are to be pre-processed in a readable format when it is entered into the database. To accomplish this, programmers build processing programs and scripts to decode and process the information stored in databases. Programmers make use of various techniques in such programs to accomplish this, but sometimes neglect the effect some of these techniques may have on database performance. One of the techniques generally used,is to pull data from the database server, process it and push it back to the database server in one single step. Since the processing of the data usually takes some time, it keeps the database busy and locked for the period of time that the processing takes place. Because of this, it decreases the overall performance of the database server and therefore the system’s performance. This paper follows on a paper discussing the performance increase that may be achieved by utilizing array lists along with a pull-process-push data processing technique split in three steps. The purpose of this paper is to expand the number of clients when comparing the two techniques to establish the impact it may have on performance of the CPU storage and processing time.

Keywords: performance measures, algorithm techniques, data processing, push data, process data, array list

Procedia PDF Downloads 243
19804 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT

Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez

Abstract:

Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.

Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management

Procedia PDF Downloads 137
19803 Impact Tensile Mechanical Properties of 316L Stainless Steel at Different Strain Rates

Authors: Jiawei Chen, Jia Qu, Dianwei Ju

Abstract:

316L stainless steel has good mechanical and technological properties, has been widely used in shipbuilding and aerospace manufacturing. In order to understand the effect of strain rate on the yield limit of 316L stainless steel and the constitutive relationship of the materials at different strain rates, this paper used the INSTRON-4505 electronic universal testing machine to study the mechanical properties of the tensile specimen under quasi-static conditions. Meanwhile, the Zwick-Roell RKP450 intelligent oscillometric impact tester was used to test the tensile specimens at different strain rates. Through the above two kinds of experimental researches, the relationship between the true stress-strain and the engineering stress-strain at different strain rates is obtained. The result shows that the tensile yield point of 316L stainless steel increases with the increase of strain rate, and the real stress-strain curve of the 316L stainless steel has a better normalization than that of the engineering stress-strain curve. The real stress-strain curves can be used in the practical engineering of impact stretch to improve its safety.

Keywords: impact stretch, 316L stainless steel, strain rate, real stress-strain, normalization

Procedia PDF Downloads 278
19802 Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments

Authors: Bekim Berisha, Sebastian Hirsiger, Pavel Hora

Abstract:

Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible.

Keywords: anisotropic hardening, crystal plasticity, micro structure, spectral solver

Procedia PDF Downloads 313
19801 Nullity of t-Tupple Graphs

Authors: Khidir R. Sharaf, Didar A. Ali

Abstract:

The nullity η (G) of a graph is the occurrence of zero as an eigenvalue in its spectra. A zero-sum weighting of a graph G is real valued function, say f from vertices of G to the set of real numbers, provided that for each vertex of G the summation of the weights f (w) over all neighborhood w of v is zero for each v in G.A high zero-sum weighting of G is one that uses maximum number of non-zero independent variables. If G is graph with an end vertex, and if H is an induced sub-graph of G obtained by deleting this vertex together with the vertex adjacent to it, then, η(G)= η(H). In this paper, a high zero-sum weighting technique and the end vertex procedure are applied to evaluate the nullity of t-tupple and generalized t-tupple graphs are derived and determined for some special types of graphs. Also, we introduce and prove some important results about the t-tupple coalescence, Cartesian and Kronecker products of nut graphs.

Keywords: graph theory, graph spectra, nullity of graphs, statistic

Procedia PDF Downloads 238
19800 A Non-Destructive TeraHertz System and Method for Capsule and Liquid Medicine Identification

Authors: Ke Lin, Steve Wu Qing Yang, Zhang Nan

Abstract:

The medicine and drugs has in the past been manufactured to the final products and then used laboratory analysis to verify their quality. However the industry needs crucially a monitoring technique for the final batch to batch quality check. The introduction of process analytical technology (PAT) provides an incentive to obtain real-time information about drugs on the production line, with the following optical techniques being considered: near-infrared (NIR) spectroscopy, Raman spectroscopy and imaging, mid-infrared spectroscopy with the use of chemometric techniques to quantify the final product. However, presents problems in that the spectra obtained will consist of many combination and overtone bands of the fundamental vibrations observed, making analysis difficult. In this work, we describe a non-destructive system and method for capsule and liquid medicine identification, more particularly, using terahertz time-domain spectroscopy and/or designed terahertz portable system for identifying different types of medicine in the package of capsule or in liquid medicine bottles. The target medicine can be detected directly, non-destructively and non-invasively.

Keywords: terahertz, non-destructive, non-invasive, chemical identification

Procedia PDF Downloads 129
19799 Outdoor Performances of Micro Scale Wind Turbine Stand Alone System

Authors: Ahmed. A. Hossam Eldin, Karim H. Youssef, Kareem M. AboRas

Abstract:

Recent current rapid industrial development and energy shortage are essential problems, which face most of the developing countries. Moreover, increased prices of fossil fuel and advanced energy conversion technology lead to the need for renewable energy resources. A study, modelling and simulation of an outdoor micro scale stand alone wind turbine was carried out. For model validation an experimental study was applied. In this research the aim was to clarify effects of real outdoor operating conditions and the instantaneous fluctuations of both wind direction and wind speed on the actual produced power. The results were compared with manufacturer’s data. The experiments were carried out in Borg Al-Arab, Alexandria. This location is on the north Western Coast of Alexandria. The results showed a real max output power for outdoor micro scale wind turbine, which is different from manufacturer’s value. This is due to the fact that the direction of wind speed is not the same as that of the manufacturer’s data. The measured wind speed and direction by the portable metrological weather station anemometer varied with time. The blade tail response could not change the blade direction at the same instant of the wind direction variation. Therefore, designers and users of micro scale wind turbine stand alone system cannot rely on the maker’s name plate data to reach the required power.

Keywords: micro-turbine, wind turbine, inverters, renewable energy, hybrid system

Procedia PDF Downloads 480
19798 Power Supply Feedback Regulation Loop Design Using Cadence PSpice Tool: Determining Converter Stability by Simulation

Authors: Debabrata Das

Abstract:

This paper explains how to design a regulation loop for a power supply circuit. It also discusses the need of a regulation loop and the improvement of a circuit with regulation loop. A sample design is used to demonstrate how to use PSpice to design feedback loop to control output voltage of a power supply and how to check if the power supply is stable or oscillatory. A sample design is made using a specific Integrated Circuit (IC) available in the PSpice library. A designer can experiment feedback loop design using Cadence Pspice tool. PSpice is easy to use, reliable, and convenient. To test a feedback loop, generally, engineers use trial and error method with the hardware which takes a lot of time and manpower. Moreover, it is expensive because component and Printed Circuit Board (PCB) may go bad. PSpice can be used by designers to test their loop designs without using hardware circuits. A designer can save time, cost, manpower and simulate his/her power supply circuit accurately before making a real hardware using this software package.

Keywords: power electronics, feedback loop, regulation, stability, pole, zero, oscillation

Procedia PDF Downloads 344
19797 General Time-Dependent Sequenced Route Queries in Road Networks

Authors: Mohammad Hossein Ahmadi, Vahid Haghighatdoost

Abstract:

Spatial databases have been an active area of research over years. In this paper, we study how to answer the General Time-Dependent Sequenced Route queries. Given the origin and destination of a user over a time-dependent road network graph, an ordered list of categories of interests and a departure time interval, our goal is to find the minimum travel time path along with the best departure time that minimizes the total travel time from the source location to the given destination passing through a sequence of points of interests belonging to each of the specified categories of interest. The challenge of this problem is the added complexity to the optimal sequenced route queries, where we assume that first the road network is time dependent, and secondly the user defines a departure time interval instead of one single departure time instance. For processing general time-dependent sequenced route queries, we propose two solutions as Discrete-Time and Continuous-Time Sequenced Route approaches, finding approximate and exact solutions, respectively. Our proposed approaches traverse the road network based on A*-search paradigm equipped with an efficient heuristic function, for shrinking the search space. Extensive experiments are conducted to verify the efficiency of our proposed approaches.

Keywords: trip planning, time dependent, sequenced route query, road networks

Procedia PDF Downloads 321