Search results for: post-editing machine translation output
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5254

Search results for: post-editing machine translation output

4324 Pyramid Binary Pattern for Age Invariant Face Verification

Authors: Saroj Bijarnia, Preety Singh

Abstract:

We propose a simple and effective biometrics system based on face verification across aging using a new variant of texture feature, Pyramid Binary Pattern. This employs Local Binary Pattern along with its hierarchical information. Dimension reduction of generated texture feature vector is done using Principal Component Analysis. Support Vector Machine is used for classification. Our proposed method achieves an accuracy of 92:24% and can be used in an automated age-invariant face verification system.

Keywords: biometrics, age invariant, verification, support vector machine

Procedia PDF Downloads 353
4323 Improvement of the Reliability and the Availability of a Production System

Authors: Lakhoua Najeh

Abstract:

Aims of the work: The aim of this paper is to improve the reliability and the availability of a Packer production line of cigarettes based on two methods: The SADT method (Structured Analysis Design Technique) and the FMECA approach (Failure Mode Effects and Critically Analysis). The first method enables us to describe the functionality of the Packer production line of cigarettes and the second method enables us to establish an FMECA analysis. Methods: The methodology adopted in order to contribute to the improvement of the reliability and the availability of a Packer production line of cigarettes has been proposed in this paper, and it is based on the use of Structured Analysis Design Technique (SADT) and Failure mode, effects, and criticality analysis (FMECA) methods. This methodology consists of using a diagnosis of the existing of all of the equipment of a production line of a factory in order to determine the most critical machine. In fact, we use, on the one hand, a functional analysis based on the SADT method of the production line and on the other hand, a diagnosis and classification of mechanical and electrical failures of the line production by their criticality analysis based on the FMECA approach. Results: Based on the methodology adopted in this paper, the results are the creation and the launch of a preventive maintenance plan. They contain the different elements of a Packer production line of cigarettes; the list of the intervention preventive activities and their period of realization. Conclusion: The diagnosis of the existing state helped us to found that the machine of cigarettes used in the Packer production line of cigarettes is the most critical machine in the factory. Then this enables us in the one hand, to describe the functionality of the production line of cigarettes by SADT method and on the other hand, to study the FMECA machine in order to improve the availability and the performance of this machine.

Keywords: production system, diagnosis, SADT method, FMECA method

Procedia PDF Downloads 143
4322 Suggestion of Two-Step Traction Therapy for Safer and More Effective Conservative Treatment for Low Back Pain

Authors: Won Man Park, Dae Kyung Choi, Kyungsoo Kim, Yoon Hyuk Kim

Abstract:

Traction therapy has been used in the treatment of spinal pain for decades. However, a case study reported the occurrence of large disc protrusion during motorized traction therapy. In this study, we hypothesized that additional local decompression with a global axial traction could be helpful for risk reduction of intervertebral disc damage. A validated three dimensional finite element model of the lumbar spine was used. Two-step traction therapy using the axial global traction (the first step) with 1/3 body weight and the additional local decompression (the second step) with 7 mm translation of L4 spinal bone was determined for the traction therapy. During two-step traction therapy, the sacrum was constrained in all translational directions. Reduced lordosis angle by the global axial traction recovered with the additional local decompression. Stress on fibers of the annulus fibrosus by the axial global traction decreased with the local decompression by 17%~96% in the posterior region of intervertebral disc. Stresses on ligaments except anterior longitudinal ligaments in all motion segments decreased till 4.9 mm~5.6 mm translation of L4 spinal bone. The results of this study showed that the additional local decompression is very useful for reducing risk of damage in the intervertebral disc and ligaments caused by the global axial traction force. Moreover, the local decompression could be used to enhance reduction of intradiscal pressure.

Keywords: lumbar spine, traction-therapy, biomechanics, finite element analysis

Procedia PDF Downloads 486
4321 Risk Assessment and Management Using Machine Learning Models

Authors: Lagnajeet Mohanty, Mohnish Mishra, Pratham Tapdiya, Himanshu Sekhar Nayak, Swetapadma Singh

Abstract:

In the era of global interconnectedness, effective risk assessment and management are critical for organizational resilience. This review explores the integration of machine learning (ML) into risk processes, examining its transformative potential and the challenges it presents. The literature reveals ML's success in sectors like consumer credit, demonstrating enhanced predictive accuracy, adaptability, and potential cost savings. However, ethical considerations, interpretability issues, and the demand for skilled practitioners pose limitations. Looking forward, the study identifies future research scopes, including refining ethical frameworks, advancing interpretability techniques, and fostering interdisciplinary collaborations. The synthesis of limitations and future directions highlights the dynamic landscape of ML in risk management, urging stakeholders to navigate challenges innovatively. This abstract encapsulates the evolving discourse on ML's role in shaping proactive and effective risk management strategies in our interconnected and unpredictable global landscape.

Keywords: machine learning, risk assessment, ethical considerations, financial inclusion

Procedia PDF Downloads 72
4320 An Experimental Study of Diffuser-Enhanced Propeller Hydrokinetic Turbines

Authors: Matheus Nunes, Rafael Mendes, Taygoara Felamingo Oliveira, Antonio Brasil Junior

Abstract:

Wind tunnel experiments of horizontal axis propeller hydrokinetic turbines model were carried out, in order to determine the performance behavior for different configurations and operational range. The present experiments introduce the use of two different geometries of rear diffusers to enhance the performance of the free flow machine. The present paper reports an increase of the power coefficient about 50%-80%. It represents an important feature that has to be taken into account in the design of this kind of machine.

Keywords: diffuser-enhanced turbines, hydrokinetic turbine, wind tunnel experiments, micro hydro

Procedia PDF Downloads 278
4319 Integrating Ergonomics at Design Stage in Development of Continuous Passive Motion Machine

Authors: Mahesh S. Harne, Sunil V. Deshmukh

Abstract:

A continuous passive motion machine improves and helps the patient to restore range of motion in various physiotherapy activities. The paper presents a concept for portable CPM. The device is used for various joint for upper and lower body extremities. The device is designed so that the active and passive motion is incorporated. During development, the physiotherapist and patient need is integrated with designer aspects. Various tools such as Analytical Higher Hierarchy process (AHP) and Quality Function Deployment (QFD) is used to integrate the need at the design stage. With market survey of various commercial CPM the gaps are identified, and efforts are made to fill the gaps with ergonomic need. Indian anthropomorphic dimension is referred. The device is modular to best suit for all the anthropomorphic need of different human. Experimentation is carried under the observation of physiotherapist and doctor on volunteer patient. We reported better results are compare to conventional CPM with comfort and less pain. We concluded that the concept will be helpful to reduces therapy cost and wide utility of device for various joint and physiotherapy exercise.

Keywords: continuous passive motion machine, ergonomics, physiotherapy, quality function deployment

Procedia PDF Downloads 185
4318 Analyzing Electricity Demand Multipliers in the Malaysian Economy

Authors: Hussain Ali Bekhet, Tuan Ab Rashid Bin Tuan Abdullah, Tahira Yasmin

Abstract:

It is very important for electric utility to determine dominant sectors which have more impacts on electricity consumption in national economy system. The aim of this paper is to examine the electricity demand multipliers in Malaysia for (2005-2014) period. Malaysian Input-output tables, 2005 and 2010 are used. Besides, a new concept, electricity demand multiplier (EDM), is presented to identify key sectors imposing great impacts on electricity demand quantitatively. In order to testify the effectiveness of the Malaysian energy policies, it notes that there is fluctuation of the ranking sectors between 2005 and 2010. This could be reflected that there is efficiency with pace of development in Malaysia. This can be good indication for decision makers for designing future energy policies.

Keywords: input-output model, demand multipliers, electricity, key sectors, Malaysia

Procedia PDF Downloads 372
4317 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods

Authors: Abdelghani Chahmi

Abstract:

This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.

Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation

Procedia PDF Downloads 139
4316 A Machine Learning Approach for Performance Prediction Based on User Behavioral Factors in E-Learning Environments

Authors: Naduni Ranasinghe

Abstract:

E-learning environments are getting more popular than any other due to the impact of COVID19. Even though e-learning is one of the best solutions for the teaching-learning process in the academic process, it’s not without major challenges. Nowadays, machine learning approaches are utilized in the analysis of how behavioral factors lead to better adoption and how they related to better performance of the students in eLearning environments. During the pandemic, we realized the academic process in the eLearning approach had a major issue, especially for the performance of the students. Therefore, an approach that investigates student behaviors in eLearning environments using a data-intensive machine learning approach is appreciated. A hybrid approach was used to understand how each previously told variables are related to the other. A more quantitative approach was used referred to literature to understand the weights of each factor for adoption and in terms of performance. The data set was collected from previously done research to help the training and testing process in ML. Special attention was made to incorporating different dimensionality of the data to understand the dependency levels of each. Five independent variables out of twelve variables were chosen based on their impact on the dependent variable, and by considering the descriptive statistics, out of three models developed (Random Forest classifier, SVM, and Decision tree classifier), random forest Classifier (Accuracy – 0.8542) gave the highest value for accuracy. Overall, this work met its goals of improving student performance by identifying students who are at-risk and dropout, emphasizing the necessity of using both static and dynamic data.

Keywords: academic performance prediction, e learning, learning analytics, machine learning, predictive model

Procedia PDF Downloads 157
4315 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram

Authors: Mehwish Asghar

Abstract:

Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.

Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence

Procedia PDF Downloads 225
4314 Predictive Machine Learning Model for Assessing the Impact of Untreated Teeth Grinding on Gingival Recession and Jaw Pain

Authors: Joseph Salim

Abstract:

This paper proposes the development of a supervised machine learning system to predict the consequences of untreated bruxism (teeth grinding) on gingival (gum) recession and jaw pain (most often bilateral jaw pain with possible headaches and limited ability to open the mouth). As a general dentist in a multi-specialty practice, the author has encountered many patients suffering from these issues due to uncontrolled bruxism (teeth grinding) at night. The most effective treatment for managing this problem involves wearing a nightguard during sleep and receiving therapeutic Botox injections to relax the muscles (the masseter muscle) responsible for grinding. However, some patients choose to postpone these treatments, leading to potentially irreversible and costlier consequences in the future. The proposed machine learning model aims to track patients who forgo the recommended treatments and assess the percentage of individuals who will experience worsening jaw pain, gingival (gum) recession, or both within a 3-to-5-year timeframe. By accurately predicting these outcomes, the model seeks to motivate patients to address the root cause proactively, ultimately saving time and pain while improving quality of life and avoiding much costlier treatments such as full-mouth rehabilitation to help recover the loss of vertical dimension of occlusion due to shortened clinical crowns because of bruxism, gingival grafts, etc.

Keywords: artificial intelligence, machine learning, predictive insights, bruxism, teeth grinding, therapeutic botox, nightguard, gingival recession, gum recession, jaw pain

Procedia PDF Downloads 93
4313 A Phishing Email Detection Approach Using Machine Learning Techniques

Authors: Kenneth Fon Mbah, Arash Habibi Lashkari, Ali A. Ghorbani

Abstract:

Phishing e-mails are a security issue that not only annoys online users, but has also resulted in significant financial losses for businesses. Phishing advertisements and pornographic e-mails are difficult to detect as attackers have been becoming increasingly intelligent and professional. Attackers track users and adjust their attacks based on users’ attractions and hot topics that can be extracted from community news and journals. This research focuses on deceptive Phishing attacks and their variants such as attacks through advertisements and pornographic e-mails. We propose a framework called Phishing Alerting System (PHAS) to accurately classify e-mails as Phishing, advertisements or as pornographic. PHAS has the ability to detect and alert users for all types of deceptive e-mails to help users in decision making. A well-known email dataset has been used for these experiments and based on previously extracted features, 93.11% detection accuracy is obtainable by using J48 and KNN machine learning techniques. Our proposed framework achieved approximately the same accuracy as the benchmark while using this dataset.

Keywords: phishing e-mail, phishing detection, anti phishing, alarm system, machine learning

Procedia PDF Downloads 341
4312 The Constraint of Machine Breakdown after a Match up Scheduling of Paper Manufacturing Industry

Authors: John M. Ikome

Abstract:

In the process of manufacturing, a machine breakdown usually forces a modified flow shop out of the prescribed state, this strategy reschedules part of the initial schedule to match up with the pre-schedule at some point with the objective to create a schedule that is reliable with the other production planning decisions like material flow, production and suppliers by utilizing a critical decision-making concept. We propose a rescheduling strategy and a match-up point that will have a determination procedure through an advanced feedback control mechanism to increase both the schedule quality and stability. These approaches are compared with alternative re-scheduling methods under different experimental settings.

Keywords: scheduling, heuristics, branch, integrated

Procedia PDF Downloads 408
4311 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer

Authors: Ravinder Bahl, Jamini Sharma

Abstract:

The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.

Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning

Procedia PDF Downloads 360
4310 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction

Procedia PDF Downloads 559
4309 Two Steady States and Two Movement Patterns under the Balanced Budget Rule: An Economy with Divisible Labor

Authors: Fujio Takata

Abstract:

When governments levy taxes on labor income on the basis of a balanced budget rule, two steady states in an economy exist, of which one can cause two movement patterns, namely, indeterminacy paths and a saddle path. However, in this paper, we assume an economy with divisible labor, in which labor adjustment is made by an intensive margin. We demonstrate that there indeed exist the two paths in the economy and that there exists a critical condition dividing them. This is proved by establishing the relationship between a finite elasticity of labor with regard to real wages and the share of capital in output. Consequently, we deduce the existence of an upper limit in the share of capital in output for indeterminacy to occur. The largest possible value of that share is less than 0.5698.

Keywords: balanced budget rule, divisible labor, labor income taxation, two movement patterns

Procedia PDF Downloads 163
4308 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ

Authors: M. Khaled Abduesslam, Mohammed Ali, Basher H. Alsdai, Muhammad Nizam Inayati

Abstract:

This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New-England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.

Keywords: IEEE 39 bus, least squares support vector machine, learning vector quantization, voltage collapse

Procedia PDF Downloads 442
4307 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration

Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan

Abstract:

The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.

Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning

Procedia PDF Downloads 35
4306 Innovative Approaches to Water Resources Management: Addressing Challenges through Machine Learning and Remote Sensing

Authors: Abdelrahman Elsehsah, Abdelazim Negm, Eid Ashour, Mohamed Elsahabi

Abstract:

Water resources management is a critical field that encompasses the planning, development, conservation, and allocation of water resources to meet societal needs while ensuring environmental sustainability. This paper reviews the key concepts and challenges in water resources management, emphasizing the significance of a holistic approach that integrates social, economic, and environmental factors. Traditional water management practices, characterized by supply-oriented strategies and centralized control, are increasingly inadequate in addressing contemporary challenges such as water scarcity, climate change impacts, and ecosystem degradation. Emerging technologies, particularly machine learning and remote sensing, offer innovative solutions to enhance decision-making processes in water management. Machine learning algorithms facilitate accurate water demand forecasting, quality monitoring, and leak detection, while remote sensing technologies provide vital data for assessing water availability and quality. This review highlights the need for integrated water management strategies that leverage these technologies to promote sustainable practices and foster resilience in water systems. Future research should focus on improving data quality, accessibility, and the integration of diverse datasets to optimize the benefits of these technological advancements.

Keywords: water resources management, water scarcity, climate change, machine learning, remote sensing, water quality, water governance, sustainable practices, ecosystem management

Procedia PDF Downloads 9
4305 Machine Learning-Based Workflow for the Analysis of Project Portfolio

Authors: Jean Marie Tshimula, Atsushi Togashi

Abstract:

We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.

Keywords: machine learning, topic modeling, natural language processing, big data

Procedia PDF Downloads 168
4304 Stand Alone Multiple Trough Solar Desalination with Heat Storage

Authors: Abderrahmane Diaf, Kamel Benabdellaziz

Abstract:

Remote arid areas of the vast expanses of the African deserts hold huge subterranean reserves of brackish water resources waiting for economic development. This work presents design guidelines as well as initial performance data of new autonomous solar desalination equipment which could help local communities produce their own fresh water using solar energy only and, why not, contribute to transforming desert lands into lush gardens. The output of solar distillation equipment is typically low and in the range of 3 l/m2/day on the average. This new design with an integrated, water-based, environmentally-friendly solar heat storage system produced 5 l/m2/day in early spring weather. Equipment output during summer exceeded 9 liters per m2 per day.

Keywords: multiple trough distillation, solar desalination, solar distillation with heat storage, water based heat storage system

Procedia PDF Downloads 440
4303 Wind Energy Potential of Southern Sindh, Pakistan for Power Generation

Authors: M. Akhlaque Ahmed, Maliha Afshan Siddiqui

Abstract:

A study has been carried out to see the prospect of wind power potential of southern Sindh namely Karachi, Hawksbay, Norriabad, Hyderabad, Ketibander and Shahbander using local wind speed data. The monthly average wind speed for these area ranges from 4.5m/sec to 8.5m/sec at 30m height from ground. Extractable wind power, wind energy and Weibul parameter for above mentioned areas have been examined. Furthermore, the power output using fast and slow wind machine using different blade diameter along with the 4Kw and 20 Kw aero-generator were examined to see the possible use for deep well pumping and electricity supply to remote villages. The analysis reveals that in this wind corridor of southern Sindh Hawksbay, Ketibander and Shahbander belongs to wind power class-3 Hyderabad and Nooriabad belongs to wind power class-5 and Karachi belongs to wind power class-2. The result shows that the that higher wind speed values occur between June till August. It was found that considering maximum wind speed location, Hawksbay,Noriabad are the best location for setting up wind machines for power generation.

Keywords: wind energy generation, Southern Sindh, seasonal change, Weibull parameter, wind machines

Procedia PDF Downloads 149
4302 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory

Authors: Xu Jiaqiao

Abstract:

Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.

Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments

Procedia PDF Downloads 94
4301 Improved Performance in Content-Based Image Retrieval Using Machine Learning Approach

Authors: B. Ramesh Naik, T. Venugopal

Abstract:

This paper presents a novel approach which improves the high-level semantics of images based on machine learning approach. The contemporary approaches for image retrieval and object recognition includes Fourier transforms, Wavelets, SIFT and HoG. Though these descriptors helpful in a wide range of applications, they exploit zero order statistics, and this lacks high descriptiveness of image features. These descriptors usually take benefit of primitive visual features such as shape, color, texture and spatial locations to describe images. These features do not adequate to describe high-level semantics of the images. This leads to a gap in semantic content caused to unacceptable performance in image retrieval system. A novel method has been proposed referred as discriminative learning which is derived from machine learning approach that efficiently discriminates image features. The analysis and results of proposed approach were validated thoroughly on WANG and Caltech-101 Databases. The results proved that this approach is very competitive in content-based image retrieval.

Keywords: CBIR, discriminative learning, region weight learning, scale invariant feature transforms

Procedia PDF Downloads 181
4300 Optimization of Tolerance Grades of a Bearing and Shaft Assembly in a Washing Machine with Regard to Fatigue Life

Authors: M. Cangi, T. Dolar, C. Ersoy, Y. E. Aydogdu, A. I. Aydeniz, A. Mugan

Abstract:

The drum is one of the critical parts in a washing machine in which the clothes are washed and spin by the rotational movement. It is activated by the drum shaft which is attached to an electric motor and subjected to dynamic loading. Being one of the critical components, failures of the drum require costly repairs of dynamic components. In this study, tolerance bands between the drum shaft and its two bearings were examined to develop a relationship between the fatigue life of the shaft and the interaction tolerances. Optimization of tolerance bands was completed in consideration of the fatigue life of the shaft as the cost function. The following methodology is followed: multibody dynamic model of a washing machine was constructed and used to calculate dynamic loading on the components. Then, these forces were used in finite element analyses to calculate the stress field in critical components which was used for fatigue life predictions. The factors affecting the fatigue life were examined to find optimum tolerance grade for a given test condition. Numerical results were verified by experimental observations.

Keywords: fatigue life, finite element analysis, tolerance analysis, optimization

Procedia PDF Downloads 157
4299 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 114
4298 Performance Analysis of 180 nm Low Voltage Low Power CMOS OTA for High Frequency Application

Authors: D. J. Dahigaonkar, D. G. Wakde

Abstract:

The performance analysis of low voltage low power CMOS OTA is presented in this paper. The differential input single output OTA is simulated in 180nm CMOS process technology. The simulation results indicate high bandwidth of the order of 7.04GHz with 0.766mW power consumption and transconductance of -71.20dB. The total harmonic distortion for 100mV input at a frequency of 1MHz is found to be 2.3603%. In addition to this, to establish comparative analysis of designed OTA and analyze effect of technology scaling, the differential input single output OTA is further simulated using 350nm CMOS process technology and the comparative analysis is presented in this paper.

Keywords: Operational Transconductance Amplifier, Total Harmonic Distortions, low voltage/low power, power dissipation

Procedia PDF Downloads 408
4297 Strategic Cyber Sentinel: A Paradigm Shift in Enhancing Cybersecurity Resilience

Authors: Ayomide Oyedele

Abstract:

In the dynamic landscape of cybersecurity, "Strategic Cyber Sentinel" emerges as a revolutionary framework, transcending traditional approaches. This paper pioneers a holistic strategy, weaving together threat intelligence, machine learning, and adaptive defenses. Through meticulous real-world simulations, we demonstrate the unprecedented resilience of our framework against evolving cyber threats. "Strategic Cyber Sentinel" redefines proactive threat mitigation, offering a robust defense architecture poised for the challenges of tomorrow.

Keywords: cybersecurity, resilience, threat intelligence, machine learning, adaptive defenses

Procedia PDF Downloads 84
4296 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos

Authors: Nassima Noufail, Sara Bouhali

Abstract:

In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.

Keywords: video segmentation, action detection, classification, Kmeans, C3D

Procedia PDF Downloads 77
4295 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention

Authors: Avinash Malladhi

Abstract:

Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.

Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory

Procedia PDF Downloads 93