Search results for: numerical tests
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7761

Search results for: numerical tests

6831 Solutions of Fractional Reaction-Diffusion Equations Used to Model the Growth and Spreading of Biological Species

Authors: Kamel Al-Khaled

Abstract:

Reaction-diffusion equations are commonly used in population biology to model the spread of biological species. In this paper, we propose a fractional reaction-diffusion equation, where the classical second derivative diffusion term is replaced by a fractional derivative of order less than two. Based on the symbolic computation system Mathematica, Adomian decomposition method, developed for fractional differential equations, is directly extended to derive explicit and numerical solutions of space fractional reaction-diffusion equations. The fractional derivative is described in the Caputo sense. Finally, the recent appearance of fractional reaction-diffusion equations as models in some fields such as cell biology, chemistry, physics, and finance, makes it necessary to apply the results reported here to some numerical examples.

Keywords: fractional partial differential equations, reaction-diffusion equations, adomian decomposition, biological species

Procedia PDF Downloads 376
6830 Experiments on Residual Compressive Strength After Fatigue of Carbon Fiber Fabric Composites in Hydrothermal Environment

Authors: Xuan Sun, Mingbo Tong

Abstract:

In order to study the effect of hydrothermal environment on the fatigue properties of carbon fiber fabric composites, the experiments on fatigue and residual compressive strength with the center-hole laminates were carried out. For the experiments on fatigue in hydrothermal environment, an environmental chamber used for hydrothermal environment was designed, and the FLUENT was used to simulate the field of temperature in the environmental chamber, it proved that the design met the test requirements. In accordance with ASTM standard, the fatigue test fixture and compression test fixture were designed and produced. Then the tension-compression fatigue tests were carried out in conditions of standard environment (temperature of 23+2℃, relative humidity of 50+/-5%RH) and hydrothermal environment (temperature of 70 +2℃, relative humidity of 85+/-5%RH). After that, the residual compressive strength tests were carried out, respectively. The residual compressive strength after fatigue in condition of standard environment was set as a reference value, compared with the value in condition of hydrothermal environment, calculating the difference between them. According to the result of residual compressive strength tests, it shows that the residual compressive strength after fatigue in condition of hydrothermal environment was decreased by 13.5%,so the hydrothermal environment has little effect on the residual compressive strength of carbon fiber fabric composites laminates after fatigue under load spectrum in this research.

Keywords: carbon fiber, hydrothermal environment, fatigue, residual compressive strength

Procedia PDF Downloads 486
6829 Blood Flow in Stenosed Arteries: Analytical and Numerical Study

Authors: Shashi Sharma, Uaday Singh, V. K. Katiyar

Abstract:

Blood flow through a stenosed tube, which is of great interest to mechanical engineers as well as medical researchers. If stenosis exists in an artery, normal blood flow is disturbed. The deposition of fatty substances, cholesterol, cellular waste products in the inner lining of an artery results to plaque formation .The present study deals with a mathematical model for blood flow in constricted arteries. Blood is considered as a Newtonian, incompressible, unsteady and laminar fluid flowing in a cylindrical rigid tube along the axial direction. A time varying pressure gradient is applied in the axial direction. An analytical solution is obtained using the numerical inversion method for Laplace Transform for calculating the velocity profile of fluid as well as particles.

Keywords: blood flow, stenosis, Newtonian fluid, medical biology and genetics

Procedia PDF Downloads 516
6828 Experimental Performance and Numerical Simulation of Double Glass Wall

Authors: Thana Ananacha

Abstract:

This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two configurations were considered namely, the Double Clear Glass Wall (DCGW) and the Double Translucent Glass Wall (DTGW). The coupled governing equations as well as boundary conditions are solved using the finite element method (FEM) via COMSOLTM Multiphysics. Temperature profiles and flow field of the DCGW and DTGW are reported and discussed. Different constant heat fluxes were considered namely 400 and 800 W.m-2 the corresponding initial condition temperatures were to 30.5 and 38.5 ºC respectively. The results show that the simulation results are in agreement with the experimental data. Conclusively, the model considered in this study could reasonable be used simulate the thermal and ventilation performance of the DCGW and DTGW configurations.

Keywords: thermal simulation, Double Glass Wall, velocity field, finite element method (FEM)

Procedia PDF Downloads 361
6827 Investigation of Flame and Soot Propagation in Non-Air Conditioned Railway Locomotives

Authors: Abhishek Agarwal, Manoj Sarda, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das

Abstract:

Propagation of fire through a non-air conditioned railway compartment is studied by virtue of numerical simulations. Simultaneous computational fire dynamics equations, such as Navier-Stokes, lumped species continuity, overall mass and energy conservation, and heat transfer are solved using finite volume based (for radiation) and finite difference based (for all other equations) solver, Fire Dynamics Simulator (FDS). A single coupe with an eight berth occupancy is used to establish the numerical model, followed by the selection of a three coupe system as the fundamental unit of the locomotive compartment. Heat Release Rate Per Unit Area (HRRPUA) of the initial fire is varied to consider a wide range of compartmental fires. Parameters, such as air inlet velocity relative to the locomotive at the windows, the level of interaction with the ambiance and closure of middle berth are studied through a wide range of numerical simulations. Almost all the loss of lives and properties due to fire breakout can be attributed to the direct or indirect exposure to flames or to the inhalation of toxic gases and resultant suffocation due to smoke and soot. Therefore, the temporal stature of fire and smoke are reported for each of the considered cases which can be used in the present or extended form to develop guidelines to be followed in case of a fire breakout.

Keywords: fire dynamics, flame propagation, locomotive fire, soot flow pattern, non-air-conditioned coaches

Procedia PDF Downloads 293
6826 Numerical Simulation of Turbulent Flow around Two Cam Shaped Cylinders in Tandem Arrangement

Authors: Arash Mir Abdolah Lavasani, M. Ebrahimisabet

Abstract:

In this paper, the 2-D unsteady viscous flow around two cam shaped cylinders in tandem arrangement is numerically simulated in order to study the characteristics of the flow in turbulent regimes. The investigation covers the effects of high subcritical and supercritical Reynolds numbers and L/D ratio on total drag coefficient. The equivalent diameter of cylinders is 27.6 mm The space between center to center of two cam shaped cylinders is define as longitudinal pitch ratio and it varies in range of 1.5 < L/D < 6. Reynolds number base on equivalent circular cylinder varies in range of 27×103 < Re < 166×103 Results show that drag coefficient of both cylinders depends on pitch ratio. However drag coefficient of downstream cylinder is more dependent on the pitch ratio.

Keywords: cam shaped, tandem, numerical, drag coefficient, turbulent

Procedia PDF Downloads 463
6825 A Source Point Distribution Scheme for Wave-Body Interaction Problem

Authors: Aichun Feng, Zhi-Min Chen, Jing Tang Xing

Abstract:

A two-dimensional linear wave-body interaction problem can be solved using a desingularized integral method by placing free surface Rankine sources over calm water surface and satisfying boundary conditions at prescribed collocation points on the calm water surface. A new free-surface Rankine source distribution scheme, determined by the intersection points of free surface and body surface, is developed to reduce numerical computation cost. Associated with this, a new treatment is given to the intersection point. The present scheme results are in good agreement with traditional numerical results and measurements.

Keywords: source point distribution, panel method, Rankine source, desingularized algorithm

Procedia PDF Downloads 365
6824 Comparative Study of Vertical and Horizontal Triplex Tube Latent Heat Storage Units

Authors: Hamid El Qarnia

Abstract:

This study investigates the impact of the eccentricity of the central tube on the thermal and fluid characteristics of a triplex tube used in latent heat energy storage technologies. Two triplex tube orientations are considered in the proposed study: vertical and horizontal. The energy storage material, which is a phase change material (PCM), is placed in the space between the inside and outside tubes. During the thermal energy storage period, a heat transfer fluid (HTF) flows inside the two tubes, transmitting the heat to the PCM through two heat exchange surfaces instead of one heat exchange surface as it is the case for double tube heat storage systems. A CFD model is developed and validated against experimental data available in the literature. The mesh independency study is carried out to select the appropriate mesh. In addition, different time steps are examined to determine a time step ensuring accuracy of the numerical results and reduction in the computational time. The numerical model is then used to conduct numerical investigations of the thermal behavior and thermal performance of the storage unit. The effects of eccentricity of the central tube and HTF mass flow rate on thermal characteristics and performance indicators are examined for two flow arrangements: co-current and counter current flows. The results are given in terms of isotherm plots, streamlines, melting time and thermal energy storage efficiency.

Keywords: energy storage, heat transfer, melting, solidification

Procedia PDF Downloads 56
6823 Mechanical Behaviour of High Strength Steel Thin-Walled Profiles for Automated Rack Supported Warehouses

Authors: Agnese Natali, Francesco Morelli, Walter Salvatore, José Humberto Matias de Paula Filho, Patrick Pol

Abstract:

In the framework of the evaluation of the applicability of high strength steel to produce thin-walled elements to be used in Automated Rack Supported Warehouses, an experimental campaign is carried outto evaluate the structural performance of typical profile shapes adopted for such purposes and made of high strength steel. Numerical models are developed to fit the observed failure modes, stresses, and deformation patterns, and proper directions are proposed to simplify the numerical simulations to be used in further applications and to evaluate the mechanical behavior and performance of profiles.

Keywords: Steel racks, Automated Rack Supported Warehouse, thin walled cold-formed elements, high strength steel.

Procedia PDF Downloads 180
6822 Laboratory Study on Behavior of Compacted Soils

Authors: M. M. Mekkakia, M. P Luong, A. Arab

Abstract:

These controlling the water content of compaction are a major concern of fundamental civil engineers. Also, the knowledge of the fundamentals of the behaviour of compacted clay soils is essential to predict and quantify the effects of a change in water content. The study of unsaturated soils is a very complex area which several studies are directed to in recent years. Our job work is to perform tests of Proctor, Oedometer and shear, on samples of unsaturated clay in order to see the influence of water content on the compressibility and the shear strength. The samples were prepared at different amounts of water from water content to optimum water contents close to saturation. This study thus allowed us to measure and monitor the parameters of compressibility and shear strength as a function of water content.

Keywords: laboratory tests, clay, unsaturated soil, atterberg limits, compaction, compressibility, shear

Procedia PDF Downloads 419
6821 Effects of Roughness Elements on Heat Transfer During Natural Convection

Authors: M. Yousaf, S. Usman

Abstract:

The present study focused on the investigation of the effects of roughness elements on heat transfer during natural convection in a rectangular cavity using a numerical technique. Roughness elements were introduced on the bottom hot wall with a normalized amplitude (A*/H) of 0.1. Thermal and hydrodynamic behavior was studied using a computational method based on Lattice Boltzmann method (LBM). Numerical studies were performed for a laminar natural convection in the range of Rayleigh number (Ra) from 103 to 106 for a rectangular cavity of aspect ratio (L/H) 2 with a fluid of Prandtl number (Pr) 1.0. The presence of the sinusoidal roughness elements caused a minimum to the maximum decrease in the heat transfer as 7% to 17% respectively compared to the smooth enclosure. The results are presented for mean Nusselt number (Nu), isotherms, and streamlines.

Keywords: natural convection, Rayleigh number, surface roughness, Nusselt number, Lattice Boltzmann method

Procedia PDF Downloads 541
6820 Off-Line Parameter Estimation for the Induction Motor Drive System

Authors: Han-Woong Ahn, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

It is important to accurately identify machine parameters for direct vector control. To obtain the parameter values, traditional methods can be used such as no-load and rotor locked tests. However, there are many differences between values obtained from the traditional tests and actual values. In addition, there are drawbacks that additional equipment and cost are required for the experiment. Therefore, it is hard to temporary operation to estimate induction motor parameters. Therefore, this paper deals with the estimation algorithm of induction motor parameters without a motor operation and the measurement from additional equipment such as sensors and dynamometer. The validity and usefulness of the estimation algorithm considering inverter nonlinearity is verified by comparing the conventional method with the proposed method.

Keywords: induction motor, parameter, off-line estimation, inverter nonlinearity

Procedia PDF Downloads 531
6819 Measurement of VIP Edge Conduction Using Vacuum Guarded Hot Plate

Authors: Bongsu Choi, Tae-Ho Song

Abstract:

Vacuum insulation panel (VIP) is a promising thermal insulator for buildings, refrigerator, LNG carrier and so on. In general, it has the thermal conductivity of 2~4 mW/m•K. However, this thermal conductivity is that measured at the center of VIP. The total effective thermal conductivity of VIP is larger than this value due to the edge conduction through the envelope. In this paper, the edge conduction of VIP is examined theoretically, numerically and experimentally. To confirm the existence of the edge conduction, numerical analysis is performed for simple two-dimensional VIP model and a theoretical model is proposed to calculate the edge conductivity. Also, the edge conductivity is measured using the vacuum guarded hot plate and the experiment is validated against numerical analysis. The results show that the edge conductivity is dependent on the width of panel and thickness of Al-foil. To reduce the edge conduction, it is recommended that the VIP should be made as big as possible or made of thin Al film envelope.

Keywords: envelope, edge conduction, thermal conductivity, vacuum insulation panel

Procedia PDF Downloads 406
6818 Convective Interactions and Heat Transfer in a Czochralski Melt with a Model Phase Boundary of Two Different Shapes

Authors: R. Faiez, M. Mashhoudi, F. Najafi

Abstract:

Implicit in most large-scale numerical analyses of the crystal growth from the melt is the assumption that the shape and position of the phase boundary are determined by the transport phenomena coupled strongly to the melt hydrodynamics. In the present numerical study, the interface shape-effect on the convective interactions in a Czochralski oxide melt is described. It was demonstrated that thermos-capillary flow affects inversely the phase boundaries of distinct shapes. The in homogenity of heat flux and the location of the stagnation point at the crystallization front were investigated. The forced convection effect on the point displacement at the boundary found to be much stronger for the flat plate interface compared to the cone-shaped one with and without the Marangoni flow.

Keywords: computer simulation, fluid flow, interface shape, thermos-capillary effect

Procedia PDF Downloads 248
6817 Ground-Structure Interaction Analysis of Aged Tunnels

Authors: Behrang Dadfar, Hossein Bidhendi, Jimmy Susetyo, John Paul Abbatangelo

Abstract:

Finding structural demand under various conditions that a structure may experience during its service life is an important step towards structural life-cycle analysis. In this paper, structural demand for the precast concrete tunnel lining (PCTL) segments of Toronto’s 60-year-old subway tunnels is investigated. Numerical modelling was conducted using FLAC3D, a finite difference-based software capable of simulating ground-structure interaction and ground material’s flow in three dimensions. The specific structural details of the segmental tunnel lining, such as the convex shape of the PCTL segments at radial joints and the PCTL segment pockets, were considered in the numerical modelling. Also, the model was developed in a way to accommodate the flexibility required for the simulation of various deterioration scenarios, shapes, and patterns that have been observed over more than 20 years. The soil behavior was simulated by using plastic-hardening constitutive model of FLAC3D. The effect of the depth of the tunnel, the coefficient of lateral earth pressure as well as the patterns of deterioration of the segments were studied. The structural capacity under various deterioration patterns and the existing loading conditions was evaluated using axial-flexural interaction curves that were developed for each deterioration pattern. The results were used to provide recommendations for the next phase of tunnel lining rehabilitation program.

Keywords: precast concrete tunnel lining, ground-structure interaction, numerical modelling, deterioration, tunnels

Procedia PDF Downloads 162
6816 Numerical Investigation of Mixed Convection for Rarefied Gases in Square Enclosures

Authors: Wael Al-Kouz

Abstract:

Numerical simulations to study heat transfer and flow characteristics of mixed convection for rarefied gas in a square enclosure are utilized. Effect of the geometry in terms of the location of the inlet and exit openings are investigated. Moreover, effect of Knudsen number on the flow and heat transfer characteristics is illustrated and discussed. Results of the simulations show that there is a configuration that yields better heat transfer. This configuration is found to be the geometry in which the inlet opening is in the top left corner and the exit opening is at the bottom right corner. In addition, it is found that by increasing Knudsen number, Nusselt number will decrease.

Keywords: Knudsen number, mixed convection, rarefied gas, square enclosure

Procedia PDF Downloads 354
6815 A Simple Light-Outcoupling Enhancement Method for Organic Light-Emitting Diodes

Authors: Ho-Nyeon Lee

Abstract:

We propose to use a gradual-refractive-index dielectric (GRID) as a simple and efficient light-outcoupling method for organic light-emitting diodes (OLEDs). Using the simple GRIDs, we could improve the light outcoupling efficiency of OLEDs rather than relying on difficult nano-patterning processes. Through numerical simulations using a finite-difference time-domain (FDTD) method, the feasibility of the GRID structure was examined and the design parameters were extracted. The outcoupling enhancement effects due to the GRIDs were proved through severe experimental works. The GRIDs were adapted to bottom-emission OLEDs and top-emission OLEDs. For bottom-emission OLEDs, the efficiency was improved more than 20%, and for top-emission OLEDs, more than 40%. The detailed numerical and experimental results will be presented at the conference site.

Keywords: efficiency, GRID, light outcoupling, OLED

Procedia PDF Downloads 423
6814 Study on Inverse Solution from Remote Displacements to Reservoir Process during Flow Injection

Authors: Sumei Cai, Hong Li

Abstract:

Either during water or gas injection into reservoir, in order to understand the areal flow pressure distribution underground, associated bounding deformation is prevalently monitored by ground or downhole tiltmeters. In this paper, an inverse solution to elastic response of far field displacements induced by reservoir pressure change due to flow injection was studied. Furthermore, the fundamental theory on inverse solution to elastic problem as well as its spatial smoothing approach is presented. Taking advantage of source code development based on Boundary Element Method, numerical analysis on the monitoring data of ground surface displacements to further understand the behavior of reservoir process was developed. Numerical examples were also conducted to verify the effectiveness.

Keywords: remote displacement, inverse problem, boundary element method, BEM, reservoir process

Procedia PDF Downloads 119
6813 Analytical Determination of Electromechanical Coupling Effects on Interlaminar Stresses of Generally Laminated Piezoelectric Plates

Authors: Atieh Andakhshideh, S. Maleki, Sayed Sadegh Marashi

Abstract:

In this paper, the interlaminar stresses of generally laminated piezoelectric plates are presented. The electromechanical coupling effect of the piezoelectric plate is considered and the governing equations and boundary conditions are derived using the principle of minimum total potential energy. The solution procedure is a three-dimensional multi-term extended Kantorovich method (3DMTEKM). The objective of this paper is to accurately study coupling influence on the edge effects of piezolaminated plates with finite dimensions, arbitrary lamination lay-ups and under uniform axial strain. These results can provide a benchmark for checking the accuracy of the other numerical method or two-dimensional laminate theories. To verify the accuracy of the 3DMTEKM, first examples are simplified to special cases such as cross-ply or symmetric laminations and are compared with other analytical solutions available in the literature. Excellent agreement is achieved in validation test and other numerical results are presented for general cases. Numerical examples indicate the singular behavior of interlaminar normal/shear stresses and electric field strength components near the edges of the piezolaminated plates. The coupling influence on the free edge effect with respect to lamination lay-ups of piezoelectric plate is studied in several examples.

Keywords: electromechanical coupling, generally laminated piezoelectric plates, Kantorovich method, edge effect, interlaminar stresses

Procedia PDF Downloads 149
6812 Application of Artificial Ground-Freezing to Construct a Passenger Interchange Tunnel for the Subway Line 14 in Paris, France

Authors: G. Lancellotta, G. Di Salvo, A. Rigazio, A. Davout, V. Pastore, G. Tonoli, A. Martin, P. Jullien, R. Jagow-Klaff, R. Wernecke

Abstract:

Artificial ground freezing (AGF) technique is a well-proven soil improvement approach used worldwide to construct shafts, tunnels and many other civil structures in difficult subsoil or ambient conditions. As part of the extension of Line 14 of the Paris subway, a passenger interchange tunnel between the new station at Porte de CI ichy and the new Tribunal the Grand Instance has been successfully constructed using this technique. The paper presents the successful application of AGF by Liquid Nitrogen and Brine implemented to provide structural stability and groundwater cut-off around the passenger interchange tunnel. The working conditions were considered to be rather challenging, due to the proximity of a hundred-year-old existing service tunnel of the Line 13, and subsoil conditions on site. Laboratory tests were carried out to determine the relevant soil parameters for hydro-thermal-mechanical aspects and to implement numerical analyses. Monitoring data were used in order to check and control the development and the efficiency of the freezing process as well as to back analyze the parameters assumed for the design, both during the freezing and thawing phases.

Keywords: artificial ground freezing, brine method, case history, liquid nitrogen

Procedia PDF Downloads 227
6811 Damage Analysis in Open Hole Composite Specimens by Digital Image Correlation: Experimental Investigation

Authors: Faci Youcef

Abstract:

In the present work, an experimental study is carried out using the digital image correlation (DIC) technique to analyze the damage and behavior of woven composite carbon/epoxy under tensile loading. The tension mechanisms associated with failure modes of bolted joints in advanced composites are studied, as well as displacement distribution and strain distribution. The evolution value of bolt angle inclination during tensile tests was studied. In order to compare the distribution of displacements and strains along the surface, figures of image mapping are made. Several factors that are responsible for the failure of fiber-reinforced polymer composite materials are observed. It was found that strain concentrations observed in the specimens can be used to identify full-field damage onset and to monitor damage progression during loading. Moreover, there is an interaction between laminate pattern, laminate thickness, fastener size and type, surface strain concentrations, and out-of-plane displacement. Conclusions include a failure analysis associated with bolt angle inclinations and supported by microscopic visualizations of the composite specimen. The DIC results can be used to develop and accurately validate numerical models.

Keywords: Carbone, woven, damage, digital image, bolted joint, the inclination of angle

Procedia PDF Downloads 81
6810 Optimal Relaxation Parameters for Obtaining Efficient Iterative Methods for the Solution of Electromagnetic Scattering Problems

Authors: Nadaniela Egidi, Pierluigi Maponi

Abstract:

The approximate solution of a time-harmonic electromagnetic scattering problem for inhomogeneous media is required in several application contexts, and its two-dimensional formulation is a Fredholm integral equation of the second kind. This integral equation provides a formulation for the direct scattering problem, but it has to be solved several times also in the numerical solution of the corresponding inverse scattering problem. The discretization of this Fredholm equation produces large and dense linear systems that are usually solved by iterative methods. In order to improve the efficiency of these iterative methods, we use the Symmetric SOR preconditioning, and we propose an algorithm for the evaluation of the associated relaxation parameter. We show the efficiency of the proposed algorithm by several numerical experiments, where we use two Krylov subspace methods, i.e., Bi-CGSTAB and GMRES.

Keywords: Fredholm integral equation, iterative method, preconditioning, scattering problem

Procedia PDF Downloads 105
6809 Effect of Tube Thickness on the Face Bending for Blind-Bolted Connection to Concrete Filled Tubular Structures

Authors: Mohammed Mahmood, Walid Tizani, Carlo Sansour

Abstract:

In this paper, experimental testing and numerical analysis were used to investigate the effect of tube thickness on the face bending for concrete filled hollow sections connected to other structural members using Extended Hollobolts. Six samples were tested experimentally by applying pull-out load on the bolts. These samples were designed to fail by column face bending. The main variable in all tests is the column face thickness. Finite element analyses were also performed using ABAQUS 6.11 to extend the experimental results and to quantify the effect of column face thickness. Results show that, the column face thickness has a clear impact on the connection strength and stiffness. However, the amount of improvement in the connection stiffness by changing the column face thickness from 5 mm to 6.3 mm seems to be higher than that when increasing it from 6.3 mm to 8 mm. The displacement at which the bolts start pulling-out from their holes increased with the use of thinner column face due to the high flexibility of the section. At the ultimate strength, the yielding of the column face propagated to the column corner and there was no yielding in its walls. After the ultimate resistance is reached, the propagation of the yielding was mainly in the column face with a miner yielding in the walls.

Keywords: anchored bolted connection, Extended Hollobolt, column faces bending, concrete filled hollow sections

Procedia PDF Downloads 422
6808 Quintic Spline Method for Variable Coefficient Fourth-Order Parabolic Partial Differential Equations

Authors: Reza Mohammadi, Mahdieh Sahebi

Abstract:

We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the proposed derived method. Numerical comparison with other existence methods shows the superiority of our presented scheme.

Keywords: fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points, stability analysis

Procedia PDF Downloads 367
6807 Complex Dynamics of a Four Species Food-Web Model: An Analysis through Beddington-Deangelis Functional Response in the Presence of Additional Food

Authors: Surbhi Rani, Sunita Gakkhar

Abstract:

The four-dimensional food web system consisting of two prey species for a generalist middle predator and a top predator is proposed and investigated. The middle predator is predating both the prey species with a modified Holling type-II functional response. The food web model is found to be well-posed, bounded, and dissipative. The proposed model's essential dynamical features are studied in terms of local stability. The four species' survival is explored, and persistence conditions are established. The numerical simulations reveal the persistence in the form of a chaotic attractor or stable focus. The conclusion is that providing additional food to the middle predator may help to control the food chain's chaos.

Keywords: predator-prey model, existence of equilibrium points, local stability, chaos, numerical simulations

Procedia PDF Downloads 110
6806 Comparative Fracture Parameters of Khaya ivorensis and Magnolia obovata: Outlooks for the Development of Sustainable Mobility Materials

Authors: Riccardo Houngbegnon, Loic Chrislin Nguedjio, Valery Doko, José Xavier, Miran Merhar, Rostand Moutou Pitti

Abstract:

Against a backdrop of heightened awareness of environmental impact and the reduction of space debris, the use of sustainable materials for mobility applications is emerging as a promising solution to minimize the environmental footprint of our technologies. Among recent innovative developments in the use of wood, the Japanese species Magnolia obovata attracted particular interest when it was used in the design of the first wooden satellite launched in November 2024. The aim of this project is to explore new species that could replace M. obovata in a mobile context. Khaya ivorensis, a tropical African species, was selected and compared to M. obovata in terms of resistance to cracking, a key criterion in the durability of mobility infrastructures. Prior to the cracking tests, K. ivorensis and M. obovata were characterized to determine their basic mechanical properties. The results presented here relate to this characterization phase, in particular the four-point bending, compression and BING tests, which provided us with strengths and moduli. These results were compared with those found in the literature, which allowed us to observe a number of differences. CHARPY resilience tests were also performed and compare to critical energy release rate in order to estimate the ability of the two species to absorb energy, particularly following impacts and various shocks.

Keywords: energy release rate, Khaya ivorensis, magnolia obovata, wood for mobility

Procedia PDF Downloads 14
6805 The Effect of Core Training on Physical Fitness Characteristics in Male Volleyball Players

Authors: Sibel Karacaoglu, Fatma Ç. Kayapinar

Abstract:

The aim of the study is to investigate the effect of the core training program on physical fitness characteristics and body composition in male volleyball players. 26 male university volleyball team players aged between 19 to 24 years who had no health problems and injury participated in the study. Subjects were divided into training (TG) and control groups (CG) as randomly. Data from twenty-one players who completed all training sessions were used for statistical analysis (TG,n=11; CG,n=10). A core training program was applied to the training group three days a week for 10 weeks. On the other hand, the control group did not receive any training. Before and after the 10-week training program, pre- and post-testing comprised of body composition measurements (weight, BMI, bioelectrical impedance analysis) and physical fitness measurements including flexibility (sit and reach test), muscle strength (back, leg and grip strength by dynamometer), muscle endurance (sit-ups and push-ups tests), power (one-legged jump and vertical jump tests), speed (20m sprint, 30m sprint) and balance tests (one-legged standing test) were performed. Changes of pre- and post- test values of the groups were determined by using dependent t test. According to the statistical analysis of data, no significant difference was found in terms of body composition in the both groups for pre- and post- test values. In the training group, all physical fitness measurements improved significantly after core training program (p<0.05) except 30m speed and handgrip strength (p>0.05). On the hand, only 20m speed test values improved after post-test period (p<0.05), but the other physical fitness tests values did not differ (p>0.05) between pre- and post- test measurement in the control group. The results of the study suggest that the core training program has positive effect on physical fitness characteristics in male volleyball players.

Keywords: body composition, core training, physical fitness, volleyball

Procedia PDF Downloads 347
6804 Numerical Investigation of Tsunami Flow Characteristics and Energy Reduction through Flexible Vegetation

Authors: Abhishek Mukherjee, Juan C. Cajas, Jenny Suckale, Guillaume Houzeaux, Oriol Lehmkuhl, Simone Marras

Abstract:

The investigation of tsunami flow characteristics and the quantification of tsunami energy reduction through the coastal vegetation is important to understand the protective benefits of nature-based mitigation parks. In the present study, a three-dimensional non-hydrostatic incompressible Computational Fluid Dynamics model with a two-way coupling enabled fluid-structure interaction approach (FSI) is used. After validating the numerical model against experimental data, tsunami flow characteristics have been investigated by varying vegetation density, modulus of elasticity, the gap between stems, and arrangement or distribution of vegetation patches. Streamwise depth average velocity profiles, turbulent kinetic energy, energy flux reflection, and dissipation extracted by the numerical study will be presented in this study. These diagnostics are essential to assess the importance of different parameters to design the proper coastal defense systems. When a tsunami wave reaches the shore, it transforms into undular bores, which induce scour around offshore structures and sediment transport. The bed shear stress, instantaneous turbulent kinetic energy, and the vorticity near-bed will be presented to estimate the importance of vegetation to prevent tsunami-induced scour and sediment transport.

Keywords: coastal defense, energy flux, fluid-structure interaction, natural hazards, sediment transport, tsunami mitigation

Procedia PDF Downloads 150
6803 Treatment of Dredged Marine Sediments for Their Reuse in Road Construction

Authors: F. Ben Abdelghani, W. Maherezi

Abstract:

Dredging operations generate, each year, a great quantity of marine sediments. These raw materials can not be used in road construction without a specific treatment process. Sediments suitability tests has shown that most of studied sediments are not suitable to be used in road construction. In order to improve their compacity and their mechanical performance, addition of a granular material is recommended. The use of a dredged sand, to improve the granular mixture containing sediments, allows a better management of the two types of dredge materials (sand and sediment). In this study, a new road material containing dredged marine sediments and dredged sand is formulated and treated by adding various binders. Mechanical performance investigation of different mixtures by measuring Proctor-IPI values and simple compressive strengths is realized.

Keywords: dredged sediments, suitability tests, road construction, hydraulic binder, mechanical performance

Procedia PDF Downloads 362
6802 A New Developed Formula to Determine the Shear Buckling Stress in Welded Aluminum Plate Girders

Authors: Badr Alsulami, Ahmed S. Elamary

Abstract:

This paper summarizes and presents main results of an in-depth numerical analysis dealing with the shear buckling resistance of aluminum plate girders. The studies conducted have permitted the development of a simple design expression to determine the critical shear buckling stress in aluminum web panels. This expression takes into account the effects of reduction of strength in aluminum alloys due to the welding process. Ultimate shear resistance (USR) of plate girders can be obtained theoretically using Cardiff theory or Hӧglund’s theory. USR of aluminum alloy plate girders predicted theoretically using BS8118 appear inconsistent when compared with test data. Theoretical predictions based on Hӧglund’s theory, are more realistic. Cardiff theory proposed to predict the USR of steel plate girders only. Welded aluminum alloy plate girders studied experimentally by others; the USR resulted from tests are reviewed. Comparison between the test results with the values obtained from Hӧglund’s theory, BS8118 design method, and Cardiff theory performed theoretically. Finally, a new equation based on Cardiff tension-field theory proposed to predict theoretically the USR of aluminum plate girders.

Keywords: shear resistance, aluminum, Cardiff theory, Hӧglund's theory, plate girder

Procedia PDF Downloads 426