Search results for: morphological errors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1933

Search results for: morphological errors

1003 Estimation of Population Mean Using Characteristics of Poisson Distribution: An Application to Earthquake Data

Authors: Prayas Sharma

Abstract:

This paper proposed a generalized class of estimators, an exponential class of estimators based on the adaption of Sharma and Singh (2015) and Solanki and Singh (2013), and a simple difference estimator for estimating unknown population mean in the case of Poisson distributed population in simple random sampling without replacement. The expressions for mean square errors of the proposed classes of estimators are derived from the first order of approximation. It is shown that the adapted version of Solanki and Singh (2013), the exponential class of estimator, is always more efficient than the usual estimator, ratio, product, exponential ratio, and exponential product type estimators and equally efficient to simple difference estimator. Moreover, the adapted version of Sharma and Singh's (2015) estimator is always more efficient than all the estimators available in the literature. In addition, theoretical findings are supported by an empirical study to show the superiority of the constructed estimators over others with an application to earthquake data of Turkey.

Keywords: auxiliary attribute, point bi-serial, mean square error, simple random sampling, Poisson distribution

Procedia PDF Downloads 154
1002 Robust ResNets for Chemically Reacting Flows

Authors: Randy Price, Harbir Antil, Rainald Löhner, Fumiya Togashi

Abstract:

Chemically reacting flows are common in engineering applications such as hypersonic flow, combustion, explosions, manufacturing process, and environmental assessments. The number of reactions in combustion simulations can exceed 100, making a large number of flow and combustion problems beyond the capabilities of current supercomputers. Motivated by this, deep neural networks (DNNs) will be introduced with the goal of eventually replacing the existing chemistry software packages with DNNs. The DNNs used in this paper are motivated by the Residual Neural Network (ResNet) architecture. In the continuum limit, ResNets become an optimization problem constrained by an ODE. Such a feature allows the use of ODE control techniques to enhance the DNNs. In this work, DNNs are constructed, which update the species un at the nᵗʰ timestep to uⁿ⁺¹ at the n+1ᵗʰ timestep. Parallel DNNs are trained for each species, taking in uⁿ as input and outputting one component of uⁿ⁺¹. These DNNs are applied to multiple species and reactions common in chemically reacting flows such as H₂-O₂ reactions. Experimental results show that the DNNs are able to accurately replicate the dynamics in various situations and in the presence of errors.

Keywords: chemical reacting flows, computational fluid dynamics, ODEs, residual neural networks, ResNets

Procedia PDF Downloads 119
1001 Impact of Gases Derived from Sargassum Algae Biodegradation on Copper Atmospheric Corrosion

Authors: M. Said Ahmed, M. Lebrini, J. Pellé, S. Rioual, B. Lescop, C. Roos

Abstract:

The corrosion behavior of copper exposed in a marine atmosphere polluted and unpolluted by gases, mainly hydrogen sulphide (H2S), from the decomposition of Sargassum algae was studied using the mass loss method and electrochemical measurements. MEB/EDX and XRD were also used for the observation of morphology and surface analysis. To study the impact of this on copper corrosion, four sites more or less impacted by Sargassum algae strandings were selected. The samples were exposed for up to six months. The mass loss results showed that the average corrosion rate of copper was 528 µm/year for the site most affected by Sargassum algae and 9.4 µm/year for the least impacted site after three months of exposure, implying that the presence of Sargassum algae caused an important copper degradation. The morphological structures and properties of the corrosion products obtained at the impacted and non-impacted sites differed significantly. In the absence of Sargassum algae, we obtained mainly Cu2O and Cu2Cl(OH)3. Whereas in the atmosphere with Sargassum algae, CuS product is the main corrosion product obtained. Electrochemical analyses showed that the protection offered by the corrosion product layer was more important and improved with time for the non-impacted sites, whereas on the impacted sites, this protection deteriorated.

Keywords: atmospheric-corrosion, sargassum algae, copper, electrochemical techniques, SEM/EDX and XRD

Procedia PDF Downloads 116
1000 Influence of Atmospheric Pollutants on Child Respiratory Disease in Cartagena De Indias, Colombia

Authors: Jose A. Alvarez Aldegunde, Adrian Fernandez Sanchez, Matthew D. Menden, Bernardo Vila Rodriguez

Abstract:

Up to five statistical pre-processings have been carried out considering the pollutant records of the stations present in Cartagena de Indias, Colombia, also taking into account the childhood asthma incidence surveys conducted in hospitals in the city by the Health Ministry of Colombia for this study. These pre-processings have consisted of different techniques such as the determination of the quality of data collection, determination of the quality of the registration network, identification and debugging of errors in data collection, completion of missing data and purified data, as well as the improvement of the time scale of records. The characterization of the quality of the data has been conducted by means of density analysis of the pollutant registration stations using ArcGis Software and through mass balance techniques, making it possible to determine inconsistencies in the records relating the registration data between stations following the linear regression. The results obtained in this process have highlighted the positive quality in the pollutant registration process. Consequently, debugging of errors has allowed us to identify certain data as statistically non-significant in the incidence and series of contamination. This data, together with certain missing records in the series recorded by the measuring stations, have been completed by statistical imputation equations. Following the application of these prior processes, the basic series of incidence data for respiratory disease and pollutant records have allowed the characterization of the influence of pollutants on respiratory diseases such as, for example, childhood asthma. This characterization has been carried out using statistical correlation methods, including visual correlation, simple linear regression correlation and spectral analysis with PAST Software which identifies maximum periodicity cycles and minimums under the formula of the Lomb periodgram. In relation to part of the results obtained, up to eleven maximums and minimums considered contemporary between the incidence records and the particles have been identified taking into account the visual comparison. The spectral analyses that have been performed on the incidence and the PM2.5 have returned a series of similar maximum periods in both registers, which are at a maximum during a period of one year and another every 25 days (0.9 and 0.07 years). The bivariate analysis has managed to characterize the variable "Daily Vehicular Flow" in the ninth position of importance of a total of 55 variables. However, the statistical correlation has not obtained a favorable result, having obtained a low value of the R2 coefficient. The series of analyses conducted has demonstrated the importance of the influence of pollutants such as PM2.5 in the development of childhood asthma in Cartagena. The quantification of the influence of the variables has been able to determine that there is a 56% probability of dependence between PM2.5 and childhood respiratory asthma in Cartagena. Considering this justification, the study could be completed through the application of the BenMap Software, throwing a series of spatial results of interpolated values of the pollutant contamination records that exceeded the established legal limits (represented by homogeneous units up to the neighborhood level) and results of the impact on the exacerbation of pediatric asthma. As a final result, an economic estimate (in Colombian Pesos) of the monthly and individual savings derived from the percentage reduction of the influence of pollutants in relation to visits to the Hospital Emergency Room due to asthma exacerbation in pediatric patients has been granted.

Keywords: Asthma Incidence, BenMap, PM2.5, Statistical Analysis

Procedia PDF Downloads 115
999 A Prenylflavanoid, HME5 with Antiproliferative Activity in Human Ovarian Cancer Cells

Authors: Mashitoh Abd Rahman, Najihah Mohd Hashim, Faiqah Ramli, Syam Mohan, Noraziah Nordin, Hamed Karimian, Hapipah Mohd Ali

Abstract:

Ovarian cancer is the most lethal gynecological malignancies. HME5, a prenylflavanoid has been isolated from local medicinal plant. This compound has been reported to possess a broad spectrum of biological activities including anticancer property. However, the potential of HME5 as an antiproliferative and cytotoxic agent on an ovarian cancer cells has not yet been investigated. In this present study, we examined the antiproliferative and cytotoxic effect of HME5 on Caov-3 (Human Ovarian Adenocarcinoma) cell line by using 3-[4,5-dimethylthizol-2-y]-2,5-diphenyltetrazolium bromide (MTT) assay, Acridine orange and propidium Iodide (AOPi) and cell cycle analysis study. HME5 has shown to inhibit Caov-3 in a time-dependent manner with the IC50 values of 5µg/ml, 2µg/ml and 1µg/ml after 24h, 48h and 72h treatment, respectively. Morphological study from AOPi analysis showed that HME5 induced apoptosis after 24 and 48h post-treatment. Nevertheless, HME5 exhibited cell cycle arrest at G1 phase as indicated in flow cytometry cell cycle profiling. In conclusion, HME5 inhibited proliferation of Caov-3 through induction of apoptosis and cell cycle arrest at G1 phase.

Keywords: apoptosis, prenylflavanoid, ovarian cancer, HME5

Procedia PDF Downloads 459
998 Impact of Increased Radiology Staffing on After-Hours Radiology Reporting Efficiency and Quality

Authors: Peregrine James Dalziel, Philip Vu Tran

Abstract:

Objective / Introduction: Demand for radiology services from Emergency Departments (ED) continues to increase with greater demands placed on radiology staff providing reports for the management of complex cases. Queuing theory indicates that wide variability of process time with the random nature of request arrival increases the probability of significant queues. This can lead to delays in the time-to-availability of radiology reports (TTA-RR) and potentially impaired ED patient flow. In addition, greater “cognitive workload” of greater volume may lead to reduced productivity and increased errors. We sought to quantify the potential ED flow improvements obtainable from increased radiology providers serving 3 public hospitals in Melbourne Australia. We sought to assess the potential productivity gains, quality improvement and the cost-effectiveness of increased labor inputs. Methods & Materials: The Western Health Medical Imaging Department moved from single resident coverage on weekend days 8:30 am-10:30 pm to a limited period of 2 resident coverage 1 pm-6 pm on both weekend days. The TTA-RR for weekend CT scans was calculated from the PACs database for the 8 month period symmetrically around the date of staffing change. A multivariate linear regression model was developed to isolate the improvement in TTA-RR, between the two 4-months periods. Daily and hourly scan volume at the time of each CT scan was calculated to assess the impact of varying department workload. To assess any improvement in report quality/errors a random sample of 200 studies was assessed to compare the average number of clinically significant over-read addendums to reports between the 2 periods. Cost-effectiveness was assessed by comparing the marginal cost of additional staffing against a conservative estimate of the economic benefit of improved ED patient throughput using the Australian national insurance rebate for private ED attendance as a revenue proxy. Results: The primary resident on call and the type of scan accounted for most of the explained variability in time to report availability (R2=0.29). Increasing daily volume and hourly volume was associated with increased TTA-RR (1.5m (p<0.01) and 4.8m (p<0.01) respectively per additional scan ordered within each time frame. Reports were available 25.9 minutes sooner on average in the 4 months post-implementation of double coverage (p<0.01) with additional 23.6 minutes improvement when 2 residents were on-site concomitantly (p<0.01). The aggregate average improvement in TTA-RR was 24.8 hours per weekend day This represents the increased decision-making time available to ED physicians and potential improvement in ED bed utilisation. 5% of reports from the intervention period contained clinically significant addendums vs 7% in the single resident period but this was not statistically significant (p=0.7). The marginal cost was less than the anticipated economic benefit based assuming a 50% capture of improved TTA-RR inpatient disposition and using the lowest available national insurance rebate as a proxy for economic benefit. Conclusion: TTA-RR improved significantly during the period of increased staff availability, both during the specific period of increased staffing and throughout the day. Increased labor utilisation is cost-effective compared with the potential improved productivity for ED cases requiring CT imaging.

Keywords: workflow, quality, administration, CT, staffing

Procedia PDF Downloads 112
997 Effect of the Deposition Time of Hydrogenated Nanocrystalline Si Grown on Porous Alumina Film on Glass Substrate by Plasma Processing Chemical Vapor Deposition

Authors: F. Laatar, S. Ktifa, H. Ezzaouia

Abstract:

Plasma Enhanced Chemical Vapor Deposition (PECVD) method is used to deposit hydrogenated nanocrystalline silicon films (nc-Si: H) on Porous Anodic Alumina Films (PAF) on glass substrate at different deposition duration. Influence of the deposition time on the physical properties of nc-Si: H grown on PAF was investigated through an extensive correlation between micro-structural and optical properties of these films. In this paper, we present an extensive study of the morphological, structural and optical properties of these films by Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD) techniques and a UV-Vis-NIR spectrometer. It was found that the changes in DT can modify the films thickness, the surface roughness and eventually improve the optical properties of the composite. Optical properties (optical thicknesses, refractive indexes (n), absorption coefficients (α), extinction coefficients (k), and the values of the optical transitions EG) of this kind of samples were obtained using the data of the transmittance T and reflectance R spectra’s recorded by the UV–Vis–NIR spectrometer. We used Cauchy and Wemple–DiDomenico models for the analysis of the dispersion of the refractive index and the determination of the optical properties of these films.

Keywords: hydragenated nanocrystalline silicon, plasma processing chemical vapor deposition, X-ray diffraction, optical properties

Procedia PDF Downloads 375
996 The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events

Authors: Jaqueline Maria Ribeiro Vieira

Abstract:

Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). Previously we developed and proposed a novel strategy capable of detecting patterns at borehole images that may point to regions that have tension and breakout characteristics, based on segmented images. In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge data set configurations.

Keywords: image segmentation, oil well visualization, classifiers, data-mining, visual computer

Procedia PDF Downloads 302
995 Preparation and Characterization of Conductive Poly(N-Ethyl Aniline)/Kaolinite Composite Material by Chemical Polymerization

Authors: Hande Taşdemir, Meral Şahin, Mehmet Saçak

Abstract:

Conductive composite materials obtained by physical or chemical mixing of two or more components having conducting and insulating properties have been increasingly attracted. Kaolinite in kaolin clays is one of silicates with two layers of molecular sheets of (Si2O5)2− and [Al2(OH)4]2+ with the chemical composition Al2Si2O5(OH)4. The most abundant hydrophillic kaolinite is extensively used in industrial processes and therefore it is convenient for the preparation of organic/inorganic composites. In this study, conductive poly(N-ethylaniline)/kaolinite composite was prepared by chemical polymerization of N-ethyl aniline in the presence of kaolinite particles using ammonium persulfate as oxidant in aqueous acidic medium. Poly(N-ethylaniline) content and conductivity of composite prepared were systematically investigated as a function of polymerization conditions such as ammonium persulfate, N-ethyl aniline and HCl concentrations. Poly(N-ethylaniline) content and conductivity of composite increased with increasing oxidant and monomer concentrations up to 0.1 M and 0.2 M, respectively, and decreased at higher concentrations. The maximum yield of polymer in the composite (15.0%) and the highest conductivity value of the composite (5.0×10-5 S/cm) was achieved by polymerization for 2 hours at 20°C in HCl of 0.5 M. The structure, morphological analyses and thermal behaviours of poly(N-ethylaniline)/kaolinite composite were characterized by FTIR and XRD spectroscopy, SEM and TGA techniques.

Keywords: kaolinite, poly(N-ethylaniline), conductive composite, chemical polymerization

Procedia PDF Downloads 291
994 Antibiotic Potential of Bioactive Compounds from a Marine Streptomyces Isolated from South Pacific Sediments

Authors: Ilaisa Kacivakanadina, Samson Viulu, Brad Carte, Katy Soapi

Abstract:

Two bioactive compounds namely Vulgamycin (also known as enterocin A) and 5-deoxyenterocin were purified from a marine bacterial strain 1903. Strain 1903 was isolated from marine sediments collected from the Solomon Islands. Morphological features of strain 1903 showed that it belongs to the genus Streptomyces. The two secondary metabolites were extracted using EtOAc and purified by chromatographic methods using EtOAc and hexane solvents. Mass spectrum and NMR data of pure compounds were used to elucidate the chemical structures. In this study, results showed that both compounds were strongly active against Wild Type Staphylococcus aureus (WTSA) (MIC < 1 µg/mL) and in Brine shrimp assays (BSA) (MIC < 1 µg/mL). 5-deoxyenterocin was also active against Rifamycin resistant Staphylococcus aureus (RRSA) (MIC, 250 µg/mL) while vulgamycin showed bioactivity against Methicillin resistant Staphylococcus aureus (MRSA) (MIC 250 µg/mL). To the best of our knowledge, this is the first study that showed the bio-activity of 5-deoxyenterocin. This is also the first time that Vulgamycin has been reported to be active in a BSA. There has not been any mechanism of action studies for these two compounds against pathogens. This warrants further studies on their mechanism of action against microbial pathogens.

Keywords: 5-deoxyenterocin, bioactivity, brine shrimp assay (BSA), vulgamycin

Procedia PDF Downloads 186
993 Preparation and Characterization of Recycled Polyethylene Terephthalate/Polypropylene Blends from Automotive Textile Waste for Use in the Furniture Edge Banding Sector

Authors: Merve Ozer, Tolga Gokkurt, Yasemen Gokkurt, Ezgi Bozbey

Abstract:

In this study, we investigated the recovery of Polyethylene terephthalate/Polypropylene (PET/PP)-containing automotive textile waste from post-product and post-consumer phases in the automotive sector according to the upcycling technique and the methods of formulation and production that would allow these wastes to be substituted as PP/PET alloys instead of original PP raw materials used in plastic edge band production. The laminated structure of the stated wastes makes it impossible to separate the incompatible PP and PET phases in content and thus produce a quality raw material or product as a result of recycling. Within the scope of a two-stage production process, a comprehensive process was examined using block copolymers and maleic grafted copolymers with different features to ensure that these two incompatible phases are compatible. The mechanical, thermal, and morphological properties of the plastic raw materials, which will be referred to as PP/PET blends obtained as a result of the process, were examined in detail and discussed their substitutability instead of the original raw materials.

Keywords: mechanical recycling, melt blending, plastic blends, polyethylene, polypropylene, recycling of plastics, terephthalate, twin screw extruders

Procedia PDF Downloads 71
992 Weeds Density Affects Yield and Quality of Wheat Crop under Different Crop Densities

Authors: Ijaz Ahmad

Abstract:

Weed competition is one of the major biotic constraints in wheat crop productivity. Avena fatua L. and Silybum marianum (L.) Gaertn. are among the worst weeds of wheat, greatly deteriorating wheat quality subsequently reducing its market value. In this connection, two-year experiments were conducted in 2018 & 2019. Different seeding rate wheat viz; 80, 100, 120 and 140 kg ha-1 and different weeds ratio (A. fatua: S. marianum ) sown at the rate 1:8, 2:7, 3:6, 4:5, 5:4, 6:3, 7:2, 8:1 and 0:0 respectively. The weeds ratio and wheat densities are indirectly proportional. However, the wheat seed at the rate of 140 kg ha-1 has minimal weeds interference. Yield losses were 17.5% at weeds density 1:8 while 7.2% at 8:1. However, in wheat density, the highest percent losses were computed on 80 kg ha-1 while the lowest was recorded on 140 kg ha-1. Since due to the large leaf canopy of S. marianum other species can't sustain their growth. Hence, it has been concluded that S. marianum is the hotspot that causes reduction to the yield-related parameters, followed by A. fatua and the other weeds. Due to the morphological mimicry of A. fatua with wheat crop during the vegetative growth stage, it cannot be easily distinguished. Therefore, managing A. fatua and S. marianum before seed setting is recommended for reducing the future weed problem. Based on current studies, it is suggested that sowing wheat seed at the rate of 140 kg ha-1 is recommended to better compete with all the field weeds.

Keywords: fat content, holly thistle, protein content, weed competition, wheat, wild oat

Procedia PDF Downloads 206
991 New Quinazoline Derivative Exhibit Cytotoxic Effect agaisnt MCF-7 Human Breast Cancer Cell

Authors: Maryam Zahedifard, Fadhil Lafta Faraj, Nazia Abdul Majid, Hapipah Mohd Ali, Mahmood Ameen Abdulla

Abstract:

The new quinazoline Schiff bases have been synthesized through condensation reaction of 2-aminobenzhydrazide with 5-bromosalicylaldehyde and 3-methoxy-5-bromosalicylaldehyde. The compound was investigated for anticancer activity against MCF-7 human breast cancer cell line. It demonstrated a remarkable antiproliferative effect, with an IC50 value of 3.41±0.34, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with compound subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome C release as well as increase in ROS generation. We also found activation of caspases 3/7 and -9. Moreover, acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed the selected compound significantly induce apoptosis in MCF-7 cells via intrinsic pathway, which might be considered as a potential candidate for further in vivo and clinical breast cancer studies.

Keywords: quinazoline Schiff base, apoptosis, MCF-7, caspase, cell cycle, acute toxicity

Procedia PDF Downloads 438
990 Web and Android-Based Applications as a Breakthrough in Preventing Non-System Fault Disturbances Due to Work Errors in the Transmission Unit

Authors: Dhany Irvandy, Ary Gemayel, Mohammad Azhar, Leidenti Dwijayanti, Iif Hafifah

Abstract:

Work safety is among the most important things in work execution. Unsafe conditions and actions are priorities in accident prevention in the world of work, especially in the operation and maintenance of electric power transmission. Considering the scope of work, operational work in the transmission has a very high safety risk. Various efforts have been made to avoid work accidents. However, accidents or disturbances caused by non-conformities in work implementation still often occur. Unsafe conditions or actions can cause these. Along with the development of technology, website-based applications and mobile applications have been widely used as a medium to monitor work in real-time and by more people. This paper explains the use of web and android-based applications to monitor work and work processes in the field to prevent work accidents or non-system fault disturbances caused by non-conformity of work implementation with predetermined work instructions. Because every job is monitored in real-time, recorded in time and documented systemically, this application can reduce the occurrence of possible unsafe actions carried out by job executors that can cause disruption or work accidents.

Keywords: work safety, unsafe action, application, non-system fault, real-time.

Procedia PDF Downloads 42
989 Automatic Tagging and Accuracy in Assamese Text Data

Authors: Chayanika Hazarika Bordoloi

Abstract:

This paper is an attempt to work on a highly inflectional language called Assamese. This is also one of the national languages of India and very little has been achieved in terms of computational research. Building a language processing tool for a natural language is not very smooth as the standard and language representation change at various levels. This paper presents inflectional suffixes of Assamese verbs and how the statistical tools, along with linguistic features, can improve the tagging accuracy. Conditional random fields (CRF tool) was used to automatically tag and train the text data; however, accuracy was improved after linguistic featured were fed into the training data. Assamese is a highly inflectional language; hence, it is challenging to standardizing its morphology. Inflectional suffixes are used as a feature of the text data. In order to analyze the inflections of Assamese word forms, a list of suffixes is prepared. This list comprises suffixes, comprising of all possible suffixes that various categories can take is prepared. Assamese words can be classified into inflected classes (noun, pronoun, adjective and verb) and un-inflected classes (adverb and particle). The corpus used for this morphological analysis has huge tokens. The corpus is a mixed corpus and it has given satisfactory accuracy. The accuracy rate of the tagger has gradually improved with the modified training data.

Keywords: CRF, morphology, tagging, tagset

Procedia PDF Downloads 191
988 Study of Congenital Malformations in Newborns in the Pediatrics and Neonatology Department in the Wilaya of Batna, Algeria

Authors: Belhadi Kamilia, Bendaoud Fadhila, Zidani Abla

Abstract:

Birth defects are morphological abnormalities and functionally represent the main causes of morbidity and neonatal mortality. The aim was to analyze a number of maternal and newborn traits, assess the main causes and risk factors of abnormalities and describe the clinical aspects and different types of birth defects at the maternity of Batna. Our rate of congenital malformations is 19% of hospitalized newborns; mono malformations are the most common, mainly 28% neurological malformations predominated by Spina Bifida and hydrocephalus. Poly malformations accounted for only 15% of our study. 39,61% of newborns are premature. We found a male predominance. The sex ratio is 1.33 male to one girl, most by mothers over 35. The analysis of the pathological history has shown that the diseases encountered in mothers are pregnant HTA and diabetes, these are the most common diseases with a percentage of (19%, and 21%). The percentage of people who use medicine is 28%. In terms of diagnosis, prenatal ultrasounds are performed in 12% of cases, and the death rate is often fairly high at 45%. Congenital malformations remain a problem in terms of treatment and prognosis; this will make it possible to investigate other factors, to better understand the causes of congenital malformations and to develop effective prevention and treatment strategies.

Keywords: malformation, congenital, newborn, risk factors, Wilaya of Batna, Algeria.

Procedia PDF Downloads 14
987 A Mixed Expert Evaluation System and Dynamic Interval-Valued Hesitant Fuzzy Selection Approach

Authors: Hossein Gitinavard, Mohammad Hossein Fazel Zarandi

Abstract:

In the last decades, concerns about the environmental issues lead to professional and academic efforts on green supplier selection problems. In this sake, one of the main issues in evaluating the green supplier selection problems, which could increase the uncertainty, is the preferences of the experts' judgments about the candidate green suppliers. Therefore, preparing an expert system to evaluate the problem based on the historical data and the experts' knowledge can be sensible. This study provides an expert evaluation system to assess the candidate green suppliers under selected criteria in a multi-period approach. In addition, a ranking approach under interval-valued hesitant fuzzy set (IVHFS) environment is proposed to select the most appropriate green supplier in planning horizon. In the proposed ranking approach, the IVHFS and the last aggregation approach are considered to margin the errors and to prevent data loss, respectively. Hence, a comparative analysis is provided based on an illustrative example to show the feasibility of the proposed approach.

Keywords: green supplier selection, expert system, ranking approach, interval-valued hesitant fuzzy setting

Procedia PDF Downloads 326
986 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System

Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva

Abstract:

Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.

Keywords: energy production, meteorological data, irradiance decomposition, solar photovoltaic system

Procedia PDF Downloads 140
985 Approach to Formulate Intuitionistic Fuzzy Regression Models

Authors: Liang-Hsuan Chen, Sheng-Shing Nien

Abstract:

This study aims to develop approaches to formulate intuitionistic fuzzy regression (IFR) models for many decision-making applications in the fuzzy environments using intuitionistic fuzzy observations. Intuitionistic fuzzy numbers (IFNs) are used to characterize the fuzzy input and output variables in the IFR formulation processes. A mathematical programming problem (MPP) is built up to optimally determine the IFR parameters. Each parameter in the MPP is defined as a couple of alternative numerical variables with opposite signs, and an intuitionistic fuzzy error term is added to the MPP to characterize the uncertainty of the model. The IFR model is formulated based on the distance measure to minimize the total distance errors between estimated and observed intuitionistic fuzzy responses in the MPP resolution processes. The proposed approaches are simple/efficient in the formulation/resolution processes, in which the sign of parameters can be determined so that the problem to predetermine the sign of parameters is avoided. Furthermore, the proposed approach has the advantage that the spread of the predicted IFN response will not be over-increased, since the parameters in the established IFR model are crisp. The performance of the obtained models is evaluated and compared with the existing approaches.

Keywords: fuzzy sets, intuitionistic fuzzy number, intuitionistic fuzzy regression, mathematical programming method

Procedia PDF Downloads 138
984 Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images

Authors: Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, Goutam Kumar Ghorai, Gautam Sarkar, Ashis K. Dhara

Abstract:

Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques.

Keywords: attention-based fully convolutional network, optic disc detection and segmentation, retinal fundus image, screening of ocular diseases

Procedia PDF Downloads 142
983 Association between Carbon Dioxide (CO2) Emission and Under-Five Mortality: Panel Data Evidence from 100 Countries

Authors: Mahadev Bhise, Nabanita Majumder

Abstract:

Recent studies have found association between air pollutants and mortality, particularly how concentration of air pollutant explains under-five mortality across the countries. Thus, the present study evaluates the relationship between Carbon dioxide (CO2) emission and under-five mortality, while controlling other well-being determinant of Under-five mortality in 100 countries using panel unbalanced cross sectional data. We have used PCSE and GMM model for the period 1990-2011 to meet our objectives. Our findings suggest that, the positive relationship between lagged periods of carbon dioxide and under-five mortality; the percentage of rural population with access of improved water is negatively associated with under-five mortality, while in case of urban population with access of improved water, is positively related to under-five mortality. Access of sanitation facility, food production index, GDP per capita, and concentration of urban population have significant negative impact on under-five mortality. Further, total fertility rate is significantly associated (positive) with under-five mortality which indicates relative change in fertility is related to relative change in under-five mortality.

Keywords: arbon dioxide (CO2), under-five mortality (0q5), gross domestic product (GDP), urban population, food production, panel corrected standard errors (PCSE), generalized method of moments (GMM)

Procedia PDF Downloads 308
982 Design and Implementation of Image Super-Resolution for Myocardial Image

Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad

Abstract:

Super-resolution is the technique of intelligently upscaling images, avoiding artifacts or blurring, and deals with the recovery of a high-resolution image from one or more low-resolution images. Single-image super-resolution is a process of obtaining a high-resolution image from a set of low-resolution observations by signal processing. While super-resolution has been demonstrated to improve image quality in scaled down images in the image domain, its effects on the Fourier-based technique remains unknown. Super-resolution substantially improved the spatial resolution of the patient LGE images by sharpening the edges of the heart and the scar. This paper aims at investigating the effects of single image super-resolution on Fourier-based and image based methods of scale-up. In this paper, first, generate a training phase of the low-resolution image and high-resolution image to obtain dictionary. In the test phase, first, generate a patch and then difference of high-resolution image and interpolation image from the low-resolution image. Next simulation of the image is obtained by applying convolution method to the dictionary creation image and patch extracted the image. Finally, super-resolution image is obtained by combining the fused image and difference of high-resolution and interpolated image. Super-resolution reduces image errors and improves the image quality.

Keywords: image dictionary creation, image super-resolution, LGE images, patch extraction

Procedia PDF Downloads 373
981 Assertion-Driven Test Repair Based on Priority Criteria

Authors: Ruilian Zhao, Shukai Zhang, Yan Wang, Weiwei Wang

Abstract:

Repairing broken test cases is an expensive and challenging task in evolving software systems. Although an automated repair technique with intent preservation has been proposed, but it does not take into account the association between test repairs and assertions, leading to a large number of irrelevant candidates and decreasing the repair capability. This paper proposes an assertion-driven test repair approach. Furthermore, an intent-oriented priority criterion is raised to guide the repair candidate generation, making the repairs closer to the intent of the test. In more detail, repair targets are determined through post-dominance relations between assertions and the methods that directly cause compilation errors. Then, test repairs are generated from the target in a bottom-up way, guided by the intent-oriented priority criteria. Finally, the generated repair candidates are prioritized to match the original test intent. The approach is implemented and evaluated on the benchmark of 4 open-source programs and 91 broken test cases. The result shows that the approach can fix 89% (81/91) of broken test cases, which is more effective than the existing intentpreserved test repair approach, and our intent-oriented priority criteria work well.

Keywords: test repair, test intent, software test, test case evolution

Procedia PDF Downloads 128
980 Hot Air Flow Annealing of MAPbI₃ Perovskite: Structural and Optical Properties

Authors: Mouad Ouafi, Lahoucine Atourki, Larbi Laanab, Erika Vega, Miguel Mollar, Bernabe Marib, Boujemaa Jaber

Abstract:

Despite the astonishing emergence of the methylammonium lead triiodide perovskite as a promising light harvester for solar cells, their physical properties in solution-processed MAPbI₃ are still crucial and need to be improved. The objective of this work is to investigate the hot airflow effect during the growth of MAPbI₃ films using the spin-coating process on their structural, optical and morphological proprieties. The experimental results show that many physical proprieties of the perovskite strongly depend on the air flow temperature and the optimization which has a beneficial effect on the perovskite quality. In fact, a clear improvement of the crystallinity and the crystallite size of MAPbI₃ perovskite is demonstrated by the XRD analyses, when the airflow temperature is increased up to 100°C. Alternatively, as far as the surface morphology is concerned, SEM micrographs show that significant homogenous nucleation, uniform surface distribution and pin holes free with highest surface coverture of 98% are achieved when the airflow temperature reaches 100°C. At this temperature, the improvement is also observed when considering the optical properties of the films. By contrast, a remarkable degradation of the MAPbI₃ perovskites associated to the PbI₂ phase formation is noticed, when the hot airflow temperature is higher than 100°C, especially 300°C.

Keywords: hot air flow, crystallinity, surface coverage, perovskite morphology

Procedia PDF Downloads 161
979 Geomorphology Evidence of Climate Change in Gavkhouni Lagoon, South East Isfahan, Iran

Authors: Manijeh Ghahroudi Tali, Ladan Khedri Gharibvand

Abstract:

Gavkhouni lagoon, in the South East of Isfahan (Iran), is one of the pluvial lakes and legacy of Quaternary era which has emerged during periods with more precipitation and less evaporation. Climate change, lack of water resources and dried freshwater of Zayandehrood resulted in increased entropy and activated a dynamic which in turn is converted to Playa. The morphometry of 61 polygonal clay microforms in wet zone soil, 52 polygonal clay microforms in pediplain zone soil and 63 microforms in sulfate soil, is evaluated by fractal model. After calculating the microforms’ area–perimeter fractal dimension, their turbulence level was analyzed. Fractal dimensions (DAP) obtained from the microforms’ analysis of pediplain zone, wet zone, and sulfate soils are 1/21-1/39, 1/27-1/44 and 1/29-1/41, respectively, which is indicative of turbulence in these zones. Logarithmic graph drawn for each region also shows that there is a linear relationship between logarithm of the microforms’ area and perimeter so that correlation coefficient (R2) obtained for wet zone is larger than 0.96, for pediplain zone is larger than 0.99 and for sulfated zone is 0.9. Increased turbulence in this region suggests morphological transformation of the system and lagoon’s conversion to a new ecosystem which can be accompanied with serious risks.

Keywords: fractal, Gavkhouni, microform, Iran

Procedia PDF Downloads 269
978 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods

Authors: Ali Berkan Ural

Abstract:

This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.

Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning

Procedia PDF Downloads 93
977 Biodegradation Study of Diethyl Phthalate Using Bacteria Isolated from Plastic Industry Wastewater Discharge Site

Authors: Sangram Shamrao Patil, Hara Mohan Jena

Abstract:

Phthalates are among the most common organic pollutant since they have become widespread in the environment and found in sediments, natural waters, soils, plants, landfill leachates, biota including human tissue and aquatic organisms. Diethyl phthalate (DEP) is a low molecular weight phthalate which has wide applications as plasticizer and become a major cause of environmental pollution. Environmental protection agency (EPA) listed DEP as priority pollutant because of its toxicity and they recommended human health ambient water quality criterion for diethyl phthalate (DEP) as 4 mg/l. Therefore, wastes containing phthalates require proper treatment before being discharged into the environment. Biodegradation is attractive and efficient treatment method as it is cost effective and produces non-toxic end products. In the present study, a DEP degrading aerobic bacterium was isolated from soil contaminated with plastic industry wastewater. Morphological and biochemical characteristics of isolate were performed. 16S rRNA sequencing and phylogenetic analysis of isolate was carried out and it was identified as Empedobacter brevis. Isolate has been found to tolerate up to 1650 mg/l of DEP. This study will be significant for exploring an application of microbes for remediation of phthalates and development of a suitable bioreactor.

Keywords: diethyl phthalate, plasticizer, pollutant, biodegradation

Procedia PDF Downloads 269
976 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation

Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski

Abstract:

Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.

Keywords: bootstrap, edgeworth approximation, IID, quantile

Procedia PDF Downloads 158
975 Extraction of Road Edge Lines from High-Resolution Remote Sensing Images Based on Energy Function and Snake Model

Authors: Zuoji Huang, Haiming Qian, Chunlin Wang, Jinyan Sun, Nan Xu

Abstract:

In this paper, the strategy to extract double road edge lines from acquired road stripe image was explored. The workflow is as follows: the road stripes are acquired by probabilistic boosting tree algorithm and morphological algorithm immediately, and road centerlines are detected by thinning algorithm, so the initial road edge lines can be acquired along the road centerlines. Then we refine the results with big variation of local curvature of centerlines. Specifically, the energy function of edge line is constructed by gradient feature and spectral information, and Dijkstra algorithm is used to optimize the initial road edge lines. The Snake model is constructed to solve the fracture problem of intersection, and the discrete dynamic programming algorithm is used to solve the model. After that, we could get the final road network. Experiment results show that the strategy proposed in this paper can be used to extract the continuous and smooth road edge lines from high-resolution remote sensing images with an accuracy of 88% in our study area.

Keywords: road edge lines extraction, energy function, intersection fracture, Snake model

Procedia PDF Downloads 337
974 Identification System for Grading Banana in Food Processing Industry

Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan

Abstract:

In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.

Keywords: banana, food processing, identification system, neural network

Procedia PDF Downloads 466