Search results for: gas concentration detection
7208 Image Classification with Localization Using Convolutional Neural Networks
Authors: Bhuyain Mobarok Hossain
Abstract:
Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).Keywords: image classification, object detection, localization, particle filter
Procedia PDF Downloads 3027207 Non-Contact Human Movement Monitoring Technique for Security Control System Based 2n Electrostatic Induction
Authors: Koichi Kurita
Abstract:
In this study, an effective non-contact technique for the detection of human physical activity is proposed. The technique is based on detecting the electrostatic induction current generated by the walking motion under non-contact and non-attached conditions. A theoretical model for the electrostatic induction current generated because of a change in the electric potential of the human body is proposed. By comparing the obtained electrostatic induction current with the theoretical model, it becomes obvious that this model effectively explains the behavior of the waveform of the electrostatic induction current. The normal walking motions are recorded using a portable sensor measurement located in a passageway of office building. The obtained results show that detailed information regarding physical activity such as a walking cycle can be estimated using our proposed technique. This suggests that the proposed technique which is based on the detection of the walking signal, can be successfully applied to the detection of human walking motion in a secured building.Keywords: human walking motion, access control, electrostatic induction, alarm monitoring
Procedia PDF Downloads 3567206 Indigo Dye Wastewater Treatment by Fenton Oxidation
Authors: Anurak Khrueakham, Tassanee Chanphuthin
Abstract:
Indigo is a well-known natural blue dye that is used hither to even though synthetic ones are commercially available. The removal of indigo from effluents is difficult due to its resistance towards biodegradation which causes an aquatic environment effect. Fenton process is a reaction between hydrogen peroxide H2O2 and Fe2+ to generate •OH (highly reactive oxidant (E◦= 2.8 V)). Additionally, •OH is non-selective oxidant which is capable of destroying wide range of organic pollutants in water and wastewater. The aims of this research were to investigate the effect of H2O2, Fe2+ and pH on indigo wastewater oxidation by Fenton process. A liter reactor was operated in all experiments. The batch reactor was prepared by filling 1 liter of indigo wastewater. The pH was adjusted to the desired value; then, FeSO4 at predetermined amount was added. Finally, H2O2 was immediately added to start the Fenton’s reaction. The Fenton oxidation of indigo wastewater was operated for 60 minutes. Residual H2O2 was analyzed using titanium oxalate method. The Fe2+ concentration was determined by phenanthroline method. COD was determined using closed-reflux titrimetric method to indicate the removal efficiency. The results showed that at pH 2 increasing the initial ferrous concentration from 0.1 mM to 1 mM enhanced the indigo removal from 36% to 59%. Fenton reaction was rapidly due to the high generation rate of •OH. The degradation of indigo increased with increasing pH up to pH 3. This can be explained that the scavenging effect of the •OH by H+ in the condition of low pH is severe to form an oxonium ion, resulting in decrease the production of •OH and lower the decolorization efficiency of indigo. Increasing the initial H2O2 concentration from 5 mM to 20 mM could enhance the decolorization. The COD removal was increased from 35% to 65% with increasing H2O2 concentration from 5 mM to 20 mM. The generations of •OH were promoted by the increase of initial H2O2 concentration. However, the higher concentration of H2O2 resulted in the reduction of COD removal efficiency. The initial ferrous concentrations were studied in the range of 0.05-15.0 mM. The results found that the COD removals increased with increasing ferrous concentrations. The COD removals were increased from 32% to 65% when increase the ferrous concentration from 0.5 mM to 10.0 mM. However, the COD removal did not significantly change at higher 10.0 mM. This is because •OH yielding was lower level of oxidation, therefore, the COD removals were not improved. According to the studies, the Fenton’s reagents were important factors for COD removal by Fenton process. The optimum condition for COD removal of indigo dye wastewater was 10.0 mM of ferrous, 20 mM of H2O2 and at pH 3.Keywords: indigo dye, fenton oxidation, wastewater treatment, advanced oxidation processes
Procedia PDF Downloads 3947205 Effect of Cadmium and Zinc on Initial Insect Food Chain in Wheat Agroecosystem
Authors: Muhammad Xaaceph Khan, Abida Butt, Farah Kausar
Abstract:
Due to geogenic and anthropogenic factors, heavy metals concentrations increased throughout the world and deposit into soil. Thus available to different plants and travel in different food chains. The present study was designed to achieve bioaccumulation of Cd and Zn in the wheat-aphid-beetle food chain. For this purpose, wheat plants were grown in three different treatments: Cd, Zn, Cd+Zn. Data showed that Cd content in soil and wheat plant increases with increase in Cd concentration while plant weighs, panicle weight, seed number per panicle and seed weight per panicle decreases with increase in Cd content in the soil. Zn content in soil and wheat plant increases with increase in Cd concentration while plant weighs, panicle weight, seed number per panicle, and seed weight per panicle increase with an increase in Zn content in the soil. With the addition of Zn in Cd-treated soil, the uptake of Cd decreases in all parts of wheat plants. Bioaccumulation from wheat plant to aphids and then its predators were also studied. Cd concentration increases from low to high concentration in all arthropods. Same was observed in Zn concentrations, while in Cd+Zn, Cd accumulation decreases but Zn accumulates increases. Health risk index (HRI) also showed that in the presence of Zn, the HRI improves and can help to reduce health risks associated with Cd.Keywords: aphid, beetle, bioaccumulation, cadmium, wheat, zinc
Procedia PDF Downloads 1607204 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services
Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme
Abstract:
Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing
Procedia PDF Downloads 1097203 Optimization of Fermentation Parameters for Bioethanol Production from Waste Glycerol by Microwave Induced Mutant Escherichia coli EC-MW (ATCC 11105)
Authors: Refal Hussain, Saifuddin M. Nomanbhay
Abstract:
Glycerol is a valuable raw material for the production of industrially useful metabolites. Among many promising applications for the use of glycerol is its bioconversion to high value-added compounds, such as bioethanol through microbial fermentation. Bioethanol is an important industrial chemical with emerging potential as a biofuel to replace vanishing fossil fuels. The yield of liquid fuel in this process was greatly influenced by various parameters viz, temperature, pH, glycerol concentration, organic concentration, and agitation speed were considered. The present study was undertaken to investigate optimum parameters for bioethanol production from raw glycerol by immobilized mutant Escherichia coli (E.coli) (ATCC11505) strain on chitosan cross linked glutaraldehyde optimized by Taguchi statistical method in shake flasks. The initial parameters were set each at four levels and the orthogonal array layout of L16 (45) conducted. The important controlling parameters for optimized the operational fermentation was temperature 38 °C, medium pH 6.5, initial glycerol concentration (250 g/l), and organic source concentration (5 g/l). Fermentation with optimized parameters was carried out in a custom fabricated shake flask. The predicted value of bioethanol production under optimized conditions was (118.13 g/l). Immobilized cells are mainly used for economic benefits of continuous production or repeated use in continuous as well as in batch mode.Keywords: bioethanol, Escherichia coli, immobilization, optimization
Procedia PDF Downloads 6527202 Community Structure Detection in Networks Based on Bee Colony
Authors: Bilal Saoud
Abstract:
In this paper, we propose a new method to find the community structure in networks. Our method is based on bee colony and the maximization of modularity to find the community structure. We use a bee colony algorithm to find the first community structure that has a good value of modularity. To improve the community structure, that was found, we merge communities until we get a community structure that has a high value of modularity. We provide a general framework for implementing our approach. We tested our method on computer-generated and real-world networks with a comparison to very known community detection methods. The obtained results show the effectiveness of our proposition.Keywords: bee colony, networks, modularity, normalized mutual information
Procedia PDF Downloads 4057201 Recovery of Chromium(III) from Tannery Wastewater by Nanoparticles and Whiskers of Chitosan
Authors: El Montassir Dahmane, Nadia Eladlani, Aziz Ouahrouch, Mohammed Rhazi, Moha Taourirte
Abstract:
The present study was aimed to approximate the optimal conditions to chromium recovery from wastewater by nanoparticles and whiskers of chitosan. Chitosan with an average molecular weight of 63 kDa and a 96% deacetylation degree was prepared according to our previous study. Chromium recovery is influenced by different parameters. In our search, we determined the appropriate range of pH to form chitosan–Cr(III), nanoparticles Cr(III), and whiskers– Cr(III) complex. We studied also the influence of chromium concentration and the nature of chitosan-based materials on the complexation process. Our main aim is to approximate the optimal conditions to remove chromium(III) from the tanning bath, recuperated from tannery wastewater of Marrakech in Morocco. A Perkin Elmer optima 2000 Inductively Coupled Plasma- Optical Emission Spectrometer (ICP-OES), was used to determine the quantity of chromium persistent in tannery wastewater after complexation phenomenon. To the best of our knowledge, this is the first report interested in the optimal conditions for chromium recovery from wastewater by nanoparticles and whiskers of chitosan. From our research, we found that in chromium solution, the appropriate range of pH to form complex is between 5.6 and 6.7. Also, the complexation of Cr(III) is depending on the nature of complexing ligand and chromium concentration. The obtained results reveal that nanoparticles present an excellent adsorption capacity regardless of chromium concentration. In addition, after a critical chromium concentration (250 mg/l), our ligand becomes saturated, that requires an increase of ligand mass for increasing chromium concentration in order to have a better adsorption capacity. Hence, in the same conditions, we used chitosan, its nanoparticles, whiskers, and chitosan based films to remove Cr(III) from tannery wastewater. The pH of this effluent was around 6, and its chromium concentration was 300 mg/l. The results expose that the sequence of complexing ligand in the effluent is the same in chromium solution, determined via our previous study. However, the adsorbed quantity is less due to the presence of other metallic ions in tannery wastewater. We conclude that the best complexing ligand-based chitosan is chitosan nanoaprticles whether it’s in chromium solution or in tannery wastewater. Nanoparticles are the best complexing ligand after 24 h of contact nanoparticles can remove 70% of chromium from this tannery wastewater.Keywords: nanoparticles, whiskers, chitosan, chromium
Procedia PDF Downloads 1317200 Voice Liveness Detection Using Kolmogorov Arnold Networks
Authors: Arth J. Shah, Madhu R. Kamble
Abstract:
Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection
Procedia PDF Downloads 387199 Development of Fake News Model Using Machine Learning through Natural Language Processing
Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini
Abstract:
Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.Keywords: fake news detection, natural language processing, machine learning, classification techniques.
Procedia PDF Downloads 1657198 Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation
Authors: Lae-Jeong Park
Abstract:
The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.Keywords: pedestrian detection, color segmentation, false positive, feature extraction
Procedia PDF Downloads 2787197 Anthelmintic Property of Pomegranate Peel Aqueous Extraction Against Ascaris Suum: An In-vitro Analysis
Authors: Edison Ramos, John Peter V. Dacanay, Milwida Josefa Villanueva
Abstract:
Soil-Transmitted Helminth (STH) infections caused by helminths are the most prevalent neglected tropical diseases (NTDs). They are commonly found in warm, humid regions and developing countries, particularly in rural areas with poor hygiene. Occasionally, human hosts exposed to pig manure may harbor Ascaris suum parasites without experiencing any symptoms. To address the significant issue of helminth infections, an effective anthelmintic is necessary. However, the effectiveness of various medications as anthelmintics can be reduced due to mutations. In recent years, there has been a growing interest in using plants as a source of medicine due to their natural origin, accessibility, affordability, and potential lack of complications. Herbal medicine has been advocated as an alternative treatment for helminth infections, especially in underdeveloped countries, considering the numerous adverse effects and drug resistance associated with commercially available anthelmintics. Medicinal plants are considered suitable replacements for current anthelmintics due to their historical usage in treating helminth infections. The objective of this research was to investigate the effects of aqueous extraction of pomegranate peel (Punica granatum L.) as an anthelmintic on female Ascaris suum in vitro. The in vitro assay involved observing the motility of Ascaris suum in different concentrations (25%, 50%, 75%, and 100%) of pomegranate peel aqueous extraction, along with mebendazole as a positive control. The results indicated that as the concentration of the extract increased, the time required to paralyze the worms decreased. At 25% concentration, the average time for paralysis was 362.0 minutes, which decreased to 181.0 minutes at 50% concentration, 122.7 minutes at 75% concentration, and 90.0 minutes at 100% concentration. The time of death for the worms was directly proportional to the concentration of the pomegranate peel extract. Death was observed at an average time of 240.7 minutes at 75% concentration and 147.7 minutes at 100% concentration. The findings suggest that as the concentration of pomegranate peel extract increases, the time required for paralysis and death of Ascaris suum decreases. This indicates a concentration-dependent relationship, where higher concentrations of the extract exhibit greater effectiveness in inducing paralysis and causing the death of the worms. These results emphasize the potential anthelmintic properties of pomegranate peel extract and its ability to effectively combat Ascaris suum infestations. There was no significant difference in the anthelmintic effectiveness between the pomegranate peel extract and Mebendazole. These findings highlight the potential of pomegranate peel extract as an alternative anthelmintic treatment for Ascaris suum infections. The researchers recommend determining the optimal dose and administration route to maximize the effectiveness of pomegranate peel as an anthelmintic therapeutic against Ascaris suum.Keywords: pomegranate peel, aqueous extract, anthelmintic, in vitro
Procedia PDF Downloads 1137196 Detection of Image Blur and Its Restoration for Image Enhancement
Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad
Abstract:
Image restoration in the process of communication is one of the emerging fields in the image processing. The motion analysis processing is the simplest case to detect motion in an image. Applications of motion analysis widely spread in many areas such as surveillance, remote sensing, film industry, navigation of autonomous vehicles, etc. The scene may contain multiple moving objects, by using motion analysis techniques the blur caused by the movement of the objects can be enhanced by filling-in occluded regions and reconstruction of transparent objects, and it also removes the motion blurring. This paper presents the design and comparison of various motion detection and enhancement filters. Median filter, Linear image deconvolution, Inverse filter, Pseudoinverse filter, Wiener filter, Lucy Richardson filter and Blind deconvolution filters are used to remove the blur. In this work, we have considered different types and different amount of blur for the analysis. Mean Square Error (MSE) and Peak Signal to Noise Ration (PSNR) are used to evaluate the performance of the filters. The designed system has been implemented in Matlab software and tested for synthetic and real-time images.Keywords: image enhancement, motion analysis, motion detection, motion estimation
Procedia PDF Downloads 2857195 Research on Air pollution Spatiotemporal Forecast Model Based on LSTM
Authors: JingWei Yu, Hong Yang Yu
Abstract:
At present, the increasingly serious air pollution in various cities of China has made people pay more attention to the air quality index(hereinafter referred to as AQI) of their living areas. To face this situation, it is of great significance to predict air pollution in heavily polluted areas. In this paper, based on the time series model of LSTM, a spatiotemporal prediction model of PM2.5 concentration in Mianyang, Sichuan Province, is established. The model fully considers the temporal variability and spatial distribution characteristics of PM2.5 concentration. The spatial correlation of air quality at different locations is based on the Air quality status of other nearby monitoring stations, including AQI and meteorological data to predict the air quality of a monitoring station. The experimental results show that the method has good prediction accuracy that the fitting degree with the actual measured data reaches more than 0.7, which can be applied to the modeling and prediction of the spatial and temporal distribution of regional PM2.5 concentration.Keywords: LSTM, PM2.5, neural networks, spatio-temporal prediction
Procedia PDF Downloads 1327194 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface
Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, K. V. Nerkararyan
Abstract:
Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depending on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.Keywords: fiber-tip, liquid-air interface, nano vibration, opto-mechanical sensor
Procedia PDF Downloads 4817193 The Impact of CO2 on Learning and Memory Duration of Bombus terrestris
Authors: Gholizadeh F. F., Goldansaz S. H., Bandani A. R., A. Ashouri
Abstract:
This study aimed to investigate the direct effects of increasing carbon dioxide (CO₂) concentration on the behavior of Bombus terrestris bumblebees in laboratory conditions to understand the outcomes of the augmentation of this gas in the Earth's atmosphere on the decline of populations of these pollinators. Learning and memory duration of bumblebees were evaluated as two main behavioral factors in social insects at different concentrations of CO₂. In both series of experiments, the behavior of bees under the influence of CO₂ changes compared to the control. Insects kept at high CO₂ concentrations learn less than control bees and spend more time identifying and navigating to discover their food source and access time (nectar consumption). These results showed that bees maybe lose some of their food resources due to poorer identification and act weaker on searching due to less memory and avoiding the enemy in higher CO₂ concentration. Therefore, CO₂ increasing concentration can be one of the reasons for the decline of these pollinating insects' populations by negatively affecting their fitness.Keywords: Bombus terrestris, CO₂, learning, memory duration
Procedia PDF Downloads 1777192 A Phishing Email Detection Approach Using Machine Learning Techniques
Authors: Kenneth Fon Mbah, Arash Habibi Lashkari, Ali A. Ghorbani
Abstract:
Phishing e-mails are a security issue that not only annoys online users, but has also resulted in significant financial losses for businesses. Phishing advertisements and pornographic e-mails are difficult to detect as attackers have been becoming increasingly intelligent and professional. Attackers track users and adjust their attacks based on users’ attractions and hot topics that can be extracted from community news and journals. This research focuses on deceptive Phishing attacks and their variants such as attacks through advertisements and pornographic e-mails. We propose a framework called Phishing Alerting System (PHAS) to accurately classify e-mails as Phishing, advertisements or as pornographic. PHAS has the ability to detect and alert users for all types of deceptive e-mails to help users in decision making. A well-known email dataset has been used for these experiments and based on previously extracted features, 93.11% detection accuracy is obtainable by using J48 and KNN machine learning techniques. Our proposed framework achieved approximately the same accuracy as the benchmark while using this dataset.Keywords: phishing e-mail, phishing detection, anti phishing, alarm system, machine learning
Procedia PDF Downloads 3367191 Implication of Fractal Kinetics and Diffusion Limited Reaction on Biomass Hydrolysis
Authors: Sibashish Baksi, Ujjaini Sarkar, Sudeshna Saha
Abstract:
In the present study, hydrolysis of Pinus roxburghi wood powder was carried out with Viscozyme, and kinetics of the hydrolysis has been investigated. Finely ground sawdust is submerged into 2% aqueous peroxide solution (pH=11.5) and pretreated through autoclaving, probe sonication, and alkaline peroxide pretreatment. Afterward, the pretreated material is subjected to hydrolysis. A chain of experiments was executed with delignified biomass (50 g/l) and varying enzyme concentrations (24.2–60.5 g/l). In the present study, 14.32 g/l of glucose, along with 7.35 g/l of xylose, have been recovered with a viscozyme concentration of 48.8 g/l and the same condition was treated as optimum condition. Additionally, thermal deactivation of viscozyme has been investigated and found to be gradually decreasing with escalated enzyme loading from 48.4 g/l (dissociation constant= 0.05 h⁻¹) to 60.5 g/l (dissociation constant= 0.02 h⁻¹). The hydrolysis reaction is a pseudo first-order reaction, and therefore, the rate of the hydrolysis can be expressed as a fractal-like kinetic equation that communicates between the product concentration and hydrolytic time t. It is seen that the value of rate constant (K) increases from 0.008 to 0.017 with augmented enzyme concentration from 24.2 g/l to 60.5 g/l. Greater value of K is associated with stronger enzyme binding capacity of the substrate mass. However, escalated concentration of supplied enzyme ensures improved interaction with more substrate molecules resulting in an enhanced de-polymerization of the polymeric sugar chains per unit time which eventually modifies the physiochemical structure of biomass. All fractal dimensions are in between 0 and 1. Lower the value of fractal dimension, more easily the biomass get hydrolyzed. It can be seen that with increased enzyme concentration from 24.2 g/l to 48.4 g/l, the values of fractal dimension go down from 0.1 to 0.044. This indicates that the presence of more enzyme molecules can more easily hydrolyze the substrate. However, an increased value has been observed with a further increment of enzyme concentration to 60.5g/l because of diffusional limitation. It is evident that the hydrolysis reaction system is a heterogeneous organization, and the product formation rate depends strongly on the enzyme diffusion resistances caused by the rate-limiting structures of the substrate-enzyme complex. Value of the rate constant increases from 1.061 to 2.610 with escalated enzyme concentration from 24.2 to 48.4 g/l. As the rate constant is proportional to Fick’s diffusion coefficient, it can be assumed that with a higher concentration of enzyme, a larger amount of enzyme mass dM diffuses into the substrate through the surface dF per unit time dt. Therefore, a higher rate constant value is associated with a faster diffusion of enzyme into the substrate. Regression analysis of time curves with various enzyme concentrations shows that diffusion resistant constant increases from 0.3 to 0.51 for the first two enzyme concentrations and again decreases with enzyme concentration of 60.5 g/l. During diffusion in a differential scale, the enzyme also experiences a greater resistance during diffusion of larger dM through dF in dt.Keywords: viscozyme, glucose, fractal kinetics, thermal deactivation
Procedia PDF Downloads 1107190 Study on Measuring Method and Experiment of Arc Fault Detection Device
Authors: Yang Jian-Hong, Zhang Ren-Cheng, Huang Li
Abstract:
Arc fault is one of the main inducements of electric fires. Arc Fault Detection Device (AFDD) can detect arc fault effectively. Arc fault detections and unhooking standards are the keys to AFDD practical application. First, an arc fault continuous production system was developed, which could count the arc half wave number. Then, Combining with the UL1699 standard, ignition probability curve of cotton and unhooking time of various currents intensity were obtained by experiments. The combustion degree of arc fault could be expressed effectively by arc area. Experiments proved that electric fires would be misjudged or missed only using arc half wave number as AFDD unhooking basis. At last, Practical tests were carried out on the self-developed AFDD system. The result showed that actual AFDD unhooking time was the sum of arc half wave cycling number, Arc wave identification time and unhooking mechanical operation time And the first two shared shorter time. Unhooking time standard depended on the shortest mechanical operation time.Keywords: arc fault detection device, arc area, arc half wave, unhooking time, arc fault
Procedia PDF Downloads 5077189 Evaluation of the Appropriateness of Common Oxidants for Ruthenium (II) Chemiluminescence in a Microfluidic Detection Device Coupled to Microbore High Performance Liquid Chromatography for the Analysis of Drugs in Formulations and Biological Fluids
Authors: Afsal Mohammed Kadavilpparampu, Haider A. J. Al Lawati, Fakhr Eldin O. Suliman, Salma M. Z. Al Kindy
Abstract:
In this work, we evaluated the appropriateness of various oxidants that can be used potentially with Ru(bipy)32+ CL system while performing CL detection in a microfluidic device using eight common active pharmaceutical ingredients- ciprofloxacin, hydrochlorothiazide, norfloxacin, buspirone, fexofenadine, cetirizine, codeine, and dextromethorphan. This is because, microfludics have very small channel volume and the residence time is also very short. Hence, a highly efficient oxidant is required for on-chip CL detection to obtain analytically acceptable CL emission. Three common oxidants were evaluated, lead dioxide, cerium ammonium sulphate and ammonium peroxydisulphate. Results obtained showed that ammonium peroxydisulphate is the most appropriate oxidant which can be used in microfluidic setup and all the tested analyte give strong CL emission while using this oxidant. We also found that Ru(bipy)33+ generated off-line by oxidizing [Ru(bipy)3]Cl2.6H2O in acetonitrile under acidic condition with lead dioxide was stable for more than 72 hrs. A highly sensitive microbore HPLC- CL method using ammonium peroxydisulphate as an oxidant in a microfluidic on-chip CL detection has been developed for the analyses of fixed-dose combinations of pseudoephedrine (PSE), fexofenadine (FEX) and cetirizine (CIT) in biological fluids and pharmaceutical formulations with minimum sample pre-treatment.Keywords: oxidants, microbore High Performance Liquid Chromatography, chemiluminescence, microfluidics
Procedia PDF Downloads 4487188 Degradation of Hydrocarbons by Surfactants and Biosurfactants
Authors: Samira Ferhat, Redha Alouaoui, Leila Trifi, Abdelmalek Badis
Abstract:
The objective of this work is the use of natural surfactant (biosurfactant) and synthetic (sodium dodecyl sulfate and tween 80) for environmental application. In fact the solubility of the polycyclic hydrocarbon (naphthalene) and the desorption of the heavy metals in the presence of surfactants. The microorganisms selected in this work are bacterial strain (Bacillus licheniformis) for the production of biosurfactant for use in this study. In the first part of this study, we evaluated the effectiveness of surfactants solubilization certain hydrocarbons few soluble in water such as polyaromatic (case naphthalene). Tests have shown that from the critical micelle concentration, decontamination is performed. The second part presents the results on the desorption of heavy metals (for copper) by the three surfactants, using concentrations above the critical micelle concentration. The comparison between the desorption of copper by the three surfactants, it is shown that the biosurfactant is more effective than tween 80 and sodium dodecyl sulfate.Keywords: surfactants, biosurfactant, naphthalene, copper, critical micelle concentration, solubilization, desorption
Procedia PDF Downloads 3957187 Intrusion Detection System Using Linear Discriminant Analysis
Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou
Abstract:
Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99
Procedia PDF Downloads 2257186 Effect of Nitrogen and Carbon Sources on Growth and Lipid Production from Mixotrophic Growth of Chlorella sp. KKU-S2
Authors: Ratanaporn Leesing, Thidarat Papone, Mutiyaporn Puangbut
Abstract:
Mixotrophic cultivation of the isolated freshwater microalgae Chlorella sp. KKU-S2 in batch shake flask for biomass and lipid productions, different concentration of glucose as carbon substrate, different nitrogen source and concentrations were investigated. Using 1.0g/L of NaNO3 as nitrogen source, the maximum biomass yield of 10.04g/L with biomass productivity of 1.673g/L d was obtained using 40g/L glucose, while a biomass of 7.09, 8.55 and 9.45g/L with biomass productivity of 1.182, 1.425 and 1.575g/L d were found at 20, 30 and 50g/L glucose, respectively. The maximum lipid yield of 3.99g/L with lipid productivity of 0.665g/L d was obtained when 40g/L glucose was used. Lipid yield of 1.50, 3.34 and 3.66g/L with lipid productivity of 0.250, 0.557 and 0.610g/L d were found when using the initial concentration of glucose at 20, 30 and 50g/L, respectively. Process product yield (YP/S) of 0.078, 0.119, 0.158 and 0.094 were observed when glucose concentration was 20, 30, 40 and 50 g/L, respectively. The results obtained from the study shows that mixotrophic culture of Chlorella sp. KKU-S2 is a desirable cultivation process for microbial lipid and biomass production.Keywords: mixotrophic cultivation, microalgal lipid, Chlorella sp. KKU-S2
Procedia PDF Downloads 3387185 Bone Fracture Detection with X-Ray Images Using Mobilenet V3 Architecture
Authors: Ashlesha Khanapure, Harsh Kashyap, Abhinav Anand, Sanjana Habib, Anupama Bidargaddi
Abstract:
Technologies that are developing quickly are being developed daily in a variety of disciplines, particularly the medical field. For the purpose of detecting bone fractures in X-ray pictures of different body segments, our work compares the ResNet-50 and MobileNetV3 architectures. It evaluates accuracy and computing efficiency with X-rays of the elbow, hand, and shoulder from the MURA dataset. Through training and validation, the models are evaluated on normal and fractured images. While ResNet-50 showcases superior accuracy in fracture identification, MobileNetV3 showcases superior speed and resource optimization. Despite ResNet-50’s accuracy, MobileNetV3’s swifter inference makes it a viable choice for real-time clinical applications, emphasizing the importance of balancing computational efficiency and accuracy in medical imaging. We created a graphical user interface (GUI) for MobileNet V3 model bone fracture detection. This research underscores MobileNetV3’s potential to streamline bone fracture diagnoses, potentially revolutionizing orthopedic medical procedures and enhancing patient care.Keywords: CNN, MobileNet V3, ResNet-50, healthcare, MURA, X-ray, fracture detection
Procedia PDF Downloads 617184 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 327183 Development of PPy-M Composites Materials for Sensor Application
Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad
Abstract:
The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole
Procedia PDF Downloads 2667182 Exploring the Capabilities of Sentinel-1A and Sentinel-2A Data for Landslide Mapping
Authors: Ismayanti Magfirah, Sartohadi Junun, Samodra Guruh
Abstract:
Landslides are one of the most frequent and devastating natural disasters in Indonesia. Many studies have been conducted regarding this phenomenon. However, there is a lack of attention in the landslide inventory mapping. The natural condition (dense forest area) and the limited human and economic resources are some of the major problems in building landslide inventory in Indonesia. Considering the importance of landslide inventory data in susceptibility, hazard, and risk analysis, it is essential to generate landslide inventory based on available resources. In order to achieve this, the first thing we have to do is identify the landslides' location. The presence of Sentinel-1A and Sentinel-2A data gives new insights into land monitoring investigation. The free access, high spatial resolution, and short revisit time, make the data become one of the most trending open sources data used in landslide mapping. Sentinel-1A and Sentinel-2A data have been used broadly for landslide detection and landuse/landcover mapping. This study aims to generate landslide map by integrating Sentinel-1A and Sentinel-2A data use change detection method. The result will be validated by field investigation to make preliminary landslide inventory in the study area.Keywords: change detection method, landslide inventory mapping, Sentinel-1A, Sentinel-2A
Procedia PDF Downloads 1697181 Study on Beta-Ray Detection System in Water Using a MCNP Simulation
Authors: Ki Hyun Park, Hye Min Park, Jeong Ho Kim, Chan Jong Park, Koan Sik Joo
Abstract:
In the modern days, the use of radioactive substances is on the rise in the areas like chemical weaponry, industrial usage, and power plants. Although there are various technologies available to detect and monitor radioactive substances in the air, the technologies to detect underwater radioactive substances are scarce. In this study, computer simulation of the underwater detection system measuring beta-ray, a radioactive substance, has been done through MCNP. CaF₂, YAP(Ce) and YAG(Ce) have been used in the computer simulation to detect beta-ray as scintillator. Also, the source used in the computer simulation is Sr-90 and Y-90, both of them emitting only pure beta-ray. The distance between the source and the detector was shifted from 1mm to 10mm by 1 mm in the computer simulation. The result indicated that Sr-90 was impossible to measure below 1 mm since its emission energy is low while Y-90 was able to be measured up to 10mm underwater. In addition, the detector designed with CaF₂ had the highest efficiency among 3 scintillators used in the computer simulation. Since it was possible to verify the detectable range and the detection efficiency according to modeling through MCNP simulation, it is expected that such result will reduce the time and cost in building the actual beta-ray detector and evaluating its performances, thereby contributing the research and development.Keywords: Beta-ray, CaF₂, detector, MCNP simulation, scintillator
Procedia PDF Downloads 5087180 Mercaptopropionic Acid (MPA) Modifying Chitosan-Gold Nano Composite for γ-Aminobutyric Acid Analysis Using Raman Scattering
Authors: Bingjie Wang, Su-Yeon Kwon, Ik-Joong Kang
Abstract:
The goal of this experiment is to develop a sensor that can quickly check the concentration by using the nanoparticles made by chitosan and gold. Using chitosan nanoparticles crosslinking with sodium tripolyphosphate(TPP) is the first step to form the chitosan nanoparticles, which would be covered with the gold sequentially. The size of the fabricated product was around 100nm. Based on the method that the sulfur end of the MPA linked to gold can form the very strong S–Au bond, and the carboxyl group, the other end of the MPA, can easily absorb the GABA. As for the GABA, what is the primary inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability pass through the nervous system. A Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). When the system is formed, it generated SERS, which made a clear difference in the intensity of Raman scattering within the range of GABA concentration. So it is obtained from the experiment that the calibration curve according to the GABA concentration relevant with the SERS scattering. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion.Keywords: mercaptopropionic acid, chitosan-gold nanoshell, γ-aminobutyric acid, surface-enhanced raman scattering
Procedia PDF Downloads 2737179 A Framework for Blockchain Vulnerability Detection and Cybersecurity Education
Authors: Hongmei Chi
Abstract:
The Blockchain has become a necessity for many different societal industries and ordinary lives including cryptocurrency technology, supply chain, health care, public safety, education, etc. Therefore, training our future blockchain developers to know blockchain programming vulnerability and I.T. students' cyber security is in high demand. In this work, we propose a framework including learning modules and hands-on labs to guide future I.T. professionals towards developing secure blockchain programming habits and mitigating source code vulnerabilities at the early stages of the software development lifecycle following the concept of Secure Software Development Life Cycle (SSDLC). In this research, our goal is to make blockchain programmers and I.T. students aware of the vulnerabilities of blockchains. In summary, we develop a framework that will (1) improve students' skills and awareness of blockchain source code vulnerabilities, detection tools, and mitigation techniques (2) integrate concepts of blockchain vulnerabilities for IT students, (3) improve future IT workers’ ability to master the concepts of blockchain attacks.Keywords: software vulnerability detection, hands-on lab, static analysis tools, vulnerabilities, blockchain, active learning
Procedia PDF Downloads 97