Search results for: drainage water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8661

Search results for: drainage water

7731 Reorientation of Sustainable Livestock Management: A Case Study Applied to Wastes Management in Faculty of Animal Husbandry, Padjadjaran University, Indonesia

Authors: Raka Rahmatulloh, Mohammad Ilham Nugraha, Muhammad Ifan Fathurrahman

Abstract:

The agricultural sector covers a wide area, one of them is livestock subsector that supply needs of the food source of animal protein. Animal protein is produced by the main livestock production such as meat, milk, eggs, etc. Besides the main production, livestock would produce metabolic residue, so called livestock wastes. Characteristics of livestock wastes can be either solid (feces), liquid (urine), and gas (methane) which turned out to be useful and has economical value when well-processed and well-controlled. Nowadays, this livestock wastes is considered as a source of pollutants, especially water pollution. If the source of pollutants used in an integrated way, it will have a positive impact on organic farming and a healthy environment. Management of livestock wastes can be integrated with the farming sector to the planting and caring that rely on fertilizers. Most Indonesian farmers still use chemical fertilizers, where the use of it in the long term will disturb the ecological balance of the environment. One of the main efforts is to use organic fertilizers instead of chemical fertilizer that conducted by the Faculty of Animal Husbandry, Padjadjaran University. The method is to use the solid waste of livestock and agricultural wastes into liquid organic fertilizer, feed additive, biogas and vermicompost through decomposition. The decomposition takes as long as 14 days including aeration and extraction process using water as a nutrients solvent media which contained in decomposes and disinfection media to release pathogenic microorganisms in decomposes. Liquid organic fertilizer has highly efficient for the farmers to have a ratio of carbon/nitrogen (C/N) 25/1 to 30/1 and neutral pH (6.5-7.5) which is good for plant growth. Feed additive may be given to improve the digestibility of feed so that substances can be easily absorbed by the body for production. Biogas contains methane (CH4), which has a high enough heat to produce electricity. Vermicompost is an overhaul of waste organic material that has excellent structure, porosity, aeration, drainage, and moisture holding capacity. Based on the case study above, an integrated livestock wastes management program strongly supports the Indonesian government in the achievement of sustainable livestock development.

Keywords: integrated, livestock wastes, organic fertilizer, sustainable livestock development

Procedia PDF Downloads 428
7730 Simulation of Performance and Layout Optimization of Solar Collectors with AVR Microcontroller to Achieve Desired Conditions

Authors: Mohsen Azarmjoo, Navid Sharifi, Zahra Alikhani Koopaei

Abstract:

This article aims to conserve energy and optimize the performance of solar water heaters using modern modeling systems. In this study, a large-scale solar water heater is modeled using an AVR microcontroller, which is a digital processor from the AVR microcontroller family. This mechatronic system will be used to analyze the performance and design of solar collectors, with the ultimate goal of improving the efficiency of the system being used. The findings of this research provide insights into optimizing the performance of solar water heaters. By manipulating the arrangement of solar panels and controlling the water flow through them using the AVR microcontroller, researchers can identify the optimal configurations and operational protocols to achieve the desired temperature and flow conditions. These findings can contribute to the development of more efficient and sustainable heating and cooling systems. This article investigates the optimization of solar water heater performance. It examines the impact of solar panel layout on system efficiency and explores methods of controlling water flow to achieve the desired temperature and flow conditions. The results of this research contribute to the development of more sustainable heating and cooling systems that rely on renewable energy sources.

Keywords: energy conservation, solar water heaters, solar cooling, simulation, mechatronics

Procedia PDF Downloads 65
7729 Effect of Alkalinity of Water on the Aggregation of Colloidal Silver Nanoparticles

Authors: Fedda Y. Alzoubi, Ihsan A. Aljarrah

Abstract:

Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in different applications, especially in biomedical applications. Samples of different alkaline water were prepared in order to study the effect of alkalinity of water on the optical properties, size, and morphology of colloidal AgNPs prepared according to the chemical reduction method using the prepared water samples. Ultraviolet-Visible spectrophotometer, Zeta-sizer, and Scanning electron microscope (SEM) have been utilized to carry out this study. Absorption spectra AgNPs in different alkaline water show a surface Plasmon resonance (SPR) peak at the wavelength of 420 nm. The position of this peak is sensitive to the shape of the particles, and in our case, it indicates that the particles are spherical. As the alkalinity increases, the intensity of the SPR peak decreases, indicating the aggregation of particles. Zeta-sizer measurements show that the average diameter for AgNPs in pure water is found to be 53.51 nm, and this value increases as the alkalinity increases. Zeta potential values of samples show that the negatively coated particles are stable in the solution. SEM images insure the spherical shape of the prepared nanoparticles and show that as the alkalinity increases the particles aggregate into larger particles.

Keywords: aggregation, alkalinity, colloid, nanoparticle

Procedia PDF Downloads 120
7728 Water Quality, Safety and Drowning Prevention to Preschool Children in Sub-Saharan Africa

Authors: Amos King'ori Githu

Abstract:

Water safety is crucial for all ages, but particularly for children. In the past decade, preschool institutions in Sub-Saharan Africa have seen the inclusion of swimming as one of the co-curricular activities. However, these countries face challenges in adopting frameworks, staffing, and resources to heighten water safety, quality, and drowning prevention, hence the focus of this research. It is worth noting that drowning is a leading cause of injury-related deaths among children. Universally, the highest drowning rates occur among children aged 1-4 years and 5-9 years. Preschool children even stand a higher risk of drowning as they are active, eager, and curious to explore their environment. If not supervised closely around or in water, these children can drown quickly in just a few inches of water. Thus, this empirical review focuses on the identification, assessment, and analysis of water safety efforts to curb drowning among children and assess the quality of water to mitigate contamination that may eventually pose infection risks to the children. In addition, it outlines the use of behavioral theories and evaluation frameworks to guide the above. Notably, a search on ten databases was adopted for crucial peer-reviewed articles, and five were selected in the eventual review. This research relied extensively on secondary data to curb water infections and drowning-inflicted deaths among children. It suffices to say that interventions must be supported that adopt an array of strategies, are guided by planning and theory as well as evaluation frameworks, and are vast in intervention design, evaluation, and delivery methodology. Finally, this approach will offer solid evidence that can be shared to guide future practices and policies in preschools on child safety and drowning prevention.

Keywords: water quality and safety, drowning prevention, preschool children, sub-saharan Africa, supervision

Procedia PDF Downloads 48
7727 Wheat (Triticum Aestivum) Yield Improved with Irrigation Scheduling under Salinity

Authors: Taramani Yadav, Gajender Kumar, R.K. Yadav, H.S. Jat

Abstract:

Soil Salinity and irrigation water salinity is critical threat to enhance agricultural food production to full fill the demand of billion plus people worldwide. Salt affected soils covers 6.73 Mha in India and ~1000 Mha area around the world. Irrigation scheduling of saline water is the way to ensure food security in salt affected areas. Research experiment was conducted at ICAR-Central Soil Salinity Research Institute, Experimental Farm, Nain, Haryana, India with 36 treatment combinations in double split plot design. Three sets of treatments consisted of (i) three regimes of irrigation viz., 60, 80 and 100% (I1, I2 and I3, respectively) of crop ETc (crop evapotranspiration at identified respective stages) in main plot; (ii) four levels of irrigation water salinity (sub plot treatments) viz., 2, 4, 8 and 12 dS m-1 (iii) applications of two PBRs along with control (without PBRs) i.e. salicylic acid (G1; 1 mM) and thiourea (G2; 500 ppm) as sub-sub plot treatments. Grain yield of wheat (Triticum aestivum) was increased with less amount of high salt loaded irrigation water at the same level of salinity (2 dS m-1), the trend was I3>I2>I1 at 2 dS m-1 with 8.10 and 17.07% increase at 80 and 100% ETc, respectively compared to 60% ETc. But contrary results were obtained by increasing amount of irrigation water at same level of highest salinity (12 dS m-1) showing following trend; I1>I2>I3 at 12 dS m-1 with 9.35 and 12.26% increase at 80 and 60% ETc compared to 100% ETc. Enhancement in grain yield of wheat (Triticum aestivum) is not need to increase amount of irrigation water under saline condition, with salty irrigation water less amount of irrigation water gave the maximum wheat (Triticum aestivum) grain yield.

Keywords: Irrigation, Salinity, Wheat, Yield

Procedia PDF Downloads 160
7726 The Utilization of Rain Water to Ground Water with Tube in the Area of Tourism in Yogyakarta

Authors: Kurniawan Agung Pambudi, Alfian Deo Pradipta

Abstract:

Yogyakarta is the famous tourism city in Indonesia. The Tugu Jogja is a tourism center located in Jetis. To support the tourism activities required facilities such as tourist hotel and guest house. The existence of tourism also has an impact on the environment. The surface of the land is covered by cement and a local company dealing in ceramics, then an infiltration process is not running. The existence of the building in layers resulting in the amount of water resource in Jetis decreases. The purpose of this research is to know the impact of the construction of the building in layers in Jetis. To obtain the data done by observation, measurements and taking the land profile, along with the interview to people in Jetis. The results of the study showed that the number of water sources in Jetis, Yogyakarta start decreases as a result of the construction of the building on stilts as a result, the height of the surface of the groundwater decreases and digging a pit must be in to get the source of the waters. Based on the results of research it can be concluded that the height of the surface of the groundwater decreases. To resolve the issue required a method to rainwater can seep into the ground for maximum. The rain that fell upon the precarious houses or other buildings is channeled toward the ground through the tubes with the depth of 1-2 meters. Rainwater will be absorbed into the land and increase the amount of ground water.

Keywords: rain water, tube, water resource, groundwater

Procedia PDF Downloads 212
7725 Neutralization of Sulphurous Waste (AMD) Using Recycled Waste Concrete

Authors: Ercument Koc, Banu Yaylali, Gulsen Tozsin, Haci Deveci

Abstract:

Re-using of concrete waste materials for the neutralization of acid mine drainage (AMD) can protect the environment and contribute the national economy. The aim of this study was to investigate the prevention of AMD formation and heavy metal release using concrete wastes which are alkaline and generated by demolition of buildings within the urban renewal process. Shake flask test was conducted to determine the neutralization effects. Concrete wastes are rich in CaCO3 and they are used as a pH regulator for AMD neutralization. The results showed that pH of the AMD increased from 3.33 to 6.84 with the application of concrete waste materials.

Keywords: AMD, neutralization, sulphurous waste, urban renewal

Procedia PDF Downloads 297
7724 Design Considerations for Solar Energy Application to Fish Pond Recirculating System

Authors: A. O. Ogunlela, T. O. Ayodele

Abstract:

A fish pond recirculating system was designed and constructed. The system consists of three plastic culture tanks (1000 litres each, filled up to 850 litres). It also consists of a sedimentation tank where the water filtration was carried out and a pump tank where the treated water partially settled before being pumped to the culture tanks. A pump of ½ hp capacity was selected to pump water round the system to enhance water recirculation. Following the design of the solar array that was done, a grid support of tilt angle 36.640 was constructed to offer the system an optimum, all-year-round, intense solar energy reception, which is specific to the location of the project.

Keywords: solar energy, fish pond, recirculation system, pump tank

Procedia PDF Downloads 366
7723 The Incorporation of Themes Related to Islandness in Tourism Branding among Cold-Water, Warm-Water, and Temperate-Water Islands

Authors: Susan C. Graham

Abstract:

Islands have a long established allure for travellers the world over. From earliest accounts of human history, travellers were drawn by the sense of islandness embodied by these destinations. The concept of islandness describes the essence of what makes islands unique relative to non-islands and extends beyond geographic interpretations by attempting to capture the specific sense of self-exhibited by islanders in relation to their connection to place. The themes most strongly associated with islandness include a) a strong connection to water as both the life blood and a physical barrier, b) a unique culture and robust arts community that is deeply linked to both the island and islanders, c) an appreciation of and for nature, d) a rich sense of history and tradition connected to the place, e) a sense of community and belonging that arose through shared triumphs and struggles, and f) a profound awareness of independence, separateness, and uniqueness derived from both physical and social experience. The island brand, like all brands, is a marketing tactic designed to succinctly express a specific value proposition in simplistic ways which might include a brand symbol, logo, slogan, or representation meant to distinguish one brand from another. If a value proposition is the identification of attributes that separate one brand from another by highlighting the brand’s uniqueness, then presumably island brands may, at least in part, emphasize islandness as part of the destination brand. Yet it may in naïve to expect all islands to brand themselves using similar themes when islands can differ so substantially in terms of population, geography, political climate, economy, culture, and history. Of particular interest is the increased focus on tourism among 'cold-water' islands. This paper will examine the incorporation of themes related to islandness in tourism branding among cold-water, warm-water, and temperate-water islands. The tourism logos of 83 islands were collected and assessed for the use of themes related to islandness, namely water, arts and culture, nature, history and tradition, community and belongingness, and independence, separateness, and uniqueness. The ratings for each theme related to islandness for each of the 83 island destinations were then analyzed to identify if differences exist between cold-water, warm-water, and temperate-water islands. A general consensus of what constitutes 'cold-water' destinations is lacking, therefore a water temperature of 15C was adopted using the guidelines from the National Center for Cold Water Safety. Among these 83 islands, the average high and average low water temperatures of 196 specific locations, including the capital, northern, and southern most points of each island, was recorded to determine if the location was a cold-water (average high and low below 15C), warm-water (average high and low above 15C), or temperate-water (average high above 15C and low below 15C) location.

Keywords: branding, cold-water, islands, tourism

Procedia PDF Downloads 210
7722 Removal of Nitrate and Phosphates from Waste Water Using Activated Bio-Carbon Produced from Agricultural Waste

Authors: Kgomotso Matobole, Natania De Wet, Tefo Mbambo, Hilary Rutto, Tumisang Seodigeng

Abstract:

Nitrogen and phosphorus are nutrients which are required in the ecosystem, however, at high levels, these nutrients contribute to the process of eutrophication in the receiving water bodies, which threatens aquatic organisms. Hence it is vital that they are removed before the water is discharged. This phenomenon increases the cost related to wastewater treatment. This raises the need for the development of processes that are cheaper. Activated biocarbon was used in batch and filtration system to remove nitrates and phosphates. The batch system has higher nutrients removal capabilities than the filtration system. For phosphate removal, 93 % removal is achieved at the adsorbent of 300 g while for nitrates, 84 % removal is achieved when 200 g of activated carbon is loaded.

Keywords: waste water treatment, phosphates, nitrates, activated carbon, agricultural waste

Procedia PDF Downloads 403
7721 Numerical Simulation of the Dynamic Behavior of a LaNi5 Water Pumping System

Authors: Miled Amel, Ben Maad Hatem, Askri Faouzi, Ben Nasrallah Sassi

Abstract:

Metal hydride water pumping system uses hydrogen as working fluid to pump water for low head and high discharge. The principal operation of this pump is based on the desorption of hydrogen at high pressure and its absorption at low pressure by a metal hydride. This work is devoted to study a concept of the dynamic behavior of a metal hydride pump using unsteady model and LaNi5 as hydriding alloy. This study shows that with MHP, it is possible to pump 340l/kg-cycle of water in 15 000s using 1 Kg of LaNi5 at a desorption temperature of 360 K, a pumping head equal to 5 m and a desorption gear ratio equal to 33. This study reveals also that the error given by the steady model, using LaNi5 is about 2%.A dimensional mathematical model and the governing equations of the pump were presented to predict the coupled heat and mass transfer within the MHP. Then, a numerical simulation is carried out to present the time evolution of the specific water discharge and to test the effect of different parameters (desorption temperature, absorption temperature, desorption gear ratio) on the performance of the water pumping system (specific water discharge, pumping efficiency and pumping time). In addition, a comparison between results obtained with steady and unsteady model is performed with different hydride mass. Finally, a geometric configuration of the reactor is simulated to optimize the pumping time.

Keywords: dynamic behavior, LaNi5, performance of water pumping system, unsteady model

Procedia PDF Downloads 193
7720 Quantitative Analysis of Potential Rainwater Harvesting and Supply to a Rural Community at Northeast of Amazon Region, Brazil

Authors: N. Y. H. Konagano

Abstract:

Riverside population of Brazilian amazon suffers drinking water scarcity, seeking alternative water resources such as well and rivers, ordinary polluted. Although Amazon Region holds high annual river inflow and enough available of underground water, human activities have compromised the conservation of water resources. In addition, decentralized rural households make difficult to access of potable water. Main objective is to analyze quantitatively the potential of rainwater harvesting to human consumption at Marupaúba community, located in northeast of Amazon region, Brazil. Methods such as historical rainfall data series of municipality of Tomé-Açu at Pará state were obtained from Hydrological Information System of National Water Agency (ANA). Besides, Rippl method was used to calculate, mainly, volume of the reservoir based on difference of water demand and volume available through rainwater using as references two houses (CA I and CA II) as model of rainwater catchment and supply. Results presented that, from years 1984 to 2017, average annual precipitation was 2.607 mm, average maximum precipitation peak was 474 mm on March and average minimum peak on September was 44 mm. All months, of a year, surplus volume of water have presented in relation to demand, considering catchment area (CA) I = 134.4m² and demand volume =0.72 m³/month; and, CA II = 81.84 m² and demand volume = 0.48 m³/month. Based on results, it is concluded that it is feasible to use rainwater for the supply of the rural community Marupaúba, since the access of drinking water is a human right and the lack of this resource compromises health and daily life of human beings.

Keywords: Amazon Region, rainwater harvesting, rainwater resource, rural community

Procedia PDF Downloads 143
7719 Assessing and Managing the Risk of Inland Acid Sulfate Soil Drainage via Column Leach Tests and 1D Modelling: A Case Study from South East Australia

Authors: Nicolaas Unland, John Webb

Abstract:

The acidification and mobilisation of metals during the oxidation of acid sulfate soils exposed during lake bed drying is an increasingly common phenomenon under climate scenarios with reduced rainfall. In order to assess the risk of generating high concentrations of acidity and dissolved metals, chromium suite analysis are fundamental, but sometimes limited in characterising the potential risks they pose. This study combines such fundamental test work, along with incubation tests and 1D modelling to investigate the risks associated with the drying of Third Reedy Lake in South East Australia. Core samples were collected from a variable depth of 0.5 m below the lake bed, at 19 locations across the lake’s footprint, using a boat platform. Samples were subjected to a chromium suite of analysis, including titratable actual acidity, chromium reducible sulfur and acid neutralising capacity. Concentrations of reduced sulfur up to 0.08 %S and net acidities up to 0.15 %S indicate that acid sulfate soils have formed on the lake bed during permanent inundation over the last century. A further sub-set of samples were prepared in 7 columns and subject to accelerated heating, drying and wetting over a period of 64 days in laboratory. Results from the incubation trial indicate that while pyrite oxidation proceeded, minimal change to soil pH or the acidity of leachate occurred, suggesting that the internal buffering capacity of lake bed sediments was sufficient to neutralise a large proportion of the acidity produced. A 1D mass balance model was developed to assess potential changes in lake water quality during drying based on the results of chromium suite and incubation tests. Results from the above test work and modelling suggest that acid sulfate soils pose a moderate to low risk to the Third Reedy Lake system. Further, the risks can be effectively managed during the initial stages of lake drying via flushing with available mildly alkaline water. The study finds that while test work such as chromium suite analysis are fundamental in characterizing acid sulfate soil environments, they can the overestimate risks associated with the soils. Subsequent incubation test work may more accurately characterise such soils and lead to better-informed management strategies.

Keywords: acid sulfate soil, incubation, management, model, risk

Procedia PDF Downloads 351
7718 Solution to Increase the Produced Power in Micro-Hydro Power Plant

Authors: Radu Pop, Adrian Bot, Vasile Rednic, Emil Bruj, Oana Raita, Liviu Vaida

Abstract:

Our research presents a study concerning optimization of water flow capture for micro-hydro power plants in order to increase the energy production. It is known that the fish ladder whole, were the water is capture is fix, and the water flow may vary with the river flow, this means that on the fish ladder we will have different servitude flows, sometimes more than needed. We propose to demonstrate that the ‘winter intake’ from micro-hydro power plant, could be automated with an intelligent system which is capable to read some imposed data and adjust the flow in to the needed value. With this automation concept, we demonstrate that the performance of the micro-hydro power plant could increase, in some flow operating regimes, with approx. 10%.

Keywords: energy, micro-hydro, water intake, fish ladder

Procedia PDF Downloads 224
7717 Rainwater Management in Smart City: Focus in Gomti Nagar Region, Lucknow, Uttar Pradesh, India

Authors: Priyanka Yadav, Rajkumar Ghosh, Alok Saini

Abstract:

Human civilization cannot exist and thrive in the absence of adequate water. As a result, even in smart cities, water plays an important role in human existence. The key causes of this catastrophic water scarcity crisis are lifestyle changes, over-exploitation of groundwater, water over usage, rapid urbanization, and uncontrolled population growth. Furthermore, salty water seeps into deeper aquifers, causing land subsidence. The purpose of this study on artificial groundwater recharge is to address the water shortage in Gomti Nagar, Lucknow. Submersibles are the most common methods of collecting freshwater from groundwater in Gomti Nagar neighbourhood of Lucknow. Gomti Nagar area has a groundwater depletion rate of 1968 m3/day/km2 and is categorized as Zone-A (very high levels) based on the existing groundwater abstraction pattern - A to D. Harvesting rainwater using roof top rainwater harvesting systems (RTRWHs) is an effective method for reducing aquifer depletion in a sustainable water management system. Rainwater collecting using roof top rainwater harvesting systems (RTRWHs) is an effective method for reducing aquifer depletion in a sustainable water conservation system. Due to a water imbalance of 24519 ML/yr, the Gomti Nagar region is facing severe groundwater depletion. According to the Lucknow Development Authority (LDA), the impact of installed RTRWHs (plot area 300 sq. m.) is 0.04 percent of rainfall collected through RTRWHs in Gomti Nagar region of Lucknow. When RTRWHs are deployed in all buildings, their influence will be greater. Bye-laws in India have mandated the installation of RTRWHs on plots greater than 300 sq.m. A better India without any water problem is a pipe dream that may be realized by installing residential and commercial rooftop rainwater collecting systems in every structure. According to the current study, RTRWHs should be used as an alternate source of water to bridge the gap between groundwater recharge and extraction in smart city viz. Gomti Nagar, Lucknow, India.

Keywords: groundwater recharge, RTRWHs, harvested rainwater, rainfall, water extraction

Procedia PDF Downloads 87
7716 Protection and Safeguarding of Groundwater in Algeria between Law and Right to Use

Authors: Aziez Ouahiba, Remini Boualem, Habi Mohamed

Abstract:

The growth and the development of a pay are strongly related to the existence or the absence of water in this area, the sedentary lifestyle of the population makes that water demand is increasing and the different brandishing (dams, tablecloths or other) are increasingly solicited. In normal time rain and snow of the winter period reloads the slicks and the wadis that fill dams. Over these two decades, Global warming fact that temperature is increasingly high and rainfall is increasingly low, which induces a charge less and less important tablecloths, add to that the strong demand in irrigation. Our study will focus on the variation of rainfall and irrigation, Their effects on the degree of pollution of the groundwater in this area based on statistical analyses by the Xlstat (ACP, correlation...) software for a better explanation of these results and determine the hydrochemistry of different groups or polluted areas pou be able to offer adequate solutions for each area.

Keywords: water in the basement, legislation, over exploitation, pollution, water prices

Procedia PDF Downloads 375
7715 Identification of Watershed Landscape Character Types in Middle Yangtze River within Wuhan Metropolitan Area

Authors: Huijie Wang, Bin Zhang

Abstract:

In China, the middle reaches of the Yangtze River are well-developed, boasting a wealth of different types of watershed landscape. In this regard, landscape character assessment (LCA) can serve as a basis for protection, management and planning of trans-regional watershed landscape types. For this study, we chose the middle reaches of the Yangtze River in Wuhan metropolitan area as our study site, wherein the water system consists of rich variety in landscape types. We analyzed trans-regional data to cluster and identify types of landscape characteristics at two levels. 55 basins were analyzed as variables with topography, land cover and river system features in order to identify the watershed landscape character types. For watershed landscape, drainage density and degree of curvature were specified as special variables to directly reflect the regional differences of river system features. Then, we used the principal component analysis (PCA) method and hierarchical clustering algorithm based on the geographic information system (GIS) and statistical products and services solution (SPSS) to obtain results for clusters of watershed landscape which were divided into 8 characteristic groups. These groups highlighted watershed landscape characteristics of different river systems as well as key landscape characteristics that can serve as a basis for targeted protection of watershed landscape characteristics, thus helping to rationally develop multi-value landscape resources and promote coordinated development of trans-regions.

Keywords: GIS, hierarchical clustering, landscape character, landscape typology, principal component analysis, watershed

Procedia PDF Downloads 219
7714 Adsorptive Performance of Surface Modified Montmorillonite in Vanadium Removal from Real Mine Water

Authors: Opeyemi Atiba-Oyewo, Taile Y. Leswfi, Maurice S. Onyango, Christian Wolkersdorfer

Abstract:

This paper describes the preparation of surface modified montmorillonite using hexadecyltrimethylammonium bromide (HDTMA-Br) for the removal of vanadium from mine water. The adsorbent before and after adsorption was characterised by Fourier transform infra-red (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), while the amount of vanadium adsorbed was determined by ICP-OES. The batch adsorption method was employed using vanadium concentrations in solution ranging from 50 to 320 mg/L and vanadium tailings seepage water from a South African mine. Also, solution pH, temperature and sorbent mass were varied. Results show that the adsorption capacity was affected by solution pH, temperature, sorbent mass and the initial concentration. Electrical conductivity of the mine water before and after adsorption was measured to estimate the total dissolved solids in the mine water. Equilibrium isotherm results revealed that vanadium sorption follows the Freundlich isotherm, indicating that the surface of the sorbent was heterogeneous. The pseudo-second order kinetic model gave the best fit to the kinetic experimental data compared to the first order and Elovich models. The results of this study may be used to predict the uptake efficiency of South Africa montmorillonite in view of its application for the removal of vanadium from mine water. However, the choice of this adsorbent for the uptake of vanadium or other contaminants will depend on the composition of the effluent to be treated.

Keywords: adsorption, vanadium, modified montmorillonite, equilibrium, kinetics, mine water

Procedia PDF Downloads 423
7713 Assessment of Access to Water, Sanitation and Hygiene, in Relation to the SDG 6, in Small Towns in Senegal: The Case of the Town of Foundiougne

Authors: Elhadji Mamadou Sonko, Ndiogou Sankhare, Jean Birane Gning, Cheikh Diop

Abstract:

In Senegal, small towns have problems of access to water, hygiene, and sanitation. This study aims to assess the situation in Foundiougne. The methodology includes a literature review, semi-structured interviews with stakeholders, surveys of 100 households, and observation. The results show that 35% of households have unimproved water services, 46% have limited service, and 19% have basic service. Regarding sanitation, 77% of households have basic sanitation services, and 23% have limited sanitation services. Manual emptying alone is practiced by 4% of households, while 17% combine it with mechanical emptying. Household wastewater is disposed of in streets, vacant land, and concession yards. The emptied sludge is discharged into the environment without treatment. Hand washing is practiced by 98% of households. These results show that there is real work to be done at the small towns level to close the water and sanitation gap in order to achieve SDG 6 targets in Senegal.

Keywords: foundiougne, SDG 6, senegal, small towns, water sanitation ang hygiene

Procedia PDF Downloads 115
7712 An Analysis of the Differences between Three Levels Water Polo Players Based on Indicators of Efficiency

Authors: Mladen Hraste, Igor Jelaska, Ivan Granic

Abstract:

The scope of this research is the identification and explanation of differences of three levels of water polo players in some parameters of effectiveness. The sample for this study was 132 matches of the Adriatic Water Polo League in the 2013/14 competition season. Using the Kruskal-Wallis test and multiple comparisons of mean ranks for all groups at the significance level of α=0, 05, the hypothesis that there are significant differences between groups of respondents in ten of the seventeen variables of effectiveness was confirmed. There is a reasonable possibility that the differences are caused by the degree of learned and implemented tactical knowledge, the degree of scoring ability and the best selection for certain roles in the team. The results of this study can be applied to selection of teams and players, for the selection of the appropriate match concept and for organizing training process.

Keywords: scoring abilities, selection, tactical knowledge, water polo effectiveness

Procedia PDF Downloads 495
7711 Optimization of Hydraulic Fracturing for Horizontal Wells in Enhanced Geothermal Reservoirs

Authors: Qudratullah Muradi

Abstract:

Geothermal energy is a renewable energy source that can be found in abundance on our planet. Only a small fraction of it is currently converted to electrical power, though in recent years installed geothermal capacity has increased considerably all over the world. In this paper, we assumed a model for designing of Enhanced Geothermal System, EGS. We used computer modeling group, CMG reservoir simulation software to create the typical Hot Dry Rock, HDR reservoir. In this research two wells, one injection of cold water and one production of hot water are included in the model. There are some hydraulic fractures created by the mentioned software. And cold water is injected in order to produce energy from the reservoir. The result of injecting cold water to the reservoir and extracting geothermal energy is defined by some graphs at the end of this research. The production of energy is quantified in a period of 10 years.

Keywords: geothermal energy, EGS, HDR, hydraulic fracturing

Procedia PDF Downloads 185
7710 Time Fetching Water and Maternal Childcare Practices: Comparative Study of Women with Children Living in Ethiopia and Malawi

Authors: Davod Ahmadigheidari, Isabel Alvarez, Kate Sinclair, Marnie Davidson, Patrick Cortbaoui, Hugo Melgar-Quiñonez

Abstract:

The burden of collecting water tends to disproportionately fall on women and girls in low-income countries. Specifically, women spend between one to eight hours per day fetching water for domestic use in Sub-Saharan Africa. While there has been research done on the global time burden for collecting water, it has been mainly focused on water quality parameters; leaving the relationship between water fetching and health outcomes understudied. There is little available evidence regarding the relationship between water fetching and maternal child care practices. The main objective of this study was to help fill the aforementioned gap in the literature. Data from two surveys in Ethiopia and Malawi conducted by CARE Canada in 2016-2017 were used. Descriptive statistics indicate that women were predominantly responsible for collecting water in both Ethiopia (87%) and Malawi (99%) respectively, with the majority spending more than 30 minutes per day on water collection. With regards to child care practices, in both countries, breastfeeding was relatively high (77% and 82%, respectively); and treatment for malnutrition was low (15% and 8%, respectively). However, the same consistency was not found for weighing; in Ethiopia only 16% took their children for weighting in contrast to 94% in Malawi. These three practices were summed to create one variable for regressions analyses. Unadjusted logistic regression findings showed that only in Ethiopia was time fetching water significantly associated with child care practices. Once adjusted for covariates, this relationship was no longer found to be significant. Adjusted logistic regressions also showed that the factors that did influence child care practices differed slightly between the two countries. In Ethiopia, a lack of access to community water supply (OR= 0.668; P=0.010), poor attitudes towards gender equality (OR= 0.608; P=0.001), no access to land and (OR=0.603; P=0.000), significantly decreased a women’s odd of using positive childcare practices. Notably, being young women between 15-24 years (OR=2.308; P=0.017), and 25-29 (OR=2.065; P=0.028) increased probability of using positive childcare practices. Whereas in Malawi, higher maternal age, low decision-making power, significantly decreased a women’s odd of using positive childcare practices. In conclusion, this study found that even though amount of time spent by women fetching water makes a difference for childcare practices, it is not significantly related to women’s child care practices when controlling the covariates. Importantly, women’s age contributes to child care practices in Ethiopia and Malawi.

Keywords: time fetching water, community water supply, women’s child care practices, Ethiopia, Malawi

Procedia PDF Downloads 191
7709 The Gasification of Fructose in Supercritical Water

Authors: Shyh-Ming Chern, H. Y. Cheng

Abstract:

Biomass is renewable and sustainable. As an energy source, it will not release extra carbon dioxide into the atmosphere. Hence, tremendous efforts have been made to develop technologies capable of transforming biomass into suitable forms of bio-fuel. One of the viable technologies is gasifying biomass in supercritical water (SCW), a green medium for reactions. While previous studies overwhelmingly selected glucose as a model compound for biomass, the present study adopted fructose for the sake of comparison. The gasification of fructose in SCW was investigated experimentally to evaluate the applicability of supercritical water processes to biomass gasification. Experiments were conducted with an autoclave reactor. Gaseous product mainly consists of H2, CO, CO2, CH4 and C2H6. The effect of two major operating parameters, the reaction temperature (673-873 K) and the dosage of oxidizing agent (0-0.5 stoichiometric oxygen), on the product gas composition, yield and heating value was also examined, with the reaction pressure fixed at 25 MPa.

Keywords: biomass, fructose, gasification, supercritical water

Procedia PDF Downloads 343
7708 Proposal of Blue and Green Infrastructure for the Jaguaré Stream Watershed, São Paulo, Brazil

Authors: Juliana C. Alencar, Monica Ferreira do Amaral Porto

Abstract:

The blue-green infrastructure in recent years has been pointed out as a possibility to increase the environmental quality of watersheds. The regulation ecosystem services brought by these areas are many, such as the improvement of the air quality of the air, water, soil, microclimate, besides helping to control the peak flows and to promote the quality of life of the population. This study proposes a blue-green infrastructure scenario for the Jaguaré watershed, located in the western zone of the São Paulo city in Brazil. Based on the proposed scenario, it was verified the impact of the adoption of the blue and green infrastructure in the control of the peak flow of the basin, the benefits for the avifauna that are also reflected in the flora and finally, the quantification of the regulation ecosystem services brought by the adoption of the scenario proposed. A survey of existing green areas and potential areas for expansion and connection of these areas to form a network in the watershed was carried out. Based on this proposed new network of green areas, the peak flow for the proposed scenario was calculated with the help of software, ABC6. Finally, a survey of the ecosystem services contemplated in the proposed scenario was made. It was possible to conclude that the blue and green infrastructure would provide several regulation ecosystem services for the watershed, such as the control of the peak flow, the connection frame between the forest fragments that promoted the environmental enrichment of these fragments, improvement of the microclimate and the provision of leisure areas for the population.

Keywords: green and blue infrastructure, sustainable drainage, urban waters, ecosystem services

Procedia PDF Downloads 106
7707 Assessing Renewal Needs of Urban Water Infrastructure Systems: Case Study of Linköping in Sweden

Authors: Eman Hegazy, Stefan Anderberg, Joakim Krook

Abstract:

Urban water infrastructure systems are central to functioning cities. For securing a continuous and efficient supply of the systems services, continuous investment, maintenance, and renewal are needed. Neglecting maintenance and renewal can lead to recurrent breakdown problems as systems age, which makes it more and more difficult to secure efficient long-term supply. Globally, many cities struggle with aging water infrastructure, often due to competing funding priorities. Investment in maintenance and renewal is not prioritized. The problem primarily stems from the challenge of reaping the benefits of investments promptly. The long-term benefits gained from investing in the renewal of water infrastructure may be achievable in the long run, resulting in the oversight of such investments. This leads to a build-up of "renewal debt" for future generations to inherit. Addressing this issue is difficult due to various contributing factors and the complex nature of the systems. The study aims to contribute to an increased understanding of the long-term management challenges of urban water infrastructure, the development of improved maintenance and renewal strategies through the examination of water infrastructure management, and the assessment of the adequacy of the maintenance and renewal in a case study, the city of Linköping, Sweden. Employing a multi-methods approach, this study utilized both qualitative and quantitative methods, including interviews, workshops, and data analysis. The findings of the study provided insights into the current status of the water and sewerage networks in Linkoping, highlighting the risks to ensuring reliable and sustainable water supply and discussing strategies for improving maintenance and renewal.

Keywords: case study, infrastructure management, renewal needs, Sweden, urban water infrastructure

Procedia PDF Downloads 56
7706 Treatment of Olive Mill Wastewater by Electrocoagulation Processes and Water Resources Management

Authors: Walid K. M. Bani Salameh, Hesham Ahmad, Mohammad Al-Shannag

Abstract:

In Jordan having deficit atmospheric precipitation, an increase in water demand during summer months . Jordan can be regarded with a relatively high potential for waste water recycling and reuse. The main purpose of this paper was to investigate the removal of Total suspended solids (TSS) and chemical oxygen demand (COD) for olive mill waste water (OMW) by the electrocoagulation (EC) process. In the combination of electrocoagulation by using coupled iron–aluminum electrodes the optimum working pH was found to be in range 6. The efficiency of the electrocoagulation process allowed removal of TSS and COD about 82.5% and 47.5% respectively at 45 mA/cm2 after 70 minutes by using coupled iron–aluminum electrodes. These results showed that the optimum TSS and COD removal was obtained at the optimum experimental parameters such as current density, pH, and reaction time.

Keywords: olive mill wastewater, electrode, electrocoagulation (EC), TSS, COD

Procedia PDF Downloads 384
7705 Physicochemical Analysis of Ground Water of Selected Areas of Oji River in Enugu State, Nigeria

Authors: C. Akpagu Francis, V. Nnamani Emmanuel

Abstract:

Drinking and use of polluted water from ponds, rivers, lakes, etc. for other domestic activities especially by the larger population in the rural areas has been a major source of health problems to man. A study was carried out in two different ponds in Oji River, Enugu State of Nigeria to determine the extent of total dissolved solid (TDS), metals (lead, cadmium, iron, zinc, manganese, calcium), biochemical oxygen demand (BOD). Samples of water were collected from two different ponds at a distance of 510, and 15 metres from the point of entry into the ponds to fetch water. From the results obtained, TDS (751.6Mg/l), turbidity (24ftu), conductivity (1193µs/cm), cadmium (0.008Mg/l) and lead (0.03mg/t) in pond A (PA) were found to have exceeded the WHO standard. Also in pond B (PB) the results shows that TDS (760.30Mg/l), turbidity (26ftu), conductivity (1195µs/cm), cadmium (0.008mg/l) and lead (0.03Mg/l) were also found to have exceeded the WHO standard which makes the two ponds. Water very unsafe for drinking and use in other domestic activities.

Keywords: physicochemical, groundwater, Oji River, Nigeria

Procedia PDF Downloads 451
7704 Optimization of Operational Water Quality Parameters in a Drinking Water Distribution System Using Response Surface Methodology

Authors: Sina Moradi, Christopher W. K. Chow, John Van Leeuwen, David Cook, Mary Drikas, Patrick Hayde, Rose Amal

Abstract:

Chloramine is commonly used as a disinfectant in drinking water distribution systems (DWDSs), particularly in Australia and the USA. Maintaining a chloramine residual throughout the DWDS is important in ensuring microbiologically safe water is supplied at the customer’s tap. In order to simulate how chloramine behaves when it moves through the distribution system, a water quality network model (WQNM) can be applied. In this work, the WQNM was based on mono-chloramine decomposition reactions, which enabled prediction of mono-chloramine residual at different locations through a DWDS in Australia, using the Bentley commercial hydraulic package (Water GEMS). The accuracy of WQNM predictions is influenced by a number of water quality parameters. Optimization of these parameters in order to obtain the closest results in comparison with actual measured data in a real DWDS would result in both cost reduction as well as reduction in consumption of valuable resources such as energy and materials. In this work, the optimum operating conditions of water quality parameters (i.e. temperature, pH, and initial mono-chloramine concentration) to maximize the accuracy of mono-chloramine residual predictions for two water supply scenarios in an entire network were determined using response surface methodology (RSM). To obtain feasible and economical water quality parameters for highest model predictability, Design Expert 8.0 software (Stat-Ease, Inc.) was applied to conduct the optimization of three independent water quality parameters. High and low levels of the water quality parameters were considered, inevitably, as explicit constraints, in order to avoid extrapolation. The independent variables were pH, temperature and initial mono-chloramine concentration. The lower and upper limits of each variable for two water supply scenarios were defined and the experimental levels for each variable were selected based on the actual conditions in studied DWDS. It was found that at pH of 7.75, temperature of 34.16 ºC, and initial mono-chloramine concentration of 3.89 (mg/L) during peak water supply patterns, root mean square error (RMSE) of WQNM for the whole network would be minimized to 0.189, and the optimum conditions for averaged water supply occurred at pH of 7.71, temperature of 18.12 ºC, and initial mono-chloramine concentration of 4.60 (mg/L). The proposed methodology to predict mono-chloramine residual can have a great potential for water treatment plant operators in accurately estimating the mono-chloramine residual through a water distribution network. Additional studies from other water distribution systems are warranted to confirm the applicability of the proposed methodology for other water samples.

Keywords: chloramine decay, modelling, response surface methodology, water quality parameters

Procedia PDF Downloads 217
7703 Development of Colorimetric Based Microfluidic Platform for Quantification of Fluid Contaminants

Authors: Sangeeta Palekar, Mahima Rana, Jayu Kalambe

Abstract:

In this paper, a microfluidic-based platform for the quantification of contaminants in the water is proposed. The proposed system uses microfluidic channels with an embedded environment for contaminants detection in water. Microfluidics-based platforms present an evident stage of innovation for fluid analysis, with different applications advancing minimal efforts and simplicity of fabrication. Polydimethylsiloxane (PDMS)-based microfluidics channel is fabricated using a soft lithography technique. Vertical and horizontal connections for fluid dispensing with the microfluidic channel are explored. The principle of colorimetry, which incorporates the use of Griess reagent for the detection of nitrite, has been adopted. Nitrite has high water solubility and water retention, due to which it has a greater potential to stay in groundwater, endangering aquatic life along with human health, hence taken as a case study in this work. The developed platform also compares the detection methodology, containing photodetectors for measuring absorbance and image sensors for measuring color change for quantification of contaminants like nitrite in water. The utilization of image processing techniques offers the advantage of operational flexibility, as the same system can be used to identify other contaminants present in water by introducing minor software changes.

Keywords: colorimetric, fluid contaminants, nitrite detection, microfluidics

Procedia PDF Downloads 190
7702 Two-Dimensional Observation of Oil Displacement by Water in a Petroleum Reservoir through Numerical Simulation and Application to a Petroleum Reservoir

Authors: Ahmad Fahim Nasiry, Shigeo Honma

Abstract:

We examine two-dimensional oil displacement by water in a petroleum reservoir. The pore fluid is immiscible, and the porous media is homogenous and isotropic in the horizontal direction. Buckley-Leverett theory and a combination of Laplacian and Darcy’s law are used to study the fluid flow through porous media, and the Laplacian that defines the dispersion and diffusion of fluid in the sand using heavy oil is discussed. The reservoir is homogenous in the horizontal direction, as expressed by the partial differential equation. Two main factors which are observed are the water saturation and pressure distribution in the reservoir, and they are evaluated for predicting oil recovery in two dimensions by a physical and mathematical simulation model. We review the numerical simulation that solves difficult partial differential reservoir equations. Based on the numerical simulations, the saturation and pressure equations are calculated by the iterative alternating direction implicit method and the iterative alternating direction explicit method, respectively, according to the finite difference assumption. However, to understand the displacement of oil by water and the amount of water dispersion in the reservoir better, an interpolated contour line of the water distribution of the five-spot pattern, that provides an approximate solution which agrees well with the experimental results, is also presented. Finally, a computer program is developed to calculate the equation for pressure and water saturation and to draw the pressure contour line and water distribution contour line for the reservoir.

Keywords: numerical simulation, immiscible, finite difference, IADI, IDE, waterflooding

Procedia PDF Downloads 324