Search results for: creating 2D animated movie style custom stickers from images
4567 Contrast Enhancement of Masses in Mammograms Using Multiscale Morphology
Authors: Amit Kamra, V. K. Jain, Pragya
Abstract:
Mammography is widely used technique for breast cancer screening. There are various other techniques for breast cancer screening but mammography is the most reliable and effective technique. The images obtained through mammography are of low contrast which causes problem for the radiologists to interpret. Hence, a high quality image is mandatory for the processing of the image for extracting any kind of information from it. Many contrast enhancement algorithms have been developed over the years. In the present work, an efficient morphology based technique is proposed for contrast enhancement of masses in mammographic images. The proposed method is based on Multiscale Morphology and it takes into consideration the scale of the structuring element. The proposed method is compared with other state-of-the-art techniques. The experimental results show that the proposed method is better both qualitatively and quantitatively than the other standard contrast enhancement techniques.Keywords: enhancement, mammography, multi-scale, mathematical morphology
Procedia PDF Downloads 4234566 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection
Authors: Praveen S. Muthukumarana, Achala C. Aponso
Abstract:
A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis
Procedia PDF Downloads 1454565 Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN
Authors: Kwangmin Joo
Abstract:
Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images.Keywords: Disc space narrowing, Degenerative disc disorders, Deep learning based segmentation, Clustering technique
Procedia PDF Downloads 1254564 Analysis of iPSC-Derived Dopaminergic Neuron Susceptibility to Influenza and Excitotoxicity in Non-Affective Psychosis
Authors: Jamileh Ahmed, Helena Hernandez, Gabriel De Erausquin
Abstract:
H1N1 virus susceptibility of iPSC-derived DA neurons from schizophrenia patients and controls will compared. C57/BL-6 fibroblasts were reprogrammed into iPSCs using a lenti-viral vector containing SOKM genes. Pluripotency verification with the AP assay and immunocytochemistry ensured iPSC presence. The experimental outcome of ISPCs from DA neuron differentiation will be discussed in the Results section. Fibroblasts from patients and controls will be reprogrammed into iPSCs using a sendai-virus vector containing SOKM. IPSCs will be characterized using the AP assay, immunocytochemistry and RT-PCR. IPSCs will then be differentiated into DA neurons. Gene methylation will be compared for both groups with custom-designed microarrays.Keywords: schizophrenia, iPSCs, stem cells, neuroscience
Procedia PDF Downloads 4294563 Heavy Metals Estimation in Coastal Areas Using Remote Sensing, Field Sampling and Classical and Robust Statistic
Authors: Elena Castillo-López, Raúl Pereda, Julio Manuel de Luis, Rubén Pérez, Felipe Piña
Abstract:
Sediments are an important source of accumulation of toxic contaminants within the aquatic environment. Bioassays are a powerful tool for the study of sediments in relation to their toxicity, but they can be expensive. This article presents a methodology to estimate the main physical property of intertidal sediments in coastal zones: heavy metals concentration. This study, which was developed in the Bay of Santander (Spain), applies classical and robust statistic to CASI-2 hyperspectral images to estimate heavy metals presence and ecotoxicity (TOC). Simultaneous fieldwork (radiometric and chemical sampling) allowed an appropriate atmospheric correction to CASI-2 images.Keywords: remote sensing, intertidal sediment, airborne sensors, heavy metals, eTOCoxicity, robust statistic, estimation
Procedia PDF Downloads 4214562 From CBGB to F21: The Ramone's Band T-Shirt and Its Representations in the Mainstream Culture
Authors: Cláudia Pereira, Lívia Boeschenstein
Abstract:
This article aims to present an analysis of rock band t-shirts as an element that claims a certain identity in modern-contemporary culture. This work focuses on the study of t-shirts that display the name, related elements and the logo of punk band The Ramones, because of its strong presence in the collective mind along the last decades. As we shall see, it is possible to observe a phenomenon of symbolic transition from the original cultural place of that object. At first, it was a piece of cloth that had been part of a specific subculture and then it became just a generic item diluted by the mainstream. This symbolic transitional phenomenon is significant in many ways and will be discussed furthermore. For the analysis, we begin with a brief introduction to the history of the band, followed by the study about the vintage rock band T-shirts and their meanings. From there, we will turn to a historical contextualization of band T-shirts as a subcultural item and to its redefinition after the appropriation made by the mainstream. To guide this reasoning, it will be used theories about the styles, subcultures and youth culture and about material culture from an anthropological perspective. In addition, we shall see the theories and concepts of social representations in order to understand the ways of using the Ramones’s T-shirt as a representative element of a fashionable style. This T-shirt, after being resignified by the standardization and the massive consumption, no longer symbolizes the punk movement, its behavioral motivations and original policies. Also has little to do with the rage the working class suburbs of London or New York. It seems to be a mute and vague sign of a restricted rebellion, foreseen and framed establishing a stylistic contrast to the designer clothes and good behavior predicted by establishment. It's an item that composes a specific style available on the market, but at the same time is accepted by the mainstream and provides a subcultural association that has some prestige in society. Another perspective is that of resignification loop. As the same way that punk resignified the conventional goods for their own social standards, fashion resignifies what was said to be an object of a subculture and absorbs in their own mass culture standards. Therefore, outsiders to the punk phenomenon wearing Ramones’s T-shirts can be perceived negatively by subcultural members, but at the same time are well received by those who are partially unaware or completely out of subcultural context. For the general public, the stamp of the Ramones’s logo happens to be appreciated as a diffuse allusion to a punk style, since its original meaning has being entirely neutralized.Keywords: social representations, subcultures, material culture, punk
Procedia PDF Downloads 3894561 Societal Impacts of Algorithmic Recommendation System: Economy, International Relations, Political Ideologies, and Education
Authors: Maggie Shen
Abstract:
Ever since the late 20th century, business giants have been competing to provide better experiences for their users. One way they strive to do so is through more efficiently connecting users with their goals, with recommendation systems that filter out unnecessary or less relevant information. Today’s top online platforms such as Amazon, Netflix, Airbnb, Tiktok, Facebook, and Google all utilize algorithmic recommender systems for different purposes—Product recommendation, movie recommendation, travel recommendation, relationship recommendation, etc. However, while bringing unprecedented convenience and efficiency, the prevalence of algorithmic recommendation systems also influences society in many ways. In using a variety of primary, secondary, and social media sources, this paper explores the impacts of algorithms, particularly algorithmic recommender systems, on different sectors of society. Four fields of interest will be specifically addressed in this paper: economy, international relations, political ideologies, and education.Keywords: algorithms, economy, international relations, political ideologies, education
Procedia PDF Downloads 1994560 Leadership Styles and Adoption of Risk Governance in Insurance and Energy Industry: A Comparative Case Study
Authors: Ruchi Agarwal
Abstract:
In today’s world, companies are operating in dynamic, uncertain and ambiguous business environments. Globally, more companies are failing due to Environmental, Social and Governance (ESG) factors than ever. Corporate governance and risk management are intertwined in nature. For decades, corporate governance and risk management have been influenced by internal and external factors. Three schools of thought have influenced risk governance for decades: Agency theory, Contingency theory, and Institutional theory. Agency theory argues that agents have interests conflicting with principal interests and the information problem. Contingency theory suggests that risk management adoption is influenced by internal and external factors, while Institutional theory suggests that organizations legitimize risk management with regulators, competitors, and professional bodies. The conflicting objectives of theories have created problems for executives in organizations in the adoption of Risk Governance. So far, there are many studies that discussed risk culture and the role of actors in risk governance, but there are rare studies discussing the role of risk culture in the adoption of risk governance from a leadership style perspective. This study explores the adoption of risk governance in two contrasting industries, such as the Insurance and energy business, to understand whether risk governance is influenced by internal/external factors or whether risk culture is influenced by leaders. We draw empirical evidence by comparing the cases of an Indian insurance company and a renewable energy-based firm in India. We interviewed more than 20 senior executives of companies and collected annual reports, risk management policies, and more than 10 PPTs and other reports from 2017 to 2024. We visited the company for follow-up questions several times. The findings of my research revealed that both companies have used risk governance for strategic renewal of the company. Insurance companies use a transactional leadership style based on performance and reward for improving risk, while energy companies use rather symbolic management to make debt restructuring meaningful for stakeholders. Overall, both companies turned from loss-making to profitable ones in a few years. This comparative study highlights the role of different leadership styles in the adoption of risk governance. The study is also distinct as previous research rarely studied risk governance in two contrasting industries in reference to leadership styles.Keywords: leadership style, corporate governance, risk management, risk culture, strategic renewal
Procedia PDF Downloads 484559 Seawater Changes' Estimation at Tidal Flat in Korean Peninsula Using Drone Stereo Images
Authors: Hyoseong Lee, Duk-jin Kim, Jaehong Oh, Jungil Shin
Abstract:
Tidal flat in Korean peninsula is one of the largest biodiversity tidal flats in the world. Therefore, digital elevation models (DEM) is continuously demanded to monitor of the tidal flat. In this study, DEM of tidal flat, according to different times, was produced by means of the Drone and commercial software in order to measure seawater change during high tide at water-channel in tidal flat. To correct the produced DEMs of the tidal flat where is inaccessible to collect control points, the DEM matching method was applied by using the reference DEM instead of the survey. After the ortho-image was made from the corrected DEM, the land cover classified image was produced. The changes of seawater amount according to the times were analyzed by using the classified images and DEMs. As a result, it was confirmed that the amount of water rapidly increased as the time passed during high tide.Keywords: tidal flat, drone, DEM, seawater change
Procedia PDF Downloads 2044558 Imaginations of the Silk Road in Sven Hedin’s Travel Writings: 1900-1936
Authors: Kexin Tan
Abstract:
The Silk Road is a concept idiosyncratic in nature. Western scholars co-created and conceptualized in its early days, transliterated into the countries along the Silk Road, redefined, reimagined, and reconfigured by the public in the second half of the twentieth century. Therefore, the image is not only a mirror of the discursive interactions between East and West but Self and Other. The travel narrative of Sven Hedin, through which the Silk Road was enriched in meanings and popularized, is the focus of this study. This article examines how the Silk Road was imagined in three key texts of Sven Hedin: The Silk Road, The Wandering Lake, and The Flight of “Big Horse”. Three recurring themes are extracted and analyzed: the Silk Road, the land of enigmas, the virgin land, and the reconnecting road. Ideas about ethnotypes and images drawn from theorists such as Joep Leerssen have been deployed in the analysis. This research tracks how the images were configured, concentrating on China’s ethnotypes, travel writing tropes, and the Silk Road discourse that preceded Sven Hedin. Hedin’s role in his expedition, his geopolitical viewpoints, and the commercial considerations of his books are also discussed in relation to the intellectual construct of the Silk Road. It is discovered that the images of the Silk Road and the discursive traditions behind it are mobile rather than static, inclusive than antithetical. The paradoxical characters of the Silk Road reveal the complexity of the socio-historical background of Hedin’s time, as well as the collision of discursive traditions and practical issues. While it is true that Hedin’s discursive construction of the Silk Road image embodies the bias of Self-West against Other-East, its characteristics such as fluidity and openness could probably offer a hint at its resurgence in the postcolonial era.Keywords: the silk road, Sven Hedin, imagology, ethnotype, travelogue
Procedia PDF Downloads 1934557 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool
Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi
Abstract:
The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.Keywords: data analysis, deep learning, LSTM neural network, netflix
Procedia PDF Downloads 2504556 Use of computer and peripherals in the Archaeological Surveys of Sistan in Eastern Iran
Authors: Mahyar Mehrafarin, Reza Mehrafarin
Abstract:
The Sistan region in eastern Iran is a significant archaeological area in Iran and the Middle East, encompassing 10,000 square kilometers. Previous archeological field surveys have identified 1662 ancient sites dating from prehistoric periods to the Islamic period. Research Aim: This article aims to explore the utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, and the benefits derived from their implementation. Methodology: The research employs a descriptive-analytical approach combined with field methods. New technologies and software, such as GPS, drones, magnetometers, equipped cameras, satellite images, and software programs like GIS, Map source, and Excel, were utilized to collect information and analyze data. Findings: The use of modern technologies and computers in archaeological field surveys proved to be essential. Traditional archaeological activities, such as excavation and field surveys, are time-consuming and costly. Employing modern technologies helps in preserving ancient sites, accurately recording archaeological data, reducing errors and mistakes, and facilitating correct and accurate analysis. Creating a comprehensive and accessible database, generating statistics, and producing graphic designs and diagrams are additional advantages derived from the use of efficient technologies in archaeology. Theoretical Importance: The integration of computers and modern technologies in archaeology contributes to interdisciplinary collaborations and facilitates the involvement of specialists from various fields, such as geography, history, art history, anthropology, laboratory sciences, and computer engineering. The utilization of computers in archaeology spanned across diverse areas, including database creation, statistical analysis, graphics implementation, laboratory and engineering applications, and even artificial intelligence, which remains an unexplored area in Iranian archaeology. Data Collection and Analysis Procedures: Information was collected using modern technologies and software, capturing geographic coordinates, aerial images, archeogeophysical data, and satellite images. This data was then inputted into various software programs for analysis, including GIS, Map source, and Excel. The research employed both descriptive and analytical methods to present findings effectively. Question Addressed: The primary question addressed in this research is how the use of modern technologies and computers in archeological field surveys in Sistan, Iran, can enhance archaeological data collection, preservation, analysis, and accessibility. Conclusion: The utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, has proven to be necessary and beneficial. These technologies aid in preserving ancient sites, accurately recording archaeological data, reducing errors, and facilitating comprehensive analysis. The creation of accessible databases, statistics generation, graphic designs, and interdisciplinary collaborations are further advantages observed. It is recommended to explore the potential of artificial intelligence in Iranian archaeology as an unexplored area. The research has implications for cultural heritage organizations, archaeology students, and universities involved in archaeological field surveys in Sistan and Baluchistan province. Additionally, it contributes to enhancing the understanding and preservation of Iran's archaeological heritage.Keywords: archaeological surveys, computer use, iran, modern technologies, sistan
Procedia PDF Downloads 784555 Android – Based Wireless Electronic Stethoscope
Authors: Aw Adi Arryansyah
Abstract:
Using electronic stethoscope for detecting heartbeat sound, and breath sounds, are the effective way to investigate cardiovascular diseases. On the other side, technology is growing towards mobile. Almost everyone has a smartphone. Smartphone has many platforms. Creating mobile applications also became easier. We also can use HTML5 technology to creating mobile apps. Android is the most widely used type. This is the reason for us to make a wireless electronic stethoscope based on Android mobile. Android based Wireless Electronic Stethoscope designed by a simple system, uses sound sensors mounted membrane, then connected with Bluetooth module which will send the heart auscultation voice input data by Bluetooth signal to an android platform. On the software side, android will read the voice input then it will translate to beautiful visualization and release the voice output which can be regulated about how much of it is going to be released. We can change the heart beat sound into BPM data, and heart beat analysis, like normal beat, bradycardia or tachycardia.Keywords: wireless, HTML 5, auscultation, bradycardia, tachycardia
Procedia PDF Downloads 3474554 Automatic Vehicle Detection Using Circular Synthetic Aperture Radar Image
Authors: Leping Chen, Daoxiang An, Xiaotao Huang
Abstract:
Automatic vehicle detection using synthetic aperture radar (SAR) image has been widely researched, as well as using optical remote sensing images. However, most researches treat the detection as an independent problem, failing to make full use of SAR data information. In circular SAR (CSAR), the two long borders of vehicle will shrink if the imaging surface is set higher than the reference one. Based on above variance, an automatic vehicle detection using CSAR image is proposed to enhance detection ability under complex environment, such as vehicles’ closely packing, which confuses the detector. The detection method uses the multiple images generated by different height plane to obtain an energy-concentrated image for detecting and then uses the maximally stable extremal regions method (MSER) to detect vehicles. A result of vehicles’ detection is given to verify the effectiveness and correctness of proposed method.Keywords: circular SAR, vehicle detection, automatic, imaging
Procedia PDF Downloads 3674553 Value of Mergers
Authors: Reza Yaghoubi, Stuart Locke, Jenny Gibb
Abstract:
This study investigates sources of value in mergers and acquisitions. While much emphasis is put on operating synergies from acquisitions the evidence provided in this study shows that the difference between the WACCs of the combined firm and the merging firms may have a significant role on the value effect of mergers. These findings suggest that changes in the capital structure of the combined firm, compared to capital structures of the acquirer and the target, play a key role in determining the value of an acquisition. Moreover, findings of this study suggest that reducing the cost of capital of the combined firm, compared to the merging firms, is value creating even in the absence of operating synergies. Furthermore, this study shows that the component of value associated with the difference between the WACCs of the combined firm and the acquirer is mainly determined by leverage of the acquiring firm and the method of payment. While cash payment is value creating, high leverage of the acquirer prior to an acquisition can destroy value by raising the cost of capital of the firm. This is especially important to managers when they are planning an acquisition.Keywords: acquisitions, mergers, synergy, value, WACC
Procedia PDF Downloads 2684552 Creating Inclusive Information Services: Librarians’ Design-Thinking Approach to Helping Students Succeed in the Digital Age
Authors: Yi Ding
Abstract:
With the rapid development of educational technologies, higher education institutions are facing the challenge of creating an inclusive learning environment for students from diverse backgrounds. Academic libraries, the hubs of research, instruction, and innovation at higher educational institutions, are facing the same challenge. While academic librarians worldwide have been working hard to provide services for emerging information technology such as information literacy education, online learning support, and scholarly communication advocacy, the problem of digital exclusion remains a difficult one at higher education institutions. Information services provided by academic libraries can result in the digital exclusion of students from diverse backgrounds, such as students with various digital readiness levels, students with disabilities, as well as English-as-a-Second-Language learners. This research study shows how academic librarians can design digital learning objects that are cognizant of differences in learner traits and student profiles through the lens of design thinking. By demonstrating how the design process of digital learning objects can take into consideration users’ needs, experiences, and engagement with different technologies, this research study explains design principles of accessibility, connectivity, and scalability in creating inclusive digital learning objects as shown in various case studies. Equipped with the mindset and techniques to be mindful of diverse student learning traits and profiles when designing information services, academic libraries can improve the digital inclusion and ultimately student success at higher education institutions.Keywords: academic librarians, digital inclusion, information services, digital learning objects, student success
Procedia PDF Downloads 2154551 Optical Imaging Based Detection of Solder Paste in Printed Circuit Board Jet-Printing Inspection
Authors: D. Heinemann, S. Schramm, S. Knabner, D. Baumgarten
Abstract:
Purpose: Applying solder paste to printed circuit boards (PCB) with stencils has been the method of choice over the past years. A new method uses a jet printer to deposit tiny droplets of solder paste through an ejector mechanism onto the board. This allows for more flexible PCB layouts with smaller components. Due to the viscosity of the solder paste, air blisters can be trapped in the cartridge. This can lead to missing solder joints or deviations in the applied solder volume. Therefore, a built-in and real-time inspection of the printing process is needed to minimize uncertainties and increase the efficiency of the process by immediate correction. The objective of the current study is the design of an optimal imaging system and the development of an automatic algorithm for the detection of applied solder joints from optical from the captured images. Methods: In a first approach, a camera module connected to a microcomputer and LED strips are employed to capture images of the printed circuit board under four different illuminations (white, red, green and blue). Subsequently, an improved system including a ring light, an objective lens, and a monochromatic camera was set up to acquire higher quality images. The obtained images can be divided into three main components: the PCB itself (i.e., the background), the reflections induced by unsoldered positions or screw holes and the solder joints. Non-uniform illumination is corrected by estimating the background using a morphological opening and subtraction from the input image. Image sharpening is applied in order to prevent error pixels in the subsequent segmentation. The intensity thresholds which divide the main components are obtained from the multimodal histogram using three probability density functions. Determining the intersections delivers proper thresholds for the segmentation. Remaining edge gradients produces small error areas which are removed by another morphological opening. For quantitative analysis of the segmentation results, the dice coefficient is used. Results: The obtained PCB images show a significant gradient in all RGB channels, resulting from ambient light. Using different lightings and color channels 12 images of a single PCB are available. A visual inspection and the investigation of 27 specific points show the best differentiation between those points using a red lighting and a green color channel. Estimating two thresholds from analyzing the multimodal histogram of the corrected images and using them for segmentation precisely extracts the solder joints. The comparison of the results to manually segmented images yield high sensitivity and specificity values. Analyzing the overall result delivers a Dice coefficient of 0.89 which varies for single object segmentations between 0.96 for a good segmented solder joints and 0.25 for single negative outliers. Conclusion: Our results demonstrate that the presented optical imaging system and the developed algorithm can robustly detect solder joints on printed circuit boards. Future work will comprise a modified lighting system which allows for more precise segmentation results using structure analysis.Keywords: printed circuit board jet-printing, inspection, segmentation, solder paste detection
Procedia PDF Downloads 3364550 The Role of Attachment and Dyadic Coping in Shaping Relational Intimacy
Authors: Anna Wendolowska, Dorota Czyzowska
Abstract:
An intimate relationship is a significant factor that influences romantic partners’ well-being. In the face of stress, avoidant partners often employ a defense-against-intimacy strategy, leading to reduced relationship satisfaction, intimacy, interdependence, and longevity. Dyadic coping can buffer the negative effects of stress on relational satisfaction. Emotional competence mediates the relationship between insecure attachment and intimacy. In the current study, the link between attachment, different forms of dyadic coping, and various aspects of relationship satisfaction was examined. Both partners completed the attachment style questionnaire, the well matching couple questionnaire, and the dyadic coping inventory. The data was analyzed using the actor–partner interdependence model. The results highlighted a negative association between insecure-avoidant attachment style and intimacy. The actor effects of avoidant attachment on relational intimacy for women and for men were significant, whilst the partner effects for both spouses were not significant. The emotion-focused common dyadic coping moderated the relationship between avoidance of attachment and the partner's sense of intimacy. After controlling for the emotion-focused common dyadic coping, the actor effect of attachment on intimacy for men was slightly weaker, and the actor effect for women turned out to be insignificant. The emotion-focused common dyadic coping weakened the negative association between insecure attachment and relational intimacy. The impact of adult attachment and dyadic coping significantly contributes to subjective relational well-being.Keywords: adult attachment, dyadic coping, relational intimacy, relationship satisfaction
Procedia PDF Downloads 1614549 Augmenting History: Case Study Measuring Motivation of Students Using Augmented Reality Apps in History Classes
Authors: Kevin. S. Badni
Abstract:
Due to the rapid advances in the use of information technology and students’ familiarity with technology, learning styles in higher education are being reshaped. One of the technology developments that has gained considerable attention in recent years is Augmented Reality (AR), where technology is used to combine overlays of digital data on physical real-world settings. While AR is being heavily promoted for entertainment by mobile phone manufacturers, it has had little adoption in higher education due to the required upfront investment that an instructor needs to undertake in creating relevant AR applications. This paper discusses a case study that uses a low upfront development approach and examines the impact on generation-Z students’ motivation whilst studying design history over a four-semester period. Even though the upfront investment in creating the AR support was minimal, the results showed a noticeable increase in student motivation. The approach used in this paper can be easily transferred to other disciplines and other areas of design education.Keywords: augmented reality, history, motivation, technology
Procedia PDF Downloads 1654548 Knowledge Graph Development to Connect Earth Metadata and Standard English Queries
Authors: Gabriel Montague, Max Vilgalys, Catherine H. Crawford, Jorge Ortiz, Dava Newman
Abstract:
There has never been so much publicly accessible atmospheric and environmental data. The possibilities of these data are exciting, but the sheer volume of available datasets represents a new challenge for researchers. The task of identifying and working with a new dataset has become more difficult with the amount and variety of available data. Datasets are often documented in ways that differ substantially from the common English used to describe the same topics. This presents a barrier not only for new scientists, but for researchers looking to find comparisons across multiple datasets or specialists from other disciplines hoping to collaborate. This paper proposes a method for addressing this obstacle: creating a knowledge graph to bridge the gap between everyday English language and the technical language surrounding these datasets. Knowledge graph generation is already a well-established field, although there are some unique challenges posed by working with Earth data. One is the sheer size of the databases – it would be infeasible to replicate or analyze all the data stored by an organization like The National Aeronautics and Space Administration (NASA) or the European Space Agency. Instead, this approach identifies topics from metadata available for datasets in NASA’s Earthdata database, which can then be used to directly request and access the raw data from NASA. By starting with a single metadata standard, this paper establishes an approach that can be generalized to different databases, but leaves the challenge of metadata harmonization for future work. Topics generated from the metadata are then linked to topics from a collection of English queries through a variety of standard and custom natural language processing (NLP) methods. The results from this method are then compared to a baseline of elastic search applied to the metadata. This comparison shows the benefits of the proposed knowledge graph system over existing methods, particularly in interpreting natural language queries and interpreting topics in metadata. For the research community, this work introduces an application of NLP to the ecological and environmental sciences, expanding the possibilities of how machine learning can be applied in this discipline. But perhaps more importantly, it establishes the foundation for a platform that can enable common English to access knowledge that previously required considerable effort and experience. By making this public data accessible to the full public, this work has the potential to transform environmental understanding, engagement, and action.Keywords: earth metadata, knowledge graphs, natural language processing, question-answer systems
Procedia PDF Downloads 1474547 The Nature of the Complicated Fabric Textures: How to Represent in Primary Visual Cortex
Authors: J. L. Liu, L. Wang, B. Zhu, J. Zhou, W. D. Gao
Abstract:
Fabric textures are very common in our daily life. However, we never explore the representation of fabric textures from neuroscience view. Theoretical studies suggest that primary visual cortex (V1) uses a sparse code to efficiently represent natural images. However, how the simple cells in V1 encode the artificial textures is still a mystery. So, here we will take fabric texture as stimulus to study the response of independent component analysis that is established to model the receptive field of simple cells in V1. Experimental results based on 140 classical fabric images indicate that the receptive fields of simple cells have obvious selectivity in orientation, frequency, and phase when drifting gratings are used to determine their tuning properties. Additionally, the distribution of optimal orientation and frequency shows that the patch size selected from each original fabric image has a significant effect on the frequency selectivity.Keywords: fabric texture, receptive filed, simple cell, spare coding
Procedia PDF Downloads 4754546 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack
Authors: Varun Agarwal
Abstract:
Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images
Procedia PDF Downloads 1304545 Energy Communities from Municipality Level to Province Level: A Comparison Using Autoregressive Integrated Moving Average Model
Authors: Amro Issam Hamed Attia Ramadan, Marco Zappatore, Pasquale Balena, Antonella Longo
Abstract:
Considering the energetic crisis that is hitting Europe, it becomes more and more necessary to change the energy policies to depend less on fossil fuels and replace them with energy from renewable sources. This has triggered the urge to use clean energy not only to satisfy energy needs and fulfill the required consumption but also to decrease the danger of climatic changes due to harmful emissions. Many countries have already started creating energetic communities based on renewable energy sources. The first step to understanding energy needs in any place is to perfectly know the consumption. In this work, we aim to estimate electricity consumption for a municipality that makes up part of a rural area located in southern Italy using forecast models that allow for the estimation of electricity consumption for the next ten years, and we then apply the same model to the province where the municipality is located and estimate the future consumption for the same period to examine whether it is possible to start from the municipality level to reach the province level when creating energy communities.Keywords: ARIMA, electricity consumption, forecasting models, time series
Procedia PDF Downloads 1744544 The Outcome of Using Machine Learning in Medical Imaging
Authors: Adel Edwar Waheeb Louka
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery
Procedia PDF Downloads 734543 Intelligent Grading System of Apple Using Neural Network Arbitration
Authors: Ebenezer Obaloluwa Olaniyi
Abstract:
In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.Keywords: image processing, neural network, apple, intelligent system
Procedia PDF Downloads 3984542 Quantitative Characterization of Single Orifice Hydraulic Flat Spray Nozzle
Authors: Y. C. Khoo, W. T. Lai
Abstract:
The single orifice hydraulic flat spray nozzle was evaluated with two global imaging techniques to characterize various aspects of the resulting spray. The two techniques were high resolution flow visualization and Particle Image Velocimetry (PIV). A CCD camera with 29 million pixels was used to capture shadowgraph images to realize ligament formation and collapse as well as droplet interaction. Quantitative analysis was performed to give the sizing information of the droplets and ligaments. This camera was then applied with a PIV system to evaluate the overall velocity field of the spray, from nozzle exit to droplet discharge. PIV images were further post-processed to determine the inclusion angle of the spray. The results from those investigations provided significant quantitative understanding of the spray structure. Based on the quantitative results, detailed understanding of the spray behavior was achieved.Keywords: spray, flow visualization, PIV, shadowgraph, quantitative sizing, velocity field
Procedia PDF Downloads 3814541 An Animation-Based Resource for Screening Emotional and Behavioural Distress in Children Aged 6 to 12
Authors: Zoe Lynch, Kirsty Zieschank
Abstract:
There are several factors that compromise the utility and wide-spread use of existing emotional and behavioural distress screening instruments. Some of these factors include lengthy administration times, high costs, feasibility issues, and a lack of self-report options for children under 12 years of age. This animation-based resource was developed to overcome as many of these factors as possible. Developed for educators and medical and mental health professionals, this resource offers children a self-guided mechanism for reporting any current emotional and behavioural distress. An avatar assistant, selected by the child, accompanies them through each stage of the screening process, offering further instruction if prompted. Children enter their age and gender before viewing comparative animations conveying common childhood emotional and behavioural difficulties. The child then selects the most relatable animations, along with the frequency with which they experience the depicted emotions. From a perspective of intellectual development, an engaging, animated format means that outcomes will not be constrained by children’s reading, writing, cognitive, or verbal expression abilities. Having been user-tested with children aged 6 to 12, this resource shows promising results as a self-guided screening instrument.Keywords: animation-based screening instrument, mental health, primary-aged children, self-guided
Procedia PDF Downloads 1584540 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening
Authors: Ksheeraj Sai Vepuri, Nada Attar
Abstract:
We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.Keywords: facial expression recognittion, image preprocessing, deep learning, CNN
Procedia PDF Downloads 1434539 Restoration Process of Kastamonu - Tufekciler Village Houses for Potential Eco-Tourism Purposes
Authors: Turkan Sultan Yasar Ismail, Mehmet Cetin, M. Danial Ismail, Hakan Sevik
Abstract:
Nowadays, there is a need for the real world to be translated to the virtual environment by three-dimensional visualisation for restoration and promotional modelling of historic sites in protected areas. Visualisation models have also become the very important basis for the creation of three-dimensional Geographic Information System. The protection of historical and cultural heritage and documenting in Turkey as well as all over the world is an important issue. This heritage is a bridge between the past and the future of humanity. Many historical and cultural heritages suffer neglect and for reasons arising from natural causes. This is to determine the current status of the work and documenting information from the selected buildings. This process is important for their conservation and renovation work that might be done in the future. Kastamonu city is one of the historical cities in Turkey with a number of heritage buildings. However, Tufekciler Village is not visited and famous even though it includes several historical buildings and peaceful landscape. Digital terrestrial photogrammetry is one of the most important methods used in the documentation of cultural and historical heritage. Firstly, measurements were made primarily around creating polygon mesh and 3D model drawings of the structures to be modelled on images with the move to digital media such as picture size and by subsequent visualisation process. Secondly, a restoration project is offered to the village with the concept of eco-tourism with all scales such as, interior space to landscape design.Keywords: eco-tourism, restoration, sustainability, cultural village
Procedia PDF Downloads 3514538 Classifier for Liver Ultrasound Images
Authors: Soumya Sajjan
Abstract:
Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix
Procedia PDF Downloads 411