Search results for: artificial intelligence based optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30634

Search results for: artificial intelligence based optimization

29704 Quality of School Life and Linguistic Intelligence of College Freshmen in a State University

Authors: Louis Placido F. Lachica

Abstract:

Freshman year in college, being a transition from high school to college, requires students to adjust by equipping themselves with competencies that will make them survive in college. This study conducted at in a state university in the Philippines aimed to determine the quality of school life and linguistic intelligence of 214 randomly selected college freshmen. Frequency counts and percentages were used to analyze quality of school life and linguistic intelligence. The chi-square test was utilized to determine significant relationship between quality of school life and linguistic intelligence and selected demographic variables. Results on quality of school life revealed that availability of religious books and paperbacks at home were significantly related to relationship with teachers. None of the selected demographic characteristics were significantly related to sense of achievement. Parents’ highest educational attainment was significantly related with opportunity at school. The availability of general references and song hits were significantly and highly significantly related to sense of identity which means that these promoted their sense of identity since their peers also preferred its availability. Type of high school graduated from was significantly related with students’ self-esteem. Graduates of public high schools have higher boosted self-esteem than those from private high schools. Both type of high school graduated from and reading materials available at home (religious books) had a highly significant relationship with linguistic intelligence. In addition, there was a significant relationship between time spent in reading per day and linguistic intelligence. There was a highly significant relationship between quality of school life in terms of relationship with teachers and sense of achievement with linguistic intelligence. Further, sense of identity and linguistic intelligence were significantly related.

Keywords: quality of school life, linguistic intelligence, college freshmen, state university

Procedia PDF Downloads 342
29703 Key Parameters Analysis of the Stirring Systems in the Optmization Procedures

Authors: T. Gomes, J. Manzi

Abstract:

The inclusion of stirring systems in the calculation and optimization procedures has been undergone a significant lack of attention, what it can reflect in the results because such systems provide an additional energy to the process, besides promote a better distribution of mass and energy. This is meaningful for the reactive systems, particularly for the Continuous Stirred Tank Reactor (CSTR), for which the key variables and parameters, as well as the operating conditions of stirring systems, can play a pivotal role and it has been showed in the literature that neglect these factors can lead to sub-optimal results. It is also well known that the sole use of the First Law of Thermodynamics as an optimization tool cannot yield satisfactory results, since the joint use of the First and Second Laws condensed into a procedure so-called entropy generation minimization (EGM) has shown itself able to drive the system towards better results. Therefore, the main objective of this paper is to determine the effects of key parameters of the stirring system in the optimization procedures by means of EGM applied to the reactive systems. Such considerations have been possible by dimensional analysis according to Rayleigh and Buckingham's method, which takes into account the physical and geometric parameters and the variables of the reactive system. For the simulation purpose based on the production of propylene glycol, the results have shown a significant increase in the conversion rate from 36% (not-optimized system) to 95% (optimized system) with a consequent reduction of by-products. In addition, it has been possible to establish the influence of the work of the stirrer in the optimization procedure, in which can be described as a function of the fluid viscosity and consequently of the temperature. The conclusions to be drawn also indicate that the use of the entropic analysis as optimization tool has been proved to be simple, easy to apply and requiring low computational effort.

Keywords: stirring systems, entropy, reactive system, optimization

Procedia PDF Downloads 231
29702 A Resource Optimization Strategy for CPU (Central Processing Unit) Intensive Applications

Authors: Junjie Peng, Jinbao Chen, Shuai Kong, Danxu Liu

Abstract:

On the basis of traditional resource allocation strategies, the usage of resources on physical servers in cloud data center is great uncertain. It will cause waste of resources if the assignment of tasks is not enough. On the contrary, it will cause overload if the assignment of tasks is too much. This is especially obvious when the applications are the same type because of its resource preferences. Considering CPU intensive application is one of the most common types of application in the cloud, we studied the optimization strategy for CPU intensive applications on the same server. We used resource preferences to analyze the case that multiple CPU intensive applications run simultaneously, and put forward a model which can predict the execution time for CPU intensive applications which run simultaneously. Based on the prediction model, we proposed the method to select the appropriate number of applications for a machine. Experiments show that the model can predict the execution time accurately for CPU intensive applications. To improve the execution efficiency of applications, we propose a scheduling model based on priority for CPU intensive applications. Extensive experiments verify the validity of the scheduling model.

Keywords: cloud computing, CPU intensive applications, resource optimization, strategy

Procedia PDF Downloads 264
29701 Technology, Organizational and Environmental Determinants of Business Intelligence Systems Adoption in Croatian SME: A Case Study of Medium-Sized Enterprise

Authors: Ana-Marija Stjepić, Luka Sušac, Dalia Suša Vugec

Abstract:

In the last few years, examples from scientific literature and business practices show that the adoption of technological innovations increases enterprises' performance. Recently, when it comes to the field of information technology innovation, business intelligence systems (BISs) have drawn a significant amount of attention of the scientific circles. BISs can be understood as a form of technological innovation which can bring certain benefits to the organizations that are adopting it. Therefore, the aim of this paper is twofold: (1) to define determinants of successful BISs adoption in small and medium enterprises and thus contribute to this neglected research area and (2) to present the current state of BISs adoption in small and medium-sized companies. In order to do so, determinants are defined and classified into three dimensions, according to the Technology – Organization – Environment (TOE) theoretical framework that describes the impact of each dimension on technological innovations adoption. Moreover, paper brings a case study presenting the adoption of BISs in practice within an organization from tertiary (service) industry sector. Based on the results of the study, guidelines for more efficient, faster and easier BISs adoption are presented.

Keywords: adoption, business intelligence, business intelligence systems, case study, TOE framework

Procedia PDF Downloads 129
29700 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System

Authors: Afaneen Anwer, Samara M. Kamil

Abstract:

Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.

Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system

Procedia PDF Downloads 567
29699 Multiple Query Optimization in Wireless Sensor Networks Using Data Correlation

Authors: Elaheh Vaezpour

Abstract:

Data sensing in wireless sensor networks is done by query deceleration the network by the users. In many applications of the wireless sensor networks, many users send queries to the network simultaneously. If the queries are processed separately, the network’s energy consumption will increase significantly. Therefore, it is very important to aggregate the queries before sending them to the network. In this paper, we propose a multiple query optimization framework based on sensors physical and temporal correlation. In the proposed method, queries are merged and sent to network by considering correlation among the sensors in order to reduce the communication cost between the sensors and the base station.

Keywords: wireless sensor networks, multiple query optimization, data correlation, reducing energy consumption

Procedia PDF Downloads 317
29698 Emotional Intelligence in the Modern World: A Quantitative and Qualitative Study of the UMCS Students

Authors: Anna Dabrowska

Abstract:

Taking Daniel Goleman’s (1994) belief that success in life depends on IQ in 20% and in 80% on emotional intelligence, and that it is worth considering emotional intelligence as an important factor in human performance and development potential, the aim of the paper is to explore the range of emotions experienced by university students who represent Society 5.0. This quantitative and qualitative study is meant to explore not only the list of the most and least experienced emotions by the students, but also the main reasons behind these feelings. The database of the study consists of 115 respondents out of 129 students of the 1st and 5th year of Applied Linguistics at Maria Curie-Skłodowska University, which constitutes 89% of those being surveyed. The data is extracted from the anonymous questionnaire, which comprises young people’s answers and discourse concerning the causes of their most experienced emotions. Following Robert Plutchik’s theory of eight primary emotions, i.e. anger, fear, sadness, disgust, surprise, anticipation, trust, and joy, we adopt his argument for the primacy of these emotions by showing each to be the trigger of behaviour with high survival value. In fact, all other emotions are mixed or derivative states; that is, they occur as combinations, mixtures, or compounds of the primary emotions. Accordingly, the eight primary emotions, and their mixed states, are checked in the study on the students.

Keywords: emotions, intelligence, students, discourse study, emotional intelligence

Procedia PDF Downloads 15
29697 Using Business Intelligence Capabilities to Improve the Quality of Decision-Making: A Case Study of Mellat Bank

Authors: Jalal Haghighat Monfared, Zahra Akbari

Abstract:

Today, business executives need to have useful information to make better decisions. Banks have also been using information tools so that they can direct the decision-making process in order to achieve their desired goals by rapidly extracting information from sources with the help of business intelligence. The research seeks to investigate whether there is a relationship between the quality of decision making and the business intelligence capabilities of Mellat Bank. Each of the factors studied is divided into several components, and these and their relationships are measured by a questionnaire. The statistical population of this study consists of all managers and experts of Mellat Bank's General Departments (including 190 people) who use commercial intelligence reports. The sample size of this study was 123 randomly determined by statistical method. In this research, relevant statistical inference has been used for data analysis and hypothesis testing. In the first stage, using the Kolmogorov-Smirnov test, the normalization of the data was investigated and in the next stage, the construct validity of both variables and their resulting indexes were verified using confirmatory factor analysis. Finally, using the structural equation modeling and Pearson's correlation coefficient, the research hypotheses were tested. The results confirmed the existence of a positive relationship between decision quality and business intelligence capabilities in Mellat Bank. Among the various capabilities, including data quality, correlation with other systems, user access, flexibility and risk management support, the flexibility of the business intelligence system was the most correlated with the dependent variable of the present research. This shows that it is necessary for Mellat Bank to pay more attention to choose the required business intelligence systems with high flexibility in terms of the ability to submit custom formatted reports. Subsequently, the quality of data on business intelligence systems showed the strongest relationship with quality of decision making. Therefore, improving the quality of data, including the source of data internally or externally, the type of data in quantitative or qualitative terms, the credibility of the data and perceptions of who uses the business intelligence system, improves the quality of decision making in Mellat Bank.

Keywords: business intelligence, business intelligence capability, decision making, decision quality

Procedia PDF Downloads 99
29696 Glucose Monitoring System Using Machine Learning Algorithms

Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe

Abstract:

The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.

Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning

Procedia PDF Downloads 180
29695 Hybrid Data-Driven Drilling Rate of Penetration Optimization Scheme Guided by Geological Formation and Historical Data

Authors: Ammar Alali, Mahmoud Abughaban, William Contreras Otalvora

Abstract:

Optimizing the drilling process for cost and efficiency requires the optimization of the rate of penetration (ROP). ROP is the measurement of the speed at which the wellbore is created, in units of feet per hour. It is the primary indicator of measuring drilling efficiency. Maximization of the ROP can indicate fast and cost-efficient drilling operations; however, high ROPs may induce unintended events, which may lead to nonproductive time (NPT) and higher net costs. The proposed ROP optimization solution is a hybrid, data-driven system that aims to improve the drilling process, maximize the ROP, and minimize NPT. The system consists of two phases: (1) utilizing existing geological and drilling data to train the model prior, and (2) real-time adjustments of the controllable dynamic drilling parameters [weight on bit (WOB), rotary speed (RPM), and pump flow rate (GPM)] that direct influence on the ROP. During the first phase of the system, geological and historical drilling data are aggregated. After, the top-rated wells, as a function of high instance ROP, are distinguished. Those wells are filtered based on NPT incidents, and a cross-plot is generated for the controllable dynamic drilling parameters per ROP value. Subsequently, the parameter values (WOB, GPM, RPM) are calculated as a conditioned mean based on physical distance, following Inverse Distance Weighting (IDW) interpolation methodology. The first phase is concluded by producing a model of drilling best practices from the offset wells, prioritizing the optimum ROP value. This phase is performed before the commencing of drilling. Starting with the model produced in phase one, the second phase runs an automated drill-off test, delivering live adjustments in real-time. Those adjustments are made by directing the driller to deviate two of the controllable parameters (WOB and RPM) by a small percentage (0-5%), following the Constrained Random Search (CRS) methodology. These minor incremental variations will reveal new drilling conditions, not explored before through offset wells. The data is then consolidated into a heat-map, as a function of ROP. A more optimum ROP performance is identified through the heat-map and amended in the model. The validation process involved the selection of a planned well in an onshore oil field with hundreds of offset wells. The first phase model was built by utilizing the data points from the top-performing historical wells (20 wells). The model allows drillers to enhance decision-making by leveraging existing data and blending it with live data in real-time. An empirical relationship between controllable dynamic parameters and ROP was derived using Artificial Neural Networks (ANN). The adjustments resulted in improved ROP efficiency by over 20%, translating to at least 10% saving in drilling costs. The novelty of the proposed system lays is its ability to integrate historical data, calibrate based geological formations, and run real-time global optimization through CRS. Those factors position the system to work for any newly drilled well in a developing field event.

Keywords: drilling optimization, geological formations, machine learning, rate of penetration

Procedia PDF Downloads 111
29694 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination

Authors: Gilberto Goracci, Fabio Curti

Abstract:

This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.

Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field

Procedia PDF Downloads 87
29693 Emotional Intelligence: A Panacea in the Management and Marketing of Hospitality and Tourism Good and Services

Authors: M. Azugama, P. Okoro Ugo Chigozie, A. O. Nnamocha

Abstract:

Emotional Intelligence constitutes powerful psychological forces that can strongly influence performance in behaviour, interaction and relationship management. Surprisingly how emotions are interpreted and employed in marketing of hospitality experience have had limited comprehension. Marketing of hospitality experiences have important emotional dimensions which the traditional marketing techniques tend to underplay. Guest and host relationship are challenged by mutual hospitableness obligations; suggesting that the commercial practice of delivering satisfactory guest experience has much to gain from traditional understanding of hospitality. By understanding the emotion-based hospitality transaction between guests and hosts, customers’ experiences can be delivered over and against competitor pressure. In this paper, marketing strategies and tactics in hospitality and tourism are principally concerned with adjusting each of the 6P & T elements (i.e. product, place, price and promotion; and adding people, processes and Time in service contexts), to provide a competitive offer (experience) to customers.

Keywords: Emotional intelligence, hospitality and tourism, relationship management, marketing

Procedia PDF Downloads 454
29692 Parallel 2-Opt Local Search on GPU

Authors: Wen-Bao Qiao, Jean-Charles Créput

Abstract:

To accelerate the solution for large scale traveling salesman problems (TSP), a parallel 2-opt local search algorithm with simple implementation based on Graphics Processing Unit (GPU) is presented and tested in this paper. The parallel scheme is based on technique of data decomposition by dynamically assigning multiple K processors on the integral tour to treat K edges’ 2-opt local optimization simultaneously on independent sub-tours, where K can be user-defined or have a function relationship with input size N. We implement this algorithm with doubly linked list on GPU. The implementation only requires O(N) memory. We compare this parallel 2-opt local optimization against sequential exhaustive 2-opt search along integral tour on TSP instances from TSPLIB with more than 10000 cities.

Keywords: parallel 2-opt, double links, large scale TSP, GPU

Procedia PDF Downloads 605
29691 Kriging-Based Global Optimization Method for Bluff Body Drag Reduction

Authors: Bingxi Huang, Yiqing Li, Marek Morzynski, Bernd R. Noack

Abstract:

We propose a Kriging-based global optimization method for active flow control with multiple actuation parameters. This method is designed to converge quickly and avoid getting trapped into local minima. We follow the model-free explorative gradient method (EGM) to alternate between explorative and exploitive steps. This facilitates a convergence similar to a gradient-based method and the parallel exploration of potentially better minima. In contrast to EGM, both kinds of steps are performed with Kriging surrogate model from the available data. The explorative step maximizes the expected improvement, i.e., favors regions of large uncertainty. The exploitive step identifies the best location of the cost function from the Kriging surrogate model for a subsequent weight-biased linear-gradient descent search method. To verify the effectiveness and robustness of the improved Kriging-based optimization method, we have examined several comparative test problems of varying dimensions with limited evaluation budgets. The results show that the proposed algorithm significantly outperforms some model-free optimization algorithms like genetic algorithm and differential evolution algorithm with a quicker convergence for a given budget. We have also performed direct numerical simulations of the fluidic pinball (N. Deng et al. 2020 J. Fluid Mech.) on three circular cylinders in equilateral-triangular arrangement immersed in an incoming flow at Re=100. The optimal cylinder rotations lead to 44.0% net drag power saving with 85.8% drag reduction and 41.8% actuation power. The optimal results for active flow control based on this configuration have achieved boat-tailing mechanism by employing Coanda forcing and wake stabilization by delaying separation and minimizing the wake region.

Keywords: direct numerical simulations, flow control, kriging, stochastic optimization, wake stabilization

Procedia PDF Downloads 89
29690 AI for Efficient Geothermal Exploration and Utilization

Authors: Velimir "monty" Vesselinov, Trais Kliplhuis, Hope Jasperson

Abstract:

Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.

Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal

Procedia PDF Downloads 24
29689 Impact of Emotional Intelligence of Principals in High Schools on Teachers Conflict Management: A Case Study on Secondary Schools, Tehran, Iran

Authors: Amir Ahmadi, Hossein Ahmadi, Alireza Ahmadi

Abstract:

Emotional Intelligence (EI) has been defined as the ability to empathize, persevere, control impulses, communicate clearly, make thoughtful decisions, solve problems, and work with others in a way that earns friends and success. These abilities allow an individual to recognize and regulate emotion, develop self-control, set goals, develop empathy, resolve conflicts, and develop skills needed for leadership and effective group participation. Due to the increasing complexity of organizations and different ways of thinking, attitudes and beliefs of individuals, Conflict as an important part of organizational life has been examined frequently. The main point is that the conflict is not necessarily in organization, unnecessary; But it can be more creative (increase creativity), to promote innovation, or may avoid wasting energy and resources of the organization. The purpose of this study was to investigate the relation between principals emotional intelligence as one of the factors affecting conflict management among teachers. This relation was analyzed through cluster sampling with a sample size consisting of 120 individuals. The results of the study showed that, at the 95% level of confidence, the two secondary hypotheses (i.e. relation between emotional intelligence of principals and use of competition and cooperation strategies of conflict management among teachers)were confirmed, but the other three secondary hypotheses (i.e. the relation between emotional intelligence of managers and use of avoidance, adaptation and adaptability strategies of conflict management among teachers) were rejected. The primary hypothesis (i.e. relation between emotional intelligence of principals with conflict management among teachers) is supported.

Keywords: emotional intelligence, conflict, conflict management, strategies of conflict management

Procedia PDF Downloads 332
29688 The Role of Principals’ Emotional Intelligence on School Leadership Effectiveness

Authors: Daniel Gebreslassie Mekonnen

Abstract:

Effective leadership has a crucial role in excelling in the overall success of a school. Today there is much attention given to school leadership, without which schools can never be successful. Therefore, the study was aimed at investigating the role of principals’ leadership styles and their emotional intelligence on the work motivation and job performance of teachers in Addis Ababa, Ethiopia. The study, thus, first examined the relationship between work motivation and job performance of the teachers in relation to the perceived leadership styles and emotional intelligence of principals. Second, it assessed the mean differences and the interaction effects of the principals’ leadership styles and emotional intelligence on the work motivation and job performance of the teachers. Finally, the study investigated whether principals’ leadership styles and emotional intelligence variables had significantly predicted the work motivation and job performance of teachers. As a means, a quantitative approach and descriptive research design were employed to conduct the study. Three hundred sixteen teachers were selected using multistage sampling techniques as participants of the study from the eight sub-cities in Addis Ababa. The main data-gathering instruments used in this study were the path-goal leadership questionnaire, emotional competence inventory, multidimensional work motivation scale, and job performance appraisal scale. The quantitative data were analyzed by using the statistical techniques of Pearson–product-moment correlation analysis, two-way analysis of variance, and stepwise multiple regression analysis. Major findings of the study have revealed that the work motivation and job performance of the teachers were significantly correlated with the perceived participative leadership style, achievement-oriented leadership style, and emotional intelligence of principals. Moreover, the emotional intelligence of the principals was found to be the best predictor of the teachers’ work motivation, whereas the achievement-oriented leadership style of the principals was identified as the best predictor of the job performance of the teachers. Furthermore, the interaction effects of all four path-goal leadership styles vis-a-vis the emotional intelligence of the principals have shown differential effects on the work motivation and job performance of teachers. Thus, it is reasonable to conclude that emotional intelligence is the sine qua non of effective school leadership. Hence, this study would be useful for policymakers and educational leaders to come up with policies that would enhance the role of emotional intelligence on school leadership effectiveness. Finally, pertinent recommendations were drawn from the findings and the conclusions of the study.

Keywords: emotional intelligence, leadership style, job performance, work motivation

Procedia PDF Downloads 77
29687 Digital Transformation and Digitalization of Public Administration

Authors: Govind Kumar

Abstract:

The concept of ‘e-governance’ that was brought about by the new wave of reforms, namely ‘LPG’ in the early 1990s, has been enabling governments across the globe to digitally transform themselves. Digital transformation is leading the governments with qualitative decisions, optimization in rational use of resources, facilitation of cost-benefit analyses, and elimination of redundancy and corruption with the help of ICT-based applications interface. ICT-based applications/technologies have enormous potential for impacting positive change in the social lives of the global citizenry. Supercomputers test and analyze millions of drug molecules for developing candidate vaccines to combat the global pandemic. Further, e-commerce portals help distribute and supply household items and medicines, while videoconferencing tools provide a visual interface between the clients and hosts. Besides, crop yields are being maximized with the help of drones and machine learning, whereas satellite data, artificial intelligence, and cloud computing help governments with the detection of illegal mining, tackling deforestation, and managing freshwater resources. Such e-applications have the potential to take governance an extra mile by achieving 5 Es (effective, efficient, easy, empower, and equity) of e-governance and six Rs (reduce, reuse, recycle, recover, redesign and remanufacture) of sustainable development. If such digital transformation gains traction within the government framework, it will replace the traditional administration with the digitalization of public administration. On the other hand, it has brought in a new set of challenges, like the digital divide, e-illiteracy, technological divide, etc., and problems like handling e-waste, technological obsolescence, cyber terrorism, e-fraud, hacking, phishing, etc. before the governments. Therefore, it would be essential to bring in a rightful mixture of technological and humanistic interventions for addressing the above issues. This is on account of the reason that technology lacks an emotional quotient, and the administration does not work like technology. Both are self-effacing unless a blend of technology and a humane face are brought in into the administration. The paper will empirically analyze the significance of the technological framework of digital transformation within the government set up for the digitalization of public administration on the basis of the synthesis of two case studies undertaken from two diverse fields of administration and present a future framework of the study.

Keywords: digital transformation, electronic governance, public administration, knowledge framework

Procedia PDF Downloads 84
29686 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization

Authors: Yihao Kuang, Bowen Ding

Abstract:

With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graph and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improve strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain better and more efficient inference effect by introducing PPO into knowledge inference technology.

Keywords: reinforcement learning, PPO, knowledge inference, supervised learning

Procedia PDF Downloads 44
29685 Reconstruction Spectral Reflectance Cube Based on Artificial Neural Network for Multispectral Imaging System

Authors: Iwan Cony Setiadi, Aulia M. T. Nasution

Abstract:

The multispectral imaging (MSI) technique has been used for skin analysis, especially for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel. For ergonomic purpose, our multispectral imaging system is decomposed in two parts: a light source compartment based on LED with 11 different wavelenghts and a monochromatic 8-Bit CCD camera with C-Mount Objective Lens. The software based on GUI MATLAB to control the system was also developed. Our system provides 11 monoband images and is coupled with a software reconstructing hyperspectral cubes from these multispectral images. In this paper, we proposed a new method to build a hyperspectral reflectance cube based on artificial neural network algorithm. After preliminary corrections, a neural network is trained using the 32 natural color from X-Rite Color Checker Passport. The learning procedure involves acquisition, by a spectrophotometer. This neural network is then used to retrieve a megapixel multispectral cube between 380 and 880 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. As hyperspectral cubes contain spectra for each pixel; comparison should be done between the theoretical values from the spectrophotometer and the reconstructed spectrum. To evaluate the performance of reconstruction, we used the Goodness of Fit Coefficient (GFC) and Root Mean Squared Error (RMSE). To validate reconstruction, the set of 8 colour patches reconstructed by our MSI system and the one recorded by the spectrophotometer were compared. The average GFC was 0.9990 (standard deviation = 0.0010) and the average RMSE is 0.2167 (standard deviation = 0.064).

Keywords: multispectral imaging, reflectance cube, spectral reconstruction, artificial neural network

Procedia PDF Downloads 307
29684 Efficient Computer-Aided Design-Based Multilevel Optimization of the LS89

Authors: A. Chatel, I. S. Torreguitart, T. Verstraete

Abstract:

The paper deals with a single point optimization of the LS89 turbine using an adjoint optimization and defining the design variables within a CAD system. The advantage of including the CAD model in the design system is that higher level constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. However, CAD-based approaches restrict the design space compared to node-based approaches where every node is free to move. In order to preserve a rich design space, we develop a methodology to refine the CAD model during the optimization and to create the best parameterization to use at each time. This study presents a methodology to progressively refine the design space, which combines parametric effectiveness with a differential evolutionary algorithm in order to create an optimal parameterization. In this manuscript, we show that by doing the parameterization at the CAD level, we can impose higher level constraints on the shape, such as the axial chord length, the trailing edge radius and G2 geometric continuity between the suction side and pressure side at the leading edge. Additionally, the adjoint sensitivities are filtered out and only smooth shapes are produced during the optimization process. The use of algorithmic differentiation for the CAD kernel and grid generator allows computing the grid sensitivities to machine accuracy and avoid the limited arithmetic precision and the truncation error of finite differences. Then, the parametric effectiveness is computed to rate the ability of a set of CAD design parameters to produce the design shape change dictated by the adjoint sensitivities. During the optimization process, the design space is progressively enlarged using the knot insertion algorithm which allows introducing new control points whilst preserving the initial shape. The position of the inserted knots is generally assumed. However, this assumption can hinder the creation of better parameterizations that would allow producing more localized shape changes where the adjoint sensitivities dictate. To address this, we propose using a differential evolutionary algorithm to maximize the parametric effectiveness by optimizing the location of the inserted knots. This allows the optimizer to gradually explore larger design spaces and to use an optimal CAD-based parameterization during the course of the optimization. The method is tested on the LS89 turbine cascade and large aerodynamic improvements in the entropy generation are achieved whilst keeping the exit flow angle fixed. The trailing edge and axial chord length, which are kept fixed as manufacturing constraints. The optimization results show that the multilevel optimizations were more efficient than the single level optimization, even though they used the same number of design variables at the end of the multilevel optimizations. Furthermore, the multilevel optimization where the parameterization is created using the optimal knot positions results in a more efficient strategy to reach a better optimum than the multilevel optimization where the position of the knots is arbitrarily assumed.

Keywords: adjoint, CAD, knots, multilevel, optimization, parametric effectiveness

Procedia PDF Downloads 96
29683 Geometric Design to Improve the Temperature

Authors: H. Ghodbane, A. A. Taleb, O. Kraa

Abstract:

This paper presents geometric design of induction heating system. The objective of this design is to improve the temperature distribution in the load. The study of such a device requires the use of models or modeling representation, physical, mathematical, and numerical. This modeling is the basis of the understanding, the design, and optimization of these systems. The optimization technique is to find values of variables that maximize or minimize the objective function.

Keywords: optimization, modeling, geometric design system, temperature increase

Procedia PDF Downloads 512
29682 Design Optimisation of a Novel Cross Vane Expander-Compressor Unit for Refrigeration System

Authors: Y. D. Lim, K. S. Yap, K. T. Ooi

Abstract:

In recent years, environmental issue has been a hot topic in the world, especially the global warming effect caused by conventional non-environmentally friendly refrigerants has increased. Several studies of a more energy-efficient and environmentally friendly refrigeration system have been conducted in order to tackle the issue. In search of a better refrigeration system, CO2 refrigeration system has been proposed as a better option. However, the high throttling loss involved during the expansion process of the refrigeration cycle leads to a relatively low efficiency and thus the system is impractical. In order to improve the efficiency of the refrigeration system, it is suggested by replacing the conventional expansion valve in the refrigeration system with an expander. Based on this issue, a new type of expander-compressor combined unit, named Cross Vane Expander-Compressor (CVEC) was introduced to replace the compressor and the expansion valve of a conventional refrigeration system. A mathematical model was developed to calculate the performance of CVEC, and it was found that the machine is capable of saving the energy consumption of a refrigeration system by as much as 18%. Apart from energy saving, CVEC is also geometrically simpler and more compact. To further improve its efficiency, optimization study of the device is carried out. In this report, several design parameters of CVEC were chosen to be the variables of optimization study. This optimization study was done in a simulation program by using complex optimization method, which is a direct search, multi-variables and constrained optimization method. It was found that the main design parameters, which was shaft radius was reduced around 8% while the inner cylinder radius was remained unchanged at its lower limit after optimization. Furthermore, the port sizes were increased to their upper limit after optimization. The changes of these design parameters have resulted in reduction of around 12% in the total frictional loss and reduction of 4% in power consumption. Eventually, the optimization study has resulted in an improvement in the mechanical efficiency CVEC by 4% and improvement in COP by 6%.

Keywords: complex optimization method, COP, cross vane expander-compressor, CVEC, design optimization, direct search, energy saving, improvement, mechanical efficiency, multi variables

Procedia PDF Downloads 355
29681 GenAI Agents in Product Management: A Case Study from the Manufacturing Sector

Authors: Aron Witkowski, Andrzej Wodecki

Abstract:

Purpose: This study aims to explore the feasibility and effectiveness of utilizing Generative Artificial Intelligence (GenAI) agents as product managers within the manufacturing sector. It seeks to evaluate whether current GenAI capabilities can fulfill the complex requirements of product management and deliver comparable outcomes to human counterparts. Study Design/Methodology/Approach: This research involved the creation of a support application for product managers, utilizing high-quality sources on product management and generative AI technologies. The application was designed to assist in various aspects of product management tasks. To evaluate its effectiveness, a study was conducted involving 10 experienced product managers from the manufacturing sector. These professionals were tasked with using the application and providing feedback on the tool's responses to common questions and challenges they encounter in their daily work. The study employed a mixed-methods approach, combining quantitative assessments of the tool's performance with qualitative interviews to gather detailed insights into the user experience and perceived value of the application. Findings: The findings reveal that GenAI-based product management agents exhibit significant potential in handling routine tasks, data analysis, and predictive modeling. However, there are notable limitations in areas requiring nuanced decision-making, creativity, and complex stakeholder interactions. The case study demonstrates that while GenAI can augment human capabilities, it is not yet fully equipped to independently manage the holistic responsibilities of a product manager in the manufacturing sector. Originality/Value: This research provides an analysis of GenAI's role in product management within the manufacturing industry, contributing to the limited body of literature on the application of GenAI agents in this domain. It offers practical insights into the current capabilities and limitations of GenAI, helping organizations make informed decisions about integrating AI into their product management strategies. Implications for Academic and Practical Fields: For academia, the study suggests new avenues for research in AI-human collaboration and the development of advanced AI systems capable of higher-level managerial functions. Practically, it provides industry professionals with a nuanced understanding of how GenAI can be leveraged to enhance product management, guiding investments in AI technologies and training programs to bridge identified gaps.

Keywords: generative artificial intelligence, GenAI, NPD, new product development, product management, manufacturing

Procedia PDF Downloads 28
29680 Morphology Optimization and Photophysics Study in Air-Processed Perovskite Solar Cells

Authors: Soumitra Satapathi, Anubhav Raghav

Abstract:

Perovskite solar cell technology has passed through a phase of unprecedented growth in the efficiency scale from 3.8% to above 22% within a half decade. This technology has drawn tremendous research interest. It has been observed that performances of perovskite based solar cells are extremely dependent on the morphology and crystallinity of the perovskite layer. It has also been observed that device lifetime depends on the perovskite morphology; devices with larger perovskite grains degrade slowly than those of the smaller ones. Various methods of perovskite growth have been applied to achieve the most appropriate morphology necessary for high efficient solar cells. The recent progress in morphology optimization by various methods emphasizing on grain sizes, stoichiometry, and ambient compatibility as well as photophysics study in air-processed perovskite solar cells will be discussed.

Keywords: perovskite solar cells, morphology optimization, photophysics study, air-processed solar cells

Procedia PDF Downloads 138
29679 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain

Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA

Abstract:

In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.

Keywords: BER, DWT, extreme leaning machine (ELM), PSNR

Procedia PDF Downloads 292
29678 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

A kinetic façade responds to user requirements and environmental conditions.  In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.

Keywords: biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization

Procedia PDF Downloads 499
29677 An Optimization Model for Maximum Clique Problem Based on Semidefinite Programming

Authors: Derkaoui Orkia, Lehireche Ahmed

Abstract:

The topic of this article is to exploring the potentialities of a powerful optimization technique, namely Semidefinite Programming, for solving NP-hard problems. This approach provides tight relaxations of combinatorial and quadratic problems. In this work, we solve the maximum clique problem using this relaxation. The clique problem is the computational problem of finding cliques in a graph. It is widely acknowledged for its many applications in real-world problems. The numerical results show that it is possible to find a maximum clique in polynomial time, using an algorithm based on semidefinite programming. We implement a primal-dual interior points algorithm to solve this problem based on semidefinite programming. The semidefinite relaxation of this problem can be solved in polynomial time.

Keywords: semidefinite programming, maximum clique problem, primal-dual interior point method, relaxation

Procedia PDF Downloads 205
29676 Pod and Wavelets Application for Aerodynamic Design Optimization

Authors: Bonchan Koo, Junhee Han, Dohyung Lee

Abstract:

The research attempts to evaluate the accuracy and efficiency of a design optimization procedure which combines wavelets-based solution algorithm and proper orthogonal decomposition (POD) database management technique. Aerodynamic design procedure calls for high fidelity computational fluid dynamic (CFD) simulations and the consideration of large number of flow conditions and design constraints. Even with significant computing power advancement, current level of integrated design process requires substantial computing time and resources. POD reduces the degree of freedom of full system through conducting singular value decomposition for various field simulations. For additional efficiency improvement of the procedure, adaptive wavelet technique is also being employed during POD training period. The proposed design procedure was applied to the optimization of wing aerodynamic performance. Throughout the research, it was confirmed that the POD/wavelets design procedure could significantly reduce the total design turnaround time and is also able to capture all detailed complex flow features as in full order analysis.

Keywords: POD (Proper Orthogonal Decomposition), wavelets, CFD, design optimization, ROM (Reduced Order Model)

Procedia PDF Downloads 453
29675 Developing a Simulation-Based Optimization Framework to Perform Energy Simulation for Indian Buildings

Authors: Sujoy Anirudha Das, Albert Thomas

Abstract:

Building sector is a major consumer of energy globally, and it has corresponding effects to the environment with respect to the carbon emissions. Given the fact that India is expected to add 40-billion square meter of new buildings till 2050, we need frameworks that help in reducing the overall energy consumption in the building sector. Even though several simulation-based frameworks that help in analyzing the building energy consumption are developed globally, in the Indian context, to the best of our knowledge, there is a lack of a comprehensive, yet user-friendly framework to simulate and optimize the effects of various energy influencing factors, specifically for Indian buildings. Therefore, this study is aimed at developing a simulation-based optimization framework to model the energy interactions in different types of Indian buildings by considering the dynamic nature of various energy influencing factors. This comprehensive framework can be used by various building stakeholders to test the energy effects of different factors such as, but not limited to, the various building materials, the orientation, the weather fluctuations, occupancy changes and the type of the building (e.g., office, residential). The results from the case study involving several building types would help us in gaining insights to build new energy-efficient buildings as well as retrofit the existing structures in a more convenient way to consume less energy, exclusively for an Indian scenario.

Keywords: building energy consumption, building energy simulations, energy efficient buildings, optimization framework

Procedia PDF Downloads 156