Search results for: space efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9975

Search results for: space efficiency

435 Classification of Foliar Nitrogen in Common Bean (Phaseolus Vulgaris L.) Using Deep Learning Models and Images

Authors: Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Murilo Mesquita Baesso

Abstract:

Common beans are a widely cultivated and consumed legume globally, serving as a staple food for humans, especially in developing countries, due to their nutritional characteristics. Nitrogen (N) is the most limiting nutrient for productivity, and foliar analysis is crucial to ensure balanced nitrogen fertilization. Excessive N applications can cause, either isolated or cumulatively, soil and water contamination, plant toxicity, and increase their susceptibility to diseases and pests. However, the quantification of N using conventional methods is time-consuming and costly, demanding new technologies to optimize the adequate supply of N to plants. Thus, it becomes necessary to establish constant monitoring of the foliar content of this macronutrient in plants, mainly at the V4 stage, aiming at precision management of nitrogen fertilization. In this work, the objective was to evaluate the performance of a deep learning model, Resnet-50, in the classification of foliar nitrogen in common beans using RGB images. The BRS Estilo cultivar was sown in a greenhouse in a completely randomized design with four nitrogen doses (T1 = 0 kg N ha-1, T2 = 25 kg N ha-1, T3 = 75 kg N ha-1, and T4 = 100 kg N ha-1) and 12 replications. Pots with 5L capacity were used with a substrate composed of 43% soil (Neossolo Quartzarênico), 28.5% crushed sugarcane bagasse, and 28.5% cured bovine manure. The water supply of the plants was done with 5mm of water per day. The application of urea (45% N) and the acquisition of images occurred 14 and 32 days after sowing, respectively. A code developed in Matlab© R2022b was used to cut the original images into smaller blocks, originating an image bank composed of 4 folders representing the four classes and labeled as T1, T2, T3, and T4, each containing 500 images of 224x224 pixels obtained from plants cultivated under different N doses. The Matlab© R2022b software was used for the implementation and performance analysis of the model. The evaluation of the efficiency was done by a set of metrics, including accuracy (AC), F1-score (F1), specificity (SP), area under the curve (AUC), and precision (P). The ResNet-50 showed high performance in the classification of foliar N levels in common beans, with AC values of 85.6%. The F1 for classes T1, T2, T3, and T4 was 76, 72, 74, and 77%, respectively. This study revealed that the use of RGB images combined with deep learning can be a promising alternative to slow laboratory analyses, capable of optimizing the estimation of foliar N. This can allow rapid intervention by the producer to achieve higher productivity and less fertilizer waste. Future approaches are encouraged to develop mobile devices capable of handling images using deep learning for the classification of the nutritional status of plants in situ.

Keywords: convolutional neural network, residual network 50, nutritional status, artificial intelligence

Procedia PDF Downloads 19
434 UVA or UVC Activation of H₂O₂ and S₂O₈²⁻ for Estrogen Degradation towards an Application in Rural Wastewater Treatment Plant

Authors: Anaelle Gabet, Helene Metivier, Christine De Brauer, Gilles Mailhot, Marcello Brigante

Abstract:

The presence of micropollutants in surface waters has been widely reported around the world, particularly downstream from wastewater treatment plants (WWTPs). Rural WWTPs constitute more than 90 % of the total WWTPs in France. Like conventional ones, they are not able to fully remove micropollutants. Estrogens are excreted by human beings every day and several studies have highlighted their endocrine disruption properties on river wildlife. They are mainly estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). Rural WWTPs require cheap and robust tertiary processes. UVC activation of H₂O₂ for HO· generation, a very reactive molecule, has demonstrated its effectiveness. However, UVC rays are dangerous to manipulate and energy-consuming. This is why the ability of UVA rays was investigated in this study. Moreover, the use of S₂O₈²⁻ for SO₄·- generation as an alternative to HO· has emerged in the last few years. Such processes have been widely studied on a lab scale. However, pilot-scale works constitute fewer studies. This study was carried out on a 20-L pilot composed of a 1.12-L UV reactor equipped with a polychromatic UVA lamp or a monochromatic (254 nm) UVC lamp fed in recirculation. Degradation rates of a mixture of spiked E1, E2 and EE2 (5 µM each) were followed by HPLC-UV. Results are expressed in UV dose (mJ.cm-2) received by the compounds of interest to compare UVC and UVA. In every system, estrogen degradation rates followed pseudo-first-order rates. First, experiments were carried out in tap water. All estrogens underwent photolysis under UVC rays, although E1 photolysis is higher. However, only very weak photolysis was observed under UVA rays. Preliminary studies on both oxidants have shown that S₂O₈²⁻ photolysis constants are higher than H₂O₂ under both UVA and UVC rays. Therefore, estrogen degradation rates are about ten times higher in the presence of 1 mM of S₂O₈²⁻ than with one mM of H₂O₂ under both radiations. In the same conditions, the mixture of interest required about 40 times higher UV dose when using UVA rays compared to UVC. However, the UVA/S₂O₈²⁻ system only requires four times more UV dose than the conventional UVC/H₂O₂ system. Further studies were carried out in WWTP effluent with the UVC lamp. When comparing these results to the tap water ones, estrogen degradation rates were more inhibited in the S₂O₈²⁻ system than with H₂O₂. It seems that SO₄·- undergo higher quenching by a real effluent than HO·. Preliminary experiments have shown that natural organic matter is mainly responsible for the radical quenching and that HO and SO₄ both had similar second-order reaction rate constants with dissolved organic matter. However, E1, E2 and EE2 second-order reaction rate constants are about ten times lower with SO₄ than with HO. In conclusion, the UVA/S₂O₈²⁻ system showed encouraging results for the use of UVA rays but further studies in WWTP effluent have to be carried out to confirm this interest. The efficiency of other pollutants in the real matrix also needs to be investigated.

Keywords: AOPs, decontamination, estrogens, radicals, wastewater

Procedia PDF Downloads 191
433 Advancing Sustainable Seawater Desalination Technologies: Exploring the Sub-Atmospheric Vapor Pipeline (SAVP) and Energy-Efficient Solution for Urban and Industrial Water Management in Smart, Eco-Friendly, and Green Building Infrastructure

Authors: Mona Shojaei

Abstract:

The Sub-Atmospheric Vapor Pipeline (SAVP) introduces a distinct approach to seawater desalination with promising applications in both land and industrial sectors. SAVP systems exploit the temperature difference between a hot source and a cold environment to facilitate efficient vapor transfer, offering substantial benefits in diverse industrial and field applications. This approach incorporates dynamic boundary conditions, where the temperatures of hot and cold sources vary over time, particularly in natural and industrial environments. Such variations critically influence convection and diffusion processes, introducing challenges that require the refinement of the convection-diffusion equation and the derivation of temperature profiles along the pipeline through advanced engineering mathematics. This study formulates vapor temperature as a function of time and length using two mathematical approaches: Eigen functions and Green’s equation. Combining detailed theoretical modeling, mathematical simulations, and extensive field and industrial tests, this research underscores the SAVP system’s scalability for real-world applications. Results reveal a high degree of accuracy, highlighting SAVP’s significant potential for energy conservation and environmental sustainability. Furthermore, the integration of SAVP technology within smart and green building systems creates new opportunities for sustainable urban water management. By capturing and repurposing vapor for non-potable uses such as irrigation, greywater recycling, and ecosystem support in green spaces, SAVP aligns with the principles of smart and green buildings. Smart buildings emphasize efficient resource management, enhanced system control, and automation for optimal energy and water use, while green buildings prioritize environmental impact reduction and resource conservation. SAVP technology bridges both paradigms, enhancing water self-sufficiency and reducing reliance on external water supplies. The sustainable and energy-efficient properties of SAVP make it a vital component in resilient infrastructure development, addressing urban water scarcity while promoting eco-friendly living. This dual alignment with smart and green building goals positions SAVP as a transformative solution in the pursuit of sustainable urban resource management.

Keywords: sub-atmospheric vapor pipeline, seawater desalination, energy efficiency, vapor transfer dynamics, mathematical modeling, sustainable water solutions, smart buildings

Procedia PDF Downloads 12
432 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying

Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit

Abstract:

Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.

Keywords: dairy powders, spray-drying, powders functionalities, design of experiment

Procedia PDF Downloads 65
431 Estimating the Efficiency of a Meta-Cognitive Intervention Program to Reduce the Risk Factors of Teenage Drivers with Attention Deficit Hyperactivity Disorder While Driving

Authors: Navah Z. Ratzon, Talia Glick, Iris Manor

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) is a chronic disorder that affects the sufferer’s functioning throughout life and in various spheres of activity, including driving. Difficulties in cognitive functioning and executive functions are often part and parcel of the ADHD diagnosis, and thus form a risk factor in driving. Studies examining the effectiveness of intervention programs for improving and rehabilitating driving in typical teenagers have been conducted in relatively small numbers; while studies on similar programs for teenagers with ADHD have been especially scarce. The aim of the present study has been to examine the effectiveness of a metacognitive occupational therapy intervention program for reducing risk factors in driving among teenagers with ADHD. The present study included 37 teenagers aged 17 to 19. They included 23 teenagers with ADHD divided into experimental (11) and control (12) groups; as well as 14 non-ADHD teenagers forming a second control group. All teenagers taking part in the study were examined in the Tel Aviv University driving lab, and underwent cognitive diagnoses and a driving simulator test. Every subject in the intervention group took part in 3 assessment meetings, and two metacognitive treatment meetings. The control groups took part in two assessment meetings with a follow-up meeting 3 months later. In all the study’s groups, the treatment’s effectiveness was tested by comparing monitoring results on the driving simulator at the first and second evaluations. In addition, the driving of 5 subjects from the intervention group was monitored continuously from a month prior to the start of the intervention, a month during the phase of the intervention and another month until the end of the intervention. In the ADHD control group, the driving of 4 subjects was monitored from the end of the first evaluation for a period of 3 months. The study’s findings were affected by the fact that the ADHD control group was different from the two other groups, and exhibited ADHD characteristics manifested by impaired executive functions and lower metacognitive abilities relative to their peers. The study found partial, moderate, non-significant correlations between driving skills and cognitive functions, executive functions, and perceptions and attitudes towards driving. According to the driving simulator test results and the limited sampling results of actual driving, it was found that a metacognitive occupational therapy intervention may be effective in reducing risk factors in driving among teenagers with ADHD relative to their peers with and without ADHD. In summary, the results of the present study indicate a positive direction that speaks to the viability of using a metacognitive occupational therapy intervention program for reducing risk factors in driving. A further study is required that will include a bigger number of subjects, add actual driving monitoring hours, and assign subjects randomly to the various groups.

Keywords: ADHD, driving, driving monitoring, metacognitive intervention, occupational therapy, simulator, teenagers

Procedia PDF Downloads 306
430 A Comparative Study of the Tribological Behavior of Bilayer Coatings for Machine Protection

Authors: Cristina Diaz, Lucia Perez-Gandarillas, Gonzalo Garcia-Fuentes, Simone Visigalli, Roberto Canziani, Giuseppe Di Florio, Paolo Gronchi

Abstract:

During their lifetime, industrial machines are often subjected to chemical, mechanical and thermal extreme conditions. In some cases, the loss of efficiency comes from the degradation of the surface as a result of its exposition to abrasive environments that can cause wear. This is a common problem to be solved in industries of diverse nature such as food, paper or concrete industries, among others. For this reason, a good selection of the material is of high importance. In the machine design context, stainless steels such as AISI 304 and 316 are widely used. However, the severity of the external conditions can require additional protection for the steel and sometimes coating solutions are demanded in order to extend the lifespan of these materials. Therefore, the development of effective coatings with high wear resistance is of utmost technological relevance. In this research, bilayer coatings made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium, and Titanium-Zirconium have been developed using magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology. Their tribological behavior has been measured and evaluated under different environmental conditions. Two kinds of steels were used as substrates: AISI 304, AISI 316. For the comparison with these materials, titanium alloy substrate was also employed. Regarding the characterization, wear rate and friction coefficient were evaluated by a tribo-tester, using a pin-on-ball configuration with different lubricants such as tomato sauce, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl to approximate the results to real extreme conditions. In addition, topographical images of the wear tracks were obtained in order to get more insight of the wear behavior and scanning electron microscope (SEM) images were taken to evaluate the adhesion and quality of the coating. The characterization was completed with the measurement of nanoindentation hardness and elastic modulus. Concerning the results, thicknesses of the samples varied from 100 nm (Ti-Zr layer) to 1.4 µm (Ti-Hf layer) and SEM images confirmed that the addition of the Ti layer improved the adhesion of the coatings. Moreover, results have pointed out that these coatings have increased the wear resistance in comparison with the original substrates under environments of different severity. Furthermore, nanoindentation hardness results showed an improvement of the elastic strain to failure and a high modulus of elasticity (approximately 200 GPa). As a conclusion, Ti-Ta, Ti-Zr, Ti-Nb, and Ti-Hf are very promising and effective coatings in terms of tribological behavior, improving considerably the wear resistance and friction coefficient of typically used machine materials.

Keywords: coating, stainless steel, tribology, wear

Procedia PDF Downloads 150
429 The Display of Environmental Information to Promote Energy Saving Practices: Evidence from a Massive Behavioral Platform

Authors: T. Lazzarini, M. Imbiki, P. E. Sutter, G. Borragan

Abstract:

While several strategies, such as the development of more efficient appliances, the financing of insulation programs or the rolling out of smart meters represent promising tools to reduce future energy consumption, their implementation relies on people’s decisions-actions. Likewise, engaging with consumers to reshape their behavior has shown to be another important way to reduce energy usage. For these reasons, integrating the human factor in the energy transition has become a major objective for researchers and policymakers. Digital education programs based on tangible and gamified user interfaces have become a new tool with potential effects to reduce energy consumption4. The B2020 program, developed by the firm “Économie d’Énergie SAS”, proposes a digital platform to encourage pro-environmental behavior change among employees and citizens. The platform integrates 160 eco-behaviors to help saving energy and water and reducing waste and CO2 emissions. A total of 13,146 citizens have used the tool so far to declare the range of eco-behaviors they adopt in their daily lives. The present work seeks to build on this database to identify the potential impact of adopted energy-saving behaviors (n=62) to reduce the use of energy in buildings. To this end, behaviors were classified into three categories regarding the nature of its implementation (Eco-habits: e.g., turning-off the light, Eco-actions: e.g., installing low carbon technology such as led light-bulbs and Home-Refurbishments: e.g., such as wall-insulation or double-glazed energy efficient windows). General Linear Models (GLM) disclosed the existence of a significantly higher frequency of Eco-habits when compared to the number of home-refurbishments realized by the platform users. While this might be explained in part by the high financial costs that are associated with home renovation works, it also contrasts with the up to three times larger energy-savings that can be accomplished by these means. Furthermore, multiple regression models failed to disclose the expected relationship between energy-savings and frequency of adopted eco behaviors, suggesting that energy-related practices are not necessarily driven by the correspondent energy-savings. Finally, our results also suggested that people adopting more Eco-habits and Eco-actions were more likely to engage in Home-Refurbishments. Altogether, these results fit well with a growing body of scientific research, showing that energy-related practices do not necessarily maximize utility, as postulated by traditional economic models, and suggest that other variables might be triggering them. Promoting home refurbishments could benefit from the adoption of complementary energy-saving habits and actions.

Keywords: energy-saving behavior, human performance, behavioral change, energy efficiency

Procedia PDF Downloads 200
428 Assessment of the Growth Enhancement Support Scheme in Adamawa State, Nigeria

Authors: Oto J. Okwu, Ornan Henry, Victor A. Otene

Abstract:

The agricultural sector contributes a great deal to the sustenance of Nigeria’s food security and economy, with an attendant impact on rural development. In spite of the relatively high number of farmers in the country, self-sufficiency in food production is still a challenge. Farmers are faced with myriad problems which hinder their production efficiency, one of which is their access to agricultural inputs required for optimum production. To meet the challenges faced by farmers, the government at the federal level has come up with many agricultural policies, one of which is the Agricultural Transformation Agenda (ATA). The Growth Enhancement Support Scheme (GESS) is one of the critical components of ATA, which is aimed at ensuring the effective distribution of agricultural inputs delivered directly to farmers, and at a regulated cost. After about 8 years of launching this policy, it will be necessary to carry out an assessment of GESS and determine the impact it has made on rural farmers with respect to their access to farm inputs. This study was carried out to assess the Growth Enhancement Support Scheme (GESS) in Adamawa State, Nigeria. Crop farmers who registered under the GESS in Adamawa State, Nigeria, formed the population for the study. Primary data for the study were obtained through a survey, and the use of a structured questionnaire. A sample size of 167 respondents was selected using multi-stage, purposive, and random sampling techniques. The validity and reliability of the research instrument (questionnaire) were obtained through pilot testing and test-retest method, respectively. The objectives of the study were to determine the difference in the level of access to agricultural inputs before and after GESS, determine the difference in cost of agricultural inputs before and after GESS, and to determine the challenges faced by rural farmers in accessing agricultural inputs through GESS. Both descriptive and inferential statistics were used in analyzing the collected data. Specifically, Mann-Whitney, student t-test, and factor analysis were used to test the stated hypotheses. Research findings revealed there was a significant difference in the level of access to farm inputs after the introduction of GESS (Z=14.216). Also, there was a significant difference in the cost of agro-inputs after the introduction of GESS (Pr |T| > |t|= 0.0000). The challenges faced by respondents in accessing agro-inputs through GESS were administrative and technical in nature. Based on the findings of the research, it was recommended that efforts be made by the government to sustain the GESS, as it has significantly improved the level of farmers’ access to agricultural inputs and has reduced the cost of agro-inputs, while administrative challenges faced by the respondents in accessing inputs be addressed by the government, and extension agents assist the farmers to overcome the technical challenges they face in accessing inputs.

Keywords: agricultural policy, agro-inputs, assessment, growth enhancement support scheme, rural farmers

Procedia PDF Downloads 110
427 Saco Sweet Cherry: Phenolic Profile and Biological Activity of Coloured and Non-Coloured Fractions

Authors: Catarina Bento, Ana Carolina Gonçalves, Fábio Jesus, Luís Rodrigues Silva

Abstract:

Increasing evidence suggests that a diet rich in fruits and vegetables plays important roles in the prevention of chronic diseases, such as heart disease, cancer, stroke, diabetes, Alzheimer’s disease, among others. Fruits and vegetables gained prominence due their richness in bioactive compounds, being the focus of many studies due to their biological properties acting as health promoters. Prunus avium Linnaeus (L.), commonly known as sweet cherry has been the centre of attention due to its health benefits, and has been highly studied. In Portugal, most of the cherry production comes from the Fundão region. The Saco is one of the most important cultivar produced in this region, attributed with geographical protection. In this work, we prepared 3 extracts through solid-phase extraction (SPE): a whole extract, fraction I (non-coloured phenolics) and fraction II (coloured phenolics). The three extracts were used to determine the phenolic profile of Saco cultivar by liquid chromatography with diode array detection (LC-DAD) technique. This was followed by the evaluation of their biological potential, testing the extracts’ capacity to scavenge free-radicals (DPPH•, nitric oxide (•NO) and superoxide radical (O2●-)) and to inhibit α-glucosidase enzyme of all extracts. Additionally, we evaluated, for the first time, the protective effects against peroxyl radical (ROO•)-induced hemoglobin oxidation and hemolysis in human erythrocytes. A total of 16 non-coloured phenolics were detected, 3-O-caffeoylquinic and ρ-coumaroylquinic acids were the main ones, and 6 anthocyanins were found, among which cyanidin-3-O-rutinoside represented the majority. In respect to antioxidant activity, Saco showed great antioxidant potential in a concentration-dependent manner, demonstrated through the DPPH•,•NO and O2●-radicals, and greater ability to inhibit the α-glucosidase enzyme in comparison to the regular drug acarbose used to treat diabetes. Additionally, Saco proved to be effective to protect erythrocytes against oxidative damage in a concentration-dependent manner against hemoglobin oxidation and hemolysis. Our work demonstrated that Saco cultivar is an excellent source of phenolic compounds which are natural antioxidants that easily capture reactive species, such as ROO• before they can attack the erythrocytes’ membrane. In a general way, the whole extract showed the best efficiency, most likely due to a synergetic interaction between the different compounds. Finally, comparing the two separate fractions, the coloured fraction showed the most activity in all the assays, proving to be the biggest contributor of Saco cherries’ biological activity.

Keywords: biological potential, coloured phenolics, non-coloured phenolics, sweet cherry

Procedia PDF Downloads 256
426 Evaluation of the Cytotoxicity and Cellular Uptake of a Cyclodextrin-Based Drug Delivery System for Cancer Therapy

Authors: Caroline Mendes, Mary McNamara, Orla Howe

Abstract:

Drug delivery systems are proposed for use in cancer treatment to specifically target cancer cells and deliver a therapeutic dose without affecting normal cells. For that purpose, the use of folate receptors (FR) can be considered a key strategy, since they are commonly over-expressed in cancer cells. In this study, cyclodextrins (CD) have being used as vehicles to target FR and deliver the chemotherapeutic drug, methotrexate (MTX). CDs have the ability to form inclusion complexes, in which molecules of suitable dimensions are included within their cavities. Here, β-CD has been modified using folic acid so as to specifically target the FR. Thus, this drug delivery system consists of β-CD, folic acid and MTX (CDEnFA:MTX). Cellular uptake of folic acid is mediated with high affinity by folate receptors while the cellular uptake of antifolates, such as MTX, is mediated with high affinity by the reduced folate carriers (RFCs). This study addresses the gene (mRNA) and protein expression levels of FRs and RFCs in the cancer cell lines CaCo-2, SKOV-3, HeLa, MCF-7, A549 and the normal cell line BEAS-2B, quantified by real-time polymerase chain reaction (real-time PCR) and flow cytometry, respectively. From that, four cell lines with different levels of FRs, were chosen for cytotoxicity assays of MTX and CDEnFA:MTX using the MTT assay. Real-time PCR and flow cytometry data demonstrated that all cell lines ubiquitously express moderate levels of RFC. These experiments have also shown that levels of FR protein in CaCo-2 cells are high, while levels in SKOV-3, HeLa and MCF-7 cells are moderate. A549 and BEAS-2B cells express low levels of FR protein. FRs are highly expressed in all the cancer cell lines analysed when compared to the normal cell line BEAS-2B. The cell lines CaCo-2, MCF-7, A549 and BEAS-2B were used in the cell viability assays. 48 hours treatment with the free drug and the complex resulted in IC50 values of 93.9 µM ± 15.2 and 56.0 µM ± 4.0 for CaCo-2 for free MTX and CDEnFA:MTX respectively, 118.2 µM ± 16.8 and 97.8 µM ± 12.3 for MCF-7, 36.4 µM ± 6.9 and 75.0 µM ± 10.5 for A549 and 132.6 µM ± 16.1 and 288.1 µM ± 26.3 for BEAS-2B. These results demonstrate that free MTX is more toxic towards cell lines expressing low levels of FR, such as the BEAS-2B. More importantly, these results demonstrate that the inclusion complex CDEnFA:MTX showed greater cytotoxicity than the free drug towards the high FR expressing CaCo-2 cells, indicating that it has potential to target this receptor, enhancing the specificity and the efficiency of the drug. The use of cell imaging by confocal microscopy has allowed visualisation of FR targeting in cancer cells, as well as the identification of the interlisation pathway of the drug. Hence, the cellular uptake and internalisation process of this drug delivery system is being addressed.

Keywords: cancer treatment, cyclodextrins, drug delivery, folate receptors, reduced folate carriers

Procedia PDF Downloads 310
425 Biosensor: An Approach towards Sustainable Environment

Authors: Purnima Dhall, Rita Kumar

Abstract:

Introduction: River Yamuna, in the national capital territory (NCT), and also the primary source of drinking water for the city. Delhi discharges about 3,684 MLD of sewage through its 18 drains in to the Yamuna. Water quality monitoring is an important aspect of water management concerning to the pollution control. Public concern and legislation are now a day’s demanding better environmental control. Conventional method for estimating BOD5 has various drawbacks as they are expensive, time-consuming, and require the use of highly trained personnel. Stringent forthcoming regulations on the wastewater have necessitated the urge to develop analytical system, which contribute to greater process efficiency. Biosensors offer the possibility of real time analysis. Methodology: In the present study, a novel rapid method for the determination of biochemical oxygen demand (BOD) has been developed. Using the developed method, the BOD of a sample can be determined within 2 hours as compared to 3-5 days with the standard BOD3-5day assay. Moreover, the test is based on specified consortia instead of undefined seeding material therefore it minimizes the variability among the results. The device is coupled to software which automatically calculates the dilution required, so, the prior dilution of the sample is not required before BOD estimation. The developed BOD-Biosensor makes use of immobilized microorganisms to sense the biochemical oxygen demand of industrial wastewaters having low–moderate–high biodegradability. The method is quick, robust, online and less time consuming. Findings: The results of extensive testing of the developed biosensor on drains demonstrate that the BOD values obtained by the device correlated with conventional BOD values the observed R2 value was 0.995. The reproducibility of the measurements with the BOD biosensor was within a percentage deviation of ±10%. Advantages of developed BOD biosensor • Determines the water pollution quickly in 2 hours of time; • Determines the water pollution of all types of waste water; • Has prolonged shelf life of more than 400 days; • Enhanced repeatability and reproducibility values; • Elimination of COD estimation. Distinctiveness of Technology: • Bio-component: can determine BOD load of all types of waste water; • Immobilization: increased shelf life > 400 days, extended stability and viability; • Software: Reduces manual errors, reduction in estimation time. Conclusion: BiosensorBOD can be used to measure the BOD value of the real wastewater samples. The BOD biosensor showed good reproducibility in the results. This technology is useful in deciding treatment strategies well ahead and so facilitating discharge of properly treated water to common water bodies. The developed technology has been transferred to M/s Forbes Marshall Pvt Ltd, Pune.

Keywords: biosensor, biochemical oxygen demand, immobilized, monitoring, Yamuna

Procedia PDF Downloads 278
424 Factors Mitigating against the Use of Alternative to Antibiotics (Phytobiotics) In Poultry Production among Farming Households in Nigeria

Authors: Akinola Helen Olufunke, Soetan Olatunbosun Jonathan, Adeleye Oludamola

Abstract:

Introduction: Antibiotic resistance has grown significantly, which is a major cause for concern. There have not been many significant developments in antibiotics over the past few decades, and practically all of the ones that are currently in use are losing effectiveness against pathogenic germs. Researchers are starting to focus more on the physiologically active compounds found in plants, particularly phytobiotics in poultry production. Consumption of chicken products is among the greatest in the country, but numerous nations, including Nigeria, use excessive amounts of necessary antibiotics in poultry farming, endangering the safety of such goods (through antimicrobial residues). Drug resistance has become a widespread issue as a result of the risky use of antibiotics in the chicken production industry. In order to replace antibiotics, biotic or natural products like phytobiotics (also known as botanicals or phytogenics) have drawn a lot of interest. Phytobiotics or their components are thought to be a relatively recent category of natural herbs that have acquired acceptance and favor among chicken farmers. The addition of several phytobiotic additions to poultry feed has demonstrated its capacity to improve both the broiler and layer populations' productivity. Design: Experimental research design and cross-sectional study was carried out at every 300 purposively selected farming household in the six-geopolitical zone in Nigeria. Data Analysis: A semi-structured questionnaire was administered to each farmer, and quantitative data were analyzed using Statistical Package for Social Science (SPSS) while the Chi-square test was used to analyze factors mitigating the use of Phytobiotics. Result: The result shows that the benefits associated with the use of phytobiotics are contributed to growth promotion in chickens and enhancement of productive performance of broiler and layer, which could be attributed to their antioxidant activity. The result further revealed that factors mitigating the use of phytobiotics were lack of knowledge in the use of phytobiotics, overdose or underdose usage, and seasonal availability of the phytobiotics. Others are the educational level of the farmers, intrinsic motivation, income poultry farming experience, price of phytobiotics based additives feeds, and intensity of extension agents in visiting them. Conclusion: The difficulties associated with using phytobiotics in chicken farms limit their willingness to boost productivity. The study found that most farmers were ignorant, which prevented them from handling this notion and turning their poultry into a viable enterprise while also allowing them to be creative. They believed that packing phytobiotics-based additive feed was expensive, and lastly, the seasonal availability of some phytobiotics. Recommendation: Further research in phytobiotics use in Nigeria should be carried out in order to establish its efficiency, safety, and awareness.

Keywords: mitigating, antibiotics, phytobiotics, poultry farming

Procedia PDF Downloads 171
423 Assessment of the Properties of Microcapsules with Different Polymeric Shells Containing a Reactive Agent for their Suitability in Thermoplastic Self-healing Materials

Authors: Małgorzata Golonka, Jadwiga Laska

Abstract:

Self-healing polymers are one of the most investigated groups of smart materials. As materials engineering has recently focused on the design, production and research of modern materials and future technologies, researchers are looking for innovations in structural, construction and coating materials. Based on available scientific articles, it can be concluded that most of the research focuses on the self-healing of cement, concrete, asphalt and anticorrosion resin coatings. In our study, a method of obtaining and testing the properties of several types of microcapsules for use in self-healing polymer materials was developed. A method to obtain microcapsules exhibiting various mechanical properties, especially compressive strength was developed. The effect was achieved by using various polymer materials to build the shell: urea-formaldehyde resin (UFR), melamine-formaldehyde resin (MFR), melamine-urea-formaldehyde resin (MUFR). Dicyclopentadiene (DCPD) was used as the core material due to the possibility of its polymerization according to the ring-opening olefin metathesis (ROMP) mechanism in the presence of a solid Grubbs catalyst showing relatively high chemical and thermal stability. The ROMP of dicyclopentadiene leads to a polymer with high impact strength, high thermal resistance, good adhesion to other materials and good chemical and environmental resistance, so it is potentially a very promising candidate for the self-healing of materials. The capsules were obtained by condensation polymerization of formaldehyde with urea, melamine or copolymerization with urea and melamine in situ in water dispersion, with different molar ratios of formaldehyde, urea and melamine. The fineness of the organic phase dispersed in water, and consequently the size of the microcapsules, was regulated by the stirring speed. In all cases, to establish such synthesis conditions as to obtain capsules with appropriate mechanical strength. The microcapsules were characterized by determining the diameters and their distribution and measuring the shell thickness using digital optical microscopy and scanning electron microscopy, as well as confirming the presence of the active substance in the core by FTIR and SEM. Compression tests were performed to determine mechanical strength of the microcapsules. The highest repeatability of microcapsule properties was obtained for UFR resin, while the MFR resin had the best mechanical properties. The encapsulation efficiency of MFR was much lower compared to UFR, though. Therefore, capsules with a MUFR shell may be the optimal solution. The chemical reaction between the active substance present in the capsule core and the catalyst placed outside the capsules was confirmed by FTIR spectroscopy. The obtained autonomous repair systems (microcapsules + catalyst) were introduced into polyethylene in the extrusion process and tested for the self-repair of the material.

Keywords: autonomic self-healing system, dicyclopentadiene, melamine-urea-formaldehyde resin, microcapsules, thermoplastic materials

Procedia PDF Downloads 45
422 Correlations and Impacts Of Optimal Rearing Parameters on Nutritional Value Of Mealworm (Tenebrio Molitor)

Authors: Fabienne Vozy, Anick Lepage

Abstract:

Insects are displaying high nutritional value, low greenhouse gas emissions, low land use requirements and high food conversion efficiency. They can contribute to the food chain and be one of many solutions to protein shortages. Currently, in North America, nutritional entomology is under-developed and the needs to better understand its benefits remain to convince large-scale producers and consumers (both for human and agricultural needs). As such, large-scale production of mealworms offers a promising alternative to replacing traditional sources of protein and fatty acids. To proceed orderly, it is required to collect more data on the nutritional values of insects such as, a) Evaluate the diets of insects to improve their dietary value; b) Test the breeding conditions to optimize yields; c) Evaluate the use of by-products and organic residues as sources of food. Among the featured technical parameters, relative humidity (RH) percentage and temperature, optimal substrates and hydration sources are critical elements, thus establishing potential benchmarks for to optimize conversion rates of protein and fatty acids. This research is to establish the combination of the most influential rearing parameters with local food residues, to correlate the findings with the nutritional value of the larvae harvested. 125 same-monthly old adults/replica are randomly selected in the mealworm breeding pool then placed to oviposit in growth chambers preset at 26°C and 65% RH. Adults are removed after 7 days. Larvae are harvested upon the apparition of the first nymphosis signs and batches, are analyzed for their nutritional values using wet chemistry analysis. The first samples analyses include total weight of both fresh and dried larvae, residual humidity, crude proteins (CP%), and crude fats (CF%). Further analyses are scheduled to include soluble proteins and fatty acids. Although they are consistent with previous published data, the preliminary results show no significant differences between treatments for any type of analysis. Nutritional properties of each substrate combination have yet allowed to discriminate the most effective residue recipe. Technical issues such as the particles’ size of the various substrate combinations and larvae screen compatibility are to be investigated since it induced a variable percentage of lost larvae upon harvesting. To address those methodological issues are key to develop a standardized efficient procedure. The aim is to provide producers with easily reproducible conditions, without incurring additional excessive expenditure on their part in terms of equipment and workforce.

Keywords: entomophagy, nutritional value, rearing parameters optimization, Tenebrio molitor

Procedia PDF Downloads 111
421 The Impact of Emotional Intelligence on Organizational Performance

Authors: El Ghazi Safae, Cherkaoui Mounia

Abstract:

Within companies, emotions have been forgotten as key elements of successful management systems. Seen as factors which disturb judgment, make reckless acts or affect negatively decision-making. Since management systems were influenced by the Taylorist worker image, that made the work regular and plain, and considered employees as executing machines. However, recently, in globalized economy characterized by a variety of uncertainties, emotions are proved as useful elements, even necessary, to attend high-level management. The work of Elton Mayo and Kurt Lewin reveals the importance of emotions. Since then emotions start to attract considerable attention. These studies have shown that emotions influence, directly or indirectly, many organization processes. For example, the quality of interpersonal relationships, job satisfaction, absenteeism, stress, leadership, performance and team commitment. Emotions became fundamental and indispensable to individual yield and so on to management efficiency. The idea that a person potential is associated to Intellectual Intelligence, measured by the IQ as the main factor of social, professional and even sentimental success, was the main problematic that need to be questioned. The literature on emotional intelligence has made clear that success at work does not only depend on intellectual intelligence but also other factors. Several researches investigating emotional intelligence impact on performance showed that emotionally intelligent managers perform more, attain remarkable results, able to achieve organizational objectives, impact the mood of their subordinates and create a friendly work environment. An improvement in the emotional intelligence of managers is therefore linked to the professional development of the organization and not only to the personal development of the manager. In this context, it would be interesting to question the importance of emotional intelligence. Does it impact organizational performance? What is the importance of emotional intelligence and how it impacts organizational performance? The literature highlighted that measurement and conceptualization of emotional intelligence are difficult to define. Efforts to measure emotional intelligence have identified three models that are more prominent: the mixed model, the ability model, and the trait model. The first is considered as cognitive skill, the second relates to the mixing of emotional skills with personality-related aspects and the latter is intertwined with personality traits. But, despite strong claims about the importance of emotional intelligence in the workplace, few studies have empirically examined the impact of emotional intelligence on organizational performance, because even though the concept of performance is at the heart of all evaluation processes of companies and organizations, we observe that performance remains a multidimensional concept and many authors insist about the vagueness that surrounds the concept. Given the above, this article provides an overview of the researches related to emotional intelligence, particularly focusing on studies that investigated the impact of emotional intelligence on organizational performance to contribute to the emotional intelligence literature and highlight its importance and show how it impacts companies’ performance.

Keywords: emotions, performance, intelligence, firms

Procedia PDF Downloads 108
420 Dry Reforming of Methane Using Metal Supported and Core Shell Based Catalyst

Authors: Vinu Viswanath, Lawrence Dsouza, Ugo Ravon

Abstract:

Syngas typically and intermediary gas product has a wide range of application of producing various chemical products, such as mixed alcohols, hydrogen, ammonia, Fischer-Tropsch products methanol, ethanol, aldehydes, alcohols, etc. There are several technologies available for the syngas production. An alternative to the conventional processes an attractive route of utilizing carbon dioxide and methane in equimolar ratio to generate syngas of ratio close to one has been developed which is also termed as Dry Reforming of Methane technology. It also gives the privilege to utilize the greenhouse gases like CO2 and CH4. The dry reforming process is highly endothermic, and indeed, ΔG becomes negative if the temperature is higher than 900K and practically, the reaction occurs at 1000-1100K. At this temperature, the sintering of the metal particle is happening that deactivate the catalyst. However, by using this strategy, the methane is just partially oxidized, and some cokes deposition occurs that causing the catalyst deactivation. The current research work was focused to mitigate the main challenges of dry reforming process such coke deposition, and metal sintering at high temperature.To achieve these objectives, we employed three different strategies of catalyst development. 1) Use of bulk catalysts such as olivine and pyrochlore type materials. 2) Use of metal doped support materials, like spinel and clay type material. 3) Use of core-shell model catalyst. In this approach, a thin layer (shell) of redox metal oxide is deposited over the MgAl2O4 /Al2O3 based support material (core). For the core-shell approach, an active metal is been deposited on the surface of the shell. The shell structure formed is a doped metal oxide that can undergo reduction and oxidation reactions (redox), and the core is an alkaline earth aluminate having a high affinity towards carbon dioxide. In the case of metal-doped support catalyst, the enhanced redox properties of doped CeO2 oxide and CO2 affinity property of alkaline earth aluminates collectively helps to overcome coke formation. For all of the mentioned three strategies, a systematic screening of the metals is carried out to optimize the efficiency of the catalyst. To evaluate the performance of them, the activity and stability test were carried out under reaction conditions of temperature ranging from 650 to 850 ̊C and an operating pressure ranging from 1 to 20 bar. The result generated infers that the core-shell model catalyst showed high activity and better stable DR catalysts under atmospheric as well as high-pressure conditions. In this presentation, we will show the results related to the strategy.

Keywords: carbon dioxide, dry reforming, supports, core shell catalyst

Procedia PDF Downloads 177
419 Analysis of Superconducting and Optical Properties in Atomic Layer Deposition and Sputtered Thin Films for Next-Generation Single-Photon Detectors

Authors: Nidhi Choudhary, Silke A. Peeters, Ciaran T. Lennon, Dmytro Besprozvannyy, Harm C. M. Knoops, Robert H. Hadfield

Abstract:

Superconducting Nanowire Single Photon Detectors (SNSPDs) have become leading devices in quantum optics and photonics, known for their exceptional efficiency in detecting single photons from ultraviolet to mid-infrared wavelengths with minimal dark counts, low noise, and reduced timing jitter. Recent advancements in materials science focus attention on refractory metal thin films such as NbN and NbTiN to enhance the optical properties and superconducting performance of SNSPDs, opening the way for next-generation detectors. These films have been deposited by several different techniques, such as atomic layer deposition (ALD), plasma pro-advanced plasma processing (ASP) and magnetron sputtering. The fabrication flexibility of these films enables precise control over morphology, crystallinity, stoichiometry and optical properties, which is crucial for optimising the SNSPD performance. Hence, it is imperative to study the optical and superconducting properties of these materials across a wide range of wavelengths. This study provides a comprehensive analysis of the optical and superconducting properties of some important materials in this category (NbN, NbTiN) by different deposition methods. Using Variable angle ellipsometry spectroscopy (VASE), we measured the refractive index, extinction, and absorption coefficient across a wide wavelength range (200-1700 nm) to enhance light confinement for optical communication devices. The critical temperature and sheet resistance were measured using a four-probe method in a custom-built, cryogen-free cooling system with a Sumitomo RDK-101D cold head and CNA-11C compressor. Our results indicate that ALD-deposited NbN shows a higher refractive index and extinction coefficient in the near-infrared region (~1500 nm) than sputtered NbN of the same thickness. Further, the analysis of the optical properties of plasma pro-ASP deposited NbTiN was performed at different substrate bias voltages and different thicknesses. The analysis of substrate bias voltage indicates that the maximum value of the refractive index and extinction coefficient observed for the substrate biasing of 50-80 V across a substrate bias range of (0 V - 150 V). The optical properties of sputtered NbN films are also investigated in terms of the different substrate temperatures during deposition (100 °C-500 °C). We find the higher the substrate temperature during deposition, the higher the value of the refractive index and extinction coefficient has been observed. In all our superconducting thin films ALD-deposited NbN films possess the highest critical temperature (~12 K) compared to sputtered (~8 K) and plasma pro-ASP (~5 K).

Keywords: optical communication, thin films, superconductivity, atomic layer deposition (ALD), niobium nitride (NbN), niobium titanium nitride (NbTiN), SNSPD, superconducting detector, photon-counting.

Procedia PDF Downloads 29
418 Additive Manufacturing – Application to Next Generation Structured Packing (SpiroPak)

Authors: Biao Sun, Tejas Bhatelia, Vishnu Pareek, Ranjeet Utikar, Moses Tadé

Abstract:

Additive manufacturing (AM), commonly known as 3D printing, with the continuing advances in parallel processing and computational modeling, has created a paradigm shift (with significant radical thinking) in the design and operation of chemical processing plants, especially LNG plants. With the rising energy demands, environmental pressures, and economic challenges, there is a continuing industrial need for disruptive technologies such as AM, which possess capabilities that can drastically reduce the cost of manufacturing and operations of chemical processing plants in the future. However, the continuing challenge for 3D printing is its lack of adaptability in re-designing the process plant equipment coupled with the non-existent theory or models that could assist in selecting the optimal candidates out of the countless potential fabrications that are possible using AM. One of the most common packings used in the LNG process is structured packing in the packed column (which is a unit operation) in the process. In this work, we present an example of an optimum strategy for the application of AM to this important unit operation. Packed columns use a packing material through which the gas phase passes and comes into contact with the liquid phase flowing over the packing, typically performing the necessary mass transfer to enrich the products, etc. Structured packing consists of stacks of corrugated sheets, typically inclined between 40-70° from the plane. Computational Fluid Dynamics (CFD) was used to test and model various geometries to study the governing hydrodynamic characteristics. The results demonstrate that the costly iterative experimental process can be minimized. Furthermore, they also improve the understanding of the fundamental physics of the system at the multiscale level. SpiroPak, patented by Curtin University, represents an innovative structured packing solution currently at a technology readiness level (TRL) of 5~6. This packing exhibits remarkable characteristics, offering a substantial increase in surface area while significantly enhancing hydrodynamic and mass transfer performance. Recent studies have revealed that SpiroPak can reduce pressure drop by 50~70% compared to commonly used commercial packings, and it can achieve 20~50% greater mass transfer efficiency (particularly in CO2 absorption applications). The implementation of SpiroPak has the potential to reduce the overall size of columns and decrease power consumption, resulting in cost savings for both capital expenditure (CAPEX) and operational expenditure (OPEX) when applied to retrofitting existing systems or incorporated into new processes. Furthermore, pilot to large-scale tests is currently underway to further advance and refine this technology.

Keywords: Additive Manufacturing (AM), 3D printing, Computational Fluid Dynamics (CFD, structured packing (SpiroPak)

Procedia PDF Downloads 87
417 MXene Mediated Layered 2D-3D-2D g-C3N4@WO3@Ti3C2 Multijunctional Heterostructure with Enhanced Photoelectrochemical and Photocatalytic Properties

Authors: Lekgowa Collen Makola, Cecil Naphtaly Moro Ouma, Sharon Moeno, Langelihle Dlamini

Abstract:

In recent years, advancement in the field of nanotechnology has evolved new strategies to address energy and environmental issues. Amongst the developing technologies, visible-light-driven photocatalysis is regarded as a sustainable approach for energy production and environmental detoxifications, where transition metal oxides (TMOs) and metal-free carbon-based semiconductors such as graphitic carbon nitride (CN) evidenced notable potential in this matter. Herein, g-C₃N₄@WO₃@Ti₃C₂Tx three-component multijunction photocatalyst was fabricated via facile ultrasonic-assisted self-assembly, followed by calcination to facilitate extensive integrations of the materials. A series of different Ti₃C₂ wt% loading in the g-C₃N4@WO₃@Ti₃C₂Tx were prepared and represented as 1-CWT, 3-CWT, 5-CWT, and 7-CWT corresponding to 1, 3, 5, and 7wt%, respectively. Systematic characterization using spectroscopic and microscopic techniques were employed to validate the successful preparation of the photocatalysts. Enhanced optoelectronic and photoelectrochemical properties were observed for the WO₃@Ti₃C2@g-C₃N4 heterostructure with respect to the individual materials. Photoluminescence spectra and Nyquist plots show restrained recombination rates and improved photocarrier conductivities, respectively, and this was credited to the synergistic coupling effect and the presence of highly conductive Ti₃C2 MXene. The strong interfacial contact surfaces upon the formation of the composite were confirmed using XPS. Multiple charge transfer mechanisms were proposed for the WO3@Ti3C₂@g-C3N4, which couples Z-scheme and Schottky-junction mediated with Ti3C2 MXene. Bode phase plots show improved charge carrier life-times upon the formation of the multijunctional photocatalyst. Moreover, transient photocurrent density of 7-CWT is 40 and seven (7) times higher compared to that of g-C₃N4 and WO3, correspondingly. Unlike in the traditional Z-Scheme, the formed ternary heterostructure possesses interfaces through the metallic 2D Ti₃C₂ MXene, which provided charge transfer channels for efficient photocarrier transfers with carrier concentrations (ND) of 17.49×1021 cm-3 and 4.86% photo-to-chemical conversion efficiency. The as-prepared ternary g-C₃N₄@WO₃@Ti₃C₂Tx exhibited excellent photoelectrochemical properties with reserved redox band potential potencies to facilitate efficient photo-oxidation and -reduction reactions. The fabricated multijunction photocatalyst exhibits potentials to be used in an extensive range of photocatalytic process vis., production of valuable hydrocarbons from CO₂, production of H₂, and degradation of a plethora of pollutants from wastewater.

Keywords: photocatalysis, Z-scheme, multijunction heterostructure, Ti₃C₂ MXene, g-C₃N₄

Procedia PDF Downloads 123
416 Modeling and Analysis of Drilling Operation in Shale Reservoirs with Introduction of an Optimization Approach

Authors: Sina Kazemi, Farshid Torabi, Todd Peterson

Abstract:

Drilling in shale formations is frequently time-consuming, challenging, and fraught with mechanical failures such as stuck pipes or hole packing off when the cutting removal rate is not sufficient to clean the bottom hole. Crossing the heavy oil shale and sand reservoirs with active shale and microfractures is generally associated with severe fluid losses causing a reduction in the rate of the cuttings removal. These circumstances compromise a well’s integrity and result in a lower rate of penetration (ROP). This study presents collective results of field studies and theoretical analysis conducted on data from South Pars and North Dome in an Iran-Qatar offshore field. Solutions to complications related to drilling in shale formations are proposed through systemically analyzing and applying modeling techniques to select field mud logging data. Field data measurements during actual drilling operations indicate that in a shale formation where the return flow of polymer mud was almost lost in the upper dolomite layer, the performance of hole cleaning and ROP progressively change when higher string rotations are initiated. Likewise, it was observed that this effect minimized the force of rotational torque and improved well integrity in the subsequent casing running. Given similar geologic conditions and drilling operations in reservoirs targeting shale as the producing zone like the Bakken formation within the Williston Basin and Lloydminster, Saskatchewan, a drill bench dynamic modeling simulation was used to simulate borehole cleaning efficiency and mud optimization. The results obtained by altering RPM (string revolution per minute) at the same pump rate and optimized mud properties exhibit a positive correlation with field measurements. The field investigation and developed model in this report show that increasing the speed of string revolution as far as geomechanics and drilling bit conditions permit can minimize the risk of mechanically stuck pipes while reaching a higher than expected ROP in shale formations. Data obtained from modeling and field data analysis, optimized drilling parameters, and hole cleaning procedures are suggested for minimizing the risk of a hole packing off and enhancing well integrity in shale reservoirs. Whereas optimization of ROP at a lower pump rate maintains the wellbore stability, it saves time for the operator while reducing carbon emissions and fatigue of mud motors and power supply engines.

Keywords: ROP, circulating density, drilling parameters, return flow, shale reservoir, well integrity

Procedia PDF Downloads 86
415 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning

Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi

Abstract:

Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.

Keywords: agriculture, computer vision, data science, geospatial technology

Procedia PDF Downloads 137
414 Study of Chemical State Analysis of Rubidium Compounds in Lα, Lβ₁, Lβ₃,₄ and Lγ₂,₃ X-Ray Emission Lines with Wavelength Dispersive X-Ray Fluorescence Spectrometer

Authors: Harpreet Singh Kainth

Abstract:

Rubidium salts have been commonly used as an electrolyte to improve the efficiency cycle of Li-ion batteries. In recent years, it has been implemented into the large scale for further technological advances to improve the performance rate and better cyclability in the batteries. X-ray absorption spectroscopy (XAS) is a powerful tool for obtaining the information in the electronic structure which involves the chemical state analysis in the active materials used in the batteries. However, this technique is not well suited for the industrial applications because it needs a synchrotron X-ray source and special sample file for in-situ measurements. In contrast to this, conventional wavelength dispersive X-ray fluorescence (WDXRF) spectrometer is nondestructive technique used to study the chemical shift in all transitions (K, L, M, …) and does not require any special pre-preparation planning. In the present work, the fluorescent Lα, Lβ₁ , Lβ₃,₄ and Lγ₂,₃ X-ray spectra of rubidium in different chemical forms (Rb₂CO₃ , RbCl, RbBr, and RbI) have been measured first time with high resolution wavelength dispersive X-ray fluorescence (WDXRF) spectrometer (Model: S8 TIGER, Bruker, Germany), equipped with an Rh anode X-ray tube (4-kW, 60 kV and 170 mA). In ₃₇Rb compounds, the measured energy shifts are in the range (-0.45 to - 1.71) eV for Lα X-ray peak, (0.02 to 0.21) eV for Lβ₁ , (0.04 to 0.21) eV for Lβ₃ , (0.15 to 0.43) eV for Lβ₄ and (0.22 to 0.75) eV for Lγ₂,₃ X-ray emission lines. The chemical shifts in rubidium compounds have been measured by considering Rb₂CO₃ compounds taking as a standard reference. A Voigt function is used to determine the central peak position of all compounds. Both positive and negative shifts have been observed in L shell emission lines. In Lα X-ray emission lines, all compounds show negative shift while in Lβ₁, Lβ₃,₄, and Lγ₂,₃ X-ray emission lines, all compounds show a positive shift. These positive and negative shifts result increase or decrease in X-ray energy shifts. It looks like that ligands attached with central metal atom attract or repel the electrons towards or away from the parent nucleus. This pulling and pushing character of rubidium affects the central peak position of the compounds which causes a chemical shift. To understand the chemical effect more briefly, factors like electro-negativity, line intensity ratio, effective charge and bond length are responsible for the chemical state analysis in rubidium compounds. The effective charge has been calculated from Suchet and Pauling method while the line intensity ratio has been calculated by calculating the area under the relevant emission peak. In the present work, it has been observed that electro-negativity, effective charge and intensity ratio (Lβ₁/Lα, Lβ₃,₄/Lα and Lγ₂,₃/Lα) are inversely proportional to the chemical shift (RbCl > RbBr > RbI), while bond length has been found directly proportional to the chemical shift (RbI > RbBr > RbCl).

Keywords: chemical shift in L emission lines, bond length, electro-negativity, effective charge, intensity ratio, Rubidium compounds, WDXRF spectrometer

Procedia PDF Downloads 507
413 Bayesian Structural Identification with Systematic Uncertainty Using Multiple Responses

Authors: André Jesus, Yanjie Zhu, Irwanda Laory

Abstract:

Structural health monitoring is one of the most promising technologies concerning aversion of structural risk and economic savings. Analysts often have to deal with a considerable variety of uncertainties that arise during a monitoring process. Namely the widespread application of numerical models (model-based) is accompanied by a widespread concern about quantifying the uncertainties prevailing in their use. Some of these uncertainties are related with the deterministic nature of the model (code uncertainty) others with the variability of its inputs (parameter uncertainty) and the discrepancy between a model/experiment (systematic uncertainty). The actual process always exhibits a random behaviour (observation error) even when conditions are set identically (residual variation). Bayesian inference assumes that parameters of a model are random variables with an associated PDF, which can be inferred from experimental data. However in many Bayesian methods the determination of systematic uncertainty can be problematic. In this work systematic uncertainty is associated with a discrepancy function. The numerical model and discrepancy function are approximated by Gaussian processes (surrogate model). Finally, to avoid the computational burden of a fully Bayesian approach the parameters that characterise the Gaussian processes were estimated in a four stage process (modular Bayesian approach). The proposed methodology has been successfully applied on fields such as geoscience, biomedics, particle physics but never on the SHM context. This approach considerably reduces the computational burden; although the extent of the considered uncertainties is lower (second order effects are neglected). To successfully identify the considered uncertainties this formulation was extended to consider multiple responses. The efficiency of the algorithm has been tested on a small scale aluminium bridge structure, subjected to a thermal expansion due to infrared heaters. Comparison of its performance with responses measured at different points of the structure and associated degrees of identifiability is also carried out. A numerical FEM model of the structure was developed and the stiffness from its supports is considered as a parameter to calibrate. Results show that the modular Bayesian approach performed best when responses of the same type had the lowest spatial correlation. Based on previous literature, using different types of responses (strain, acceleration, and displacement) should also improve the identifiability problem. Uncertainties due to parametric variability, observation error, residual variability, code variability and systematic uncertainty were all recovered. For this example the algorithm performance was stable and considerably quicker than Bayesian methods that account for the full extent of uncertainties. Future research with real-life examples is required to fully access the advantages and limitations of the proposed methodology.

Keywords: bayesian, calibration, numerical model, system identification, systematic uncertainty, Gaussian process

Procedia PDF Downloads 326
412 Examining the Relationship Between Green Procurement Practices and Firm’s Performance in Ghana

Authors: Clement Yeboah

Abstract:

Prior research concludes that environmental commitment positively drives organisational performance. Nonetheless, the nexus and conditions under which environmental commitment capabilities contribute to a firm’s performance are less understood. The purpose of this quantitative relational study was to examine the relationship between environmental commitment and 500 firms’ performances in Ghana. The researchers further seek to draw insights from the resource-based view to conceptualize environmental commitment and green procurement practices as resource capabilities to enhance firm performance. The researchers used insights from the contingent resource-based view to examine green leadership orientation conditions under which environmental commitment capability contributes to firm performance through green procurement practices. The study’s conceptual framework was tested on primary data from some firms in the Ghanaian market. PROCESS Macro was used to test the study’s hypotheses. Beyond that, green procurement practices mediated the association between environmental commitment capabilities and the firm’s performance. The study further seeks to find out whether green leadership orientation positively moderates the indirect relationship between environmental commitment capabilities and firm performance through green procurement practices. While conventional wisdom suggests that improved environmental commitment capabilities help improve a firm’s performance, this study tested this presumed relationship between environmental commitment capabilities and firm performance and provides theoretical arguments and empirical evidence to justify how green procurement practices uniquely and in synergy with green leadership orientation transform this relationship. The study results indicated a positive correlation between environmental commitment and firm performance. This result suggests that firms that prioritize environmental sustainability and demonstrate a strong commitment to environmentally responsible practices tend to experience better overall performance. This includes financial gains, operational efficiency, enhanced reputation, and improved relationships with stakeholders. The study's findings inform policy formulation in Ghana related to environmental regulations, incentives, and support mechanisms. Policymakers can use the insights to design policies that encourage and reward firms for their environmental commitments, thereby fostering a more sustainable and environmentally responsible business environment. The findings from such research can influence the design and development of educational programs in Ghana, specifically in fields related to sustainability, environmental management, and corporate social responsibility (CSR). Institutions may consider integrating environmental and sustainability topics into their business and management courses to create awareness and promote responsible practices among future business professionals. Also the study results can also promote the adoption of environmental accounting practices in Ghana. By recognizing and measuring the environmental impacts and costs associated with business activities, firms can better understand the financial implications of their environmental commitments and develop strategies for improved performance.

Keywords: firm’s performance, green procurement practice, environmental commitment, environmental management, sustainability

Procedia PDF Downloads 86
411 Freshwater Pinch Analysis for Optimal Design of the Photovoltaic Powered-Pumping System

Authors: Iman Janghorban Esfahani

Abstract:

Due to the increased use of irrigation in agriculture, the importance and need for highly reliable water pumping systems have significantly increased. The pumping of the groundwater is essential to provide water for both drip and furrow irrigation to increase the agricultural yield, especially in arid regions that suffer from scarcities of surface water. The most common irrigation pumping systems (IPS) consume conventional energies through the use of electric motors and generators or connecting to the electricity grid. Due to the shortage and transportation difficulties of fossil fuels, and unreliable access to the electricity grid, especially in the rural areas, and the adverse environmental impacts of fossil fuel usage, such as greenhouse gas (GHG) emissions, the need for renewable energy sources such as photovoltaic systems (PVS) as an alternative way of powering irrigation pumping systems is urgent. Integration of the photovoltaic systems with irrigation pumping systems as the Photovoltaic Powered-Irrigation Pumping System (PVP-IPS) can avoid fossil fuel dependency and the subsequent greenhouse gas emissions, as well as ultimately lower energy costs and improve efficiency, which made PVP-IPS systems as an environmentally and economically efficient solution for agriculture irrigation in every region. The greatest problem faced by integration of PVP with IPS systems is matching the intermittence of the energy supply with the dynamic water demand. The best solution to overcome the intermittence is to incorporate a storage system into the PVP-IPS to provide water-on-demand as a highly reliable stand-alone irrigation pumping system. The water storage tank (WST) is the most common storage device for PVP-IPS systems. In the integrated PVP-IPS with a water storage tank (PVP-IPS-WST), a water storage tank stores the water pumped by the IPS in excess of the water demand and then delivers it when demands are high. The Freshwater pinch analysis (FWaPA) as an alternative to mathematical modeling was used by other researchers for retrofitting the off-grid battery less photovoltaic-powered reverse osmosis system. However, the Freshwater pinch analysis has not been used to integrate the photovoltaic systems with irrigation pumping system with water storage tanks. In this study, FWaPA graphical and numerical tools were used for retrofitting an existing PVP-IPS system located in Salahadin, Republic of Iraq. The plant includes a 5 kW submersible water pump and 7.5 kW solar PV system. The Freshwater Composite Curve as the graphical tool and Freashwater Storage Cascade Table as the numerical tool were constructed to determine the minimum required outsourced water during operation, optimal amount of delivered electricity to the water pump, and optimal size of the water storage tank for one-year operation data. The results of implementing the FWaPA on the case study show that the PVP-IPS system with a WST as the reliable system can reduce outsourced water by 95.41% compare to the PVP-IPS system without storage tank.

Keywords: irrigation, photovoltaic, pinch analysis, pumping, solar energy

Procedia PDF Downloads 138
410 Effects of Dietary Polyunsaturated Fatty Acids and Beta Glucan on Maturity, Immunity and Fry Quality of Pabdah Catfish, Ompok pabda

Authors: Zakir Hossain, Md. Saddam Hossain

Abstract:

A nutritionally balanced diet and selection of appropriate species are important criteria in aquaculture. The present study was conducted to evaluate the effects of polyunsaturated fatty acids (PUFAs) and beta glucan containing diet on growth performance, feed utilization, maturation, immunity, early embryonic and larval development of endangered Pabdah catfish, Ompok pabda. In this study, squid extracted lipids and mushroom powder were used as the source of PUFAs and beta glucan, respectively, and formulated two isonitrogenous diets such as basal or control (CON) diet and treated (PBG) diet with maintaining 30% protein levels. During the study period, similar physicochemical conditions of water such as temperature, pH, and dissolved oxygen (DO) were 26.5±2 °C, 7.4±0.2, and 6.7±0.5 ppm, respectively in each cistern. The results showed that final mean body weight, final mean length gain, food conversion ratio (FCR), specific growth rate (SGR), food conversion efficiency (%), hepatosomatic index (HSI), kidney index (KI), and viscerosomatic index (VSI) were significantly (P<0.01 and P<0.05) higher in fish fed the PBG diet than that of fish fed the CON diet. The length-weight relationship and relative condition factor (K) of O. pabda were significantly (P<0.05) affected by the PBG diet. The gonadosomatic index (GSI), sperm viability, blood serum calcium ion concentrations (Ca²⁺), and vitellogenin level were significantly (P<0.05) higher in fish fed the PBG diet than that of fish fed the CON diet; which was used to the indication of fish maturation. During the spawning season, lipid granules and normal morphological structure were observed in the treated fish liver, whereas fewer lipid granules of liver were observed in the control group. Based on the immunity and stress resistance-related parameters such as hematological indices, antioxidant activity, lysozyme level, respiratory burst activity, blood reactive oxygen species (ROS), complement activity (ACH50 assay), specific IgM, brain AChE, plasma PGOT, and PGPT enzyme activity were significantly (P<0.01 and P<0.05) higher in fish fed the PBG diet than that of fish fed the CON diet. The fecundity, fertilization rate (92.23±2.69%), hatching rate (87.43±2.17 %) and survival (76.62±0.82%) of offspring were significantly higher (P˂0.05) in the PBG diet than in the control. Consequently, early embryonic and larval development was better in PBG treated group than in the control. Therefore, the present study showed that the polyunsaturated fatty acids (PUFAs) and beta glucan enriched experimental diet were more effective and achieved better growth, feed utilization, maturation, immunity, and spawning performances of O. pabda.

Keywords: polyunsaturated fatty acids, beta glucan, maturity, immunity, catfish

Procedia PDF Downloads 6
409 Pre-Cooling Strategies for the Refueling of Hydrogen Cylinders in Vehicular Transport

Authors: C. Hall, J. Ramos, V. Ramasamy

Abstract:

Hydrocarbon-based fuel vehicles are a major contributor to air pollution due to harmful emissions produced, leading to a demand for cleaner fuel types. A leader in this pursuit is hydrogen, with its application in vehicles producing zero harmful emissions and the only by-product being water. To compete with the performance of conventional vehicles, hydrogen gas must be stored on-board of vehicles in cylinders at high pressures (35–70 MPa) and have a short refueling duration (approximately 3 mins). However, the fast-filling of hydrogen cylinders causes a significant rise in temperature due to the combination of the negative Joule-Thompson effect and the compression of the gas. This can lead to structural failure and therefore, a maximum allowable internal temperature of 85°C has been imposed by the International Standards Organization. The technological solution to tackle the issue of rapid temperature rise during the refueling process is to decrease the temperature of the gas entering the cylinder. Pre-cooling of the gas uses a heat exchanger and requires energy for its operation. Thus, it is imperative to determine the least amount of energy input that is required to lower the gas temperature for cost savings. A validated universal thermodynamic model is used to identify an energy-efficient pre-cooling strategy. The model requires negligible computational time and is applied to previously validated experimental cases to optimize pre-cooling requirements. The pre-cooling characteristics include the location within the refueling timeline and its duration. A constant pressure-ramp rate is imposed to eliminate the effects of rapid changes in mass flow rate. A pre-cooled gas temperature of -40°C is applied, which is the lowest allowable temperature. The heat exchanger is assumed to be ideal with no energy losses. The refueling of the cylinders is modeled with the pre-cooling split in ten percent time intervals. Furthermore, varying burst durations are applied in both the early and late stages of the refueling procedure. The model shows that pre-cooling in the later stages of the refuelling process is more energy-efficient than early pre-cooling. In addition, the efficiency of pre-cooling towards the end of the refueling process is independent of the pressure profile at the inlet. This leads to the hypothesis that pre-cooled gas should be applied as late as possible in the refueling timeline and at very low temperatures. The model had shown a 31% reduction in energy demand whilst achieving the same final gas temperature for a refueling scenario when pre-cooling was applied towards the end of the process. The identification of the most energy-efficient refueling approaches whilst adhering to the safety guidelines is imperative to reducing the operating cost of hydrogen refueling stations. Heat exchangers are energy-intensive and thus, reducing the energy requirement would lead to cost reduction. This investigation shows that pre-cooling should be applied as late as possible and for short durations.

Keywords: cylinder, hydrogen, pre-cooling, refueling, thermodynamic model

Procedia PDF Downloads 96
408 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment

Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali

Abstract:

This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.

Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis

Procedia PDF Downloads 428
407 Evaluating Energy Transition of a complex of buildings in a historic site of Rome toward Zero-Emissions for a Sustainable Future

Authors: Silvia Di Turi, Nicolandrea Calabrese, Francesca Caffari, Giulia Centi, Francesca Margiotta, Giovanni Murano, Laura Ronchetti, Paolo Signoretti, Lisa Volpe, Domenico Palladino

Abstract:

Recent European policies have been set ambitious targets aimed at significantly reducing CO2 emissions by 2030, with a long-term vision of transforming existing buildings into Zero-Emissions Buildings (ZEmB) by 2050. This vision represents a key point for the energy transition as the whole building stock currently accounts for 36% of total energy consumption across the Europe, mainly due to their poor energy performance. The challenge towards Zero-Emissions Buildings is particularly felt in Italy, where a significant number of buildings with historical significance or situated within protected/constrained areas can be found. Furthermore, an estimated 70% of the national building stock are built before 1976, indicating a widespread issue of poor energy performance. Addressing the energy ineƯiciency of these buildings is crucial to refining a comprehensive energy renovation approach aimed at facilitating their energy transition. In this framework the current study focuses on analysing a challenging complex of buildings to be totally restored through significant energy renovation interventions. The goal is to recover these disused buildings situated in a significant archaeological zone of Rome, contributing to the restoration and reintegration of this historically valuable site, while also oƯering insights useful for achieving zeroemission requirements for buildings within such contexts. In pursuit of meeting the stringent zero-emission requirements, a comprehensive study was carried out to assess the complex of buildings, envisioning substantial renovation measures on building envelope and plant systems and incorporating renewable energy system solutions, always respecting and preserving the historic site. An energy audit of the complex of buildings was performed to define the actual energy consumption for each energy service by adopting the hourly calculation methods. Subsequently, significant energy renovation interventions on both building envelope and mechanical systems have been examined respecting the historical value and preservation of site. These retrofit strategies have been investigated with threefold aims: 1) to recover the existing buildings ensuring the energy eƯiciency of the whole complex of buildings, 2) to explore which solutions have allowed achieving and facilitating the ZEmB status, 3) to balance the energy transition requirements with the sustainable aspect in order to preserve the historic value of the buildings and site. This study has pointed out the potentiality and the technical challenges associated with implementing renovation solutions for such buildings, representing one of the first attempt towards realizing this ambitious target for this type of building.

Keywords: energy conservation and transition, complex of buildings in historic site, zero-emission buildings, energy efficiency recovery

Procedia PDF Downloads 76
406 Serological IgG Testing to Diagnose Alimentary Induced Diseases and Monitoring Efficacy of an Individual Defined Diet in Dogs

Authors: Anne-Margré C. Vink

Abstract:

Background: Food-related allergies and intolerances are frequently occurring in dogs. Diagnosis and monitoring according to ‘Golden Standard’ of elimination efficiency are time-consuming, expensive, and requires expert clinical setting. In order to facilitate rapid and robust, quantitative testing of intolerance, and determining the individual offending foods, a serological test is implicated. Method: As we developed Medisynx IgG Human Screening Test ELISA before and the dog’s immune system is most similar to humans, we were able to develop Medisynx IgG Dog Screening Test ELISA as well. In this study, 47 dogs suffering from Canine Atopic Dermatitis (CAD) and several secondary induced reactions were included to participate in serological Medisynx IgG Dog Screening Test ELISA (within < 0,02 % SD). Results were expressed as titers relative to the standard OD readings to diagnose alimentary induced diseases and monitoring the efficacy of an individual eliminating diet in dogs. Split sample analysis was performed by independently sending 2 times 3 ml serum under two unique codes. Results: The veterinarian monitored these dogs to check dog’ results at least at 3, 7, 21, 49, 70 days and after period of 6 and 12 months on an individual negative diet and a positive challenge (retrospectively) at 6 months. Data of each dog were recorded in a screening form and reported that a complete recovery of all clinical manifestations was observed at or less than 70 days (between 50 and 70 days) in the majority of dogs(44 out of 47 dogs =93.6%). Conclusion: Challenge results showed a significant result of 100% in specificity as well as 100% positive predicted value. On the other hand, sensitivity was 95,7% and negative predictive value was 95,7%. In conclusion, an individual diet based on IgG ELISA in dogs provides a significant improvement of atopic dermatitis and pruritus including all other non-specific defined allergic skin reactions as erythema, itching, biting and gnawing at toes, as well as to several secondary manifestations like chronic diarrhoea, chronic constipation, otitis media, obesity, laziness or inactive behaviour, pain and muscular stiffness causing a movement disorders, excessive lacrimation, hyper behaviour, nervous behaviour and not possible to stay alone at home, anxiety, biting and aggressive behaviour and disobedience behaviour. Furthermore, we conclude that a relatively more severe systemic candidiasis, as shown by relatively higher titer (class 3 and 4 IgG reactions to Candida albicans), influence the duration of recovery from clinical manifestations in affected dogs. These findings are consistent with our preliminary human clinical studies.

Keywords: allergy, canine atopic dermatitis, CAD, food allergens, IgG-ELISA, food-incompatibility

Procedia PDF Downloads 321