Search results for: solar energy storage and utilization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11690

Search results for: solar energy storage and utilization

2270 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition

Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover

Abstract:

Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.

Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery

Procedia PDF Downloads 405
2269 Free Vibration Characteristics of Nanoplates with Various Edge Supports Incorporating Surface Free Energy Effects

Authors: Saeid Sahmani

Abstract:

Due to size-dependent behavior of nanostrustures, the classical continuum models are not applicable for the analyses at this submicrion size. Surface stress effect is one of the most important matters which make the nanoscale structures to have different properties compared to the conventional structures due to high surface to volume ratio. In the present study, free vibration characteristics of nanoplates are investigated including surface stress effects. To this end, non-classical plate model based on Gurtin-Murdoch elasticity theory is proposed to evaluate the surface stress effects on the vibrational behavior of nanoplates subjected to different boundary conditions. Generalized differential quadrature (GDQ) method is employed to discretize the governing non-classical differential equations along with various edge supports. Selected numerical results are given to demonstrate the distinction between the behavior of nanoplates predicted by the classical and present non-classical plate models that leads to illustrate the great influence of surface stress effect. It is observed that this influence quite depends on the magnitude of the surface elastic constants which are relevant to the selected material.

Keywords: nanomechanics, surface stress, free vibration, GDQ method, small scale effect

Procedia PDF Downloads 356
2268 Improving the Foult Ride through Capability and Stability of Wind Farms with DFIG Wind Turbine by Using Statcom

Authors: Abdulfetah Shobole, Arif Karakas, Ugur Savas Selamogullari, Mustafa Baysal

Abstract:

The concern of reducing emissions of Co2 from the fossil fuel generating units and using renewable energy sources increased in our world. Due this fact the integration ratio of wind farms to grid reached 20-30% in some part of our world. With increased integration of large MW scaled wind farms to the electric grid, the stability of the electrical system is a great concern. Thus, operators of power systems usually deman the wind turbine generators to obey the same rules as other traditional kinds of generation, such as thermal and hydro, i.e. not affect the grid stability. FACTS devices such as SVC or STATCOM are mostly installed close to the connection point of the wind farm to the grid in order to increase the stability especially during faulty conditions. In this paper wind farm with DFIG turbine type and STATCOM are dynamically modeled and simulated under three phase short circuit fault condition. The dynamic modeling is done by DigSILENT PowerFactory for the wind farm, STATCOM and the network. The simulation results show improvement of system stability near to the connection point of the STATCOM.

Keywords: DFIG wind turbine, statcom, dynamic modeling, digsilent

Procedia PDF Downloads 712
2267 Electrical and Piezoelectric Properties of Vanadium-Modified Lead-Free (K₀.₅Na₀.₅)NbO₃ Ceramics

Authors: Radhapiyari Laishram, Chongtham Jiten, K. Chandramani Singh

Abstract:

During the last decade, there has been a significant growth in developing lead-free piezoelectric ceramics which have the potential to replace the currently dominant but highly superior lead-based piezoelectric materials such as PZT. Among the lead-free piezoelectrics, (K0.5Na0.5)NbO3 - based piezoceramics are promising candidates due to their superior piezoelectric properties and high Curie temperatures. In this work, (K0.5Na0.5)(Nb1-xVx)O3 powders with x varying the range 0 to 0.05 were synthesized from the raw materials K2CO3, Na2CO3, Nb2O5, and V2O5. These powders were ball milled with high-energy Retsch PM 100 ball mill using isopropanol as the medium at the speed of 200rpm for a duration of 8h. The milled powders were sintered at 1080oC for 1h. The crystalline phase of all the calcined powders and corresponding ceramics prepared was found to be perovskite with orthorhombic symmetry. The ceramic with V5+ content of x=0.03 exhibits the maximum values in density of 4.292 g/cc, room temperature dielectric constant (εr) of 432, and piezoelectric charge constant (d33) of 93pC/N. For this sample, the dielectric tan δ loss remains relatively low over a wide temperature range. The temperature dependence of P-E hysteresis loops has been investigated for the ceramic composition with x = 0.03.

Keywords: dielectric properties, ferroelectric properties, perovskie, piezoelectric properties

Procedia PDF Downloads 335
2266 Resilience in the Face of Environmental Extremes through Networking and Resource Mobilization

Authors: Abdullah Al Mohiuddin

Abstract:

Bangladesh is one of the poorest countries in the world, and ranks low on almost all measures of economic development, thus leaving the population extremely vulnerable to natural disasters and climate events. 20% of GDP come from agriculture but more than 60% of the population relies on agriculture as their main source of income making the entire economy vulnerable to climate change and natural disasters. High population density exacerbates the exposure to and effect of climate events, and increases the levels of vulnerability, as does the poor institutional development of the country. The most vulnerable sectors to climate change impacts in Bangladesh are agriculture, coastal zones, water resources, forestry, fishery, health, biomass, and energy. High temperatures, heavy rainfall, high humidity and fairly marked seasonal variations characterize the climate in Bangladesh: Mild winter, hot humid summer and humid, warm rainy monsoon. Much of the country is flooded during the summer monsoon. The Department of Environment (DOE) under the Ministry of Environment and Forestry (MoEF) is the focal point for the United Nations Framework Convention on Climate Change (UNFCCC) and coordinates climate related activities in the country. Recently, a Climate Change Cell (CCC) has been established to address several issues including adaptation to climate change. The climate change focus started with The National Environmental Management Action Plan (NEMAP) which was prepared in 1995 in order to initiate the process to address environmental and climate change issues as long-term environmental problems for Bangladesh. Bangladesh was one of the first countries to finalise a NAPA (Preparation of a National Adaptation Plan of Action) which addresses climate change issues. The NAPA was completed in 2005, and is the first official initiative for mainstreaming adaptation to national policies and actions to cope with climate change and vulnerability. The NAPA suggests a number of adaptation strategies, for example: - Providing drinking water to coastal communities to fight the enhanced salinity caused by sea level rise, - Integrating climate change in planning and design of infrastructure, - Including climate change issues in education, - Supporting adaptation of agricultural systems to new weather extremes, - Mainstreaming CCA into policies and programmes in different sectors, e.g. disaster management, water and health, - Dissemination of CCA information and awareness raising on enhanced climate disasters, especially in vulnerable communities. Bangladesh has geared up its environment conservation steps to save the world’s poorest countries from the adverse effects of global warming. Now it is turning towards green economy policies to save the degrading ecosystem. Bangladesh is a developing country and always fights against Natural Disaster. At the same time we also fight for establishing ecological environment through promoting Green Economy/Energy by Youth Networking. ANTAR is coordinating a big Youth Network in the southern part of Bangladesh where 30 Youth group involved. It can be explained as the economic development based on sustainable development which generates growth and improvement in human’s lives while significantly reducing environmental risks and ecological scarcities. Green economy in Bangladesh promotes three bottom lines – sustaining economic, environment and social well-being.

Keywords: resilience, networking, mobilizing, resource

Procedia PDF Downloads 310
2265 Applying the Crystal Model Approach on Light Nuclei for Calculating Radii and Density Distribution

Authors: A. Amar

Abstract:

A new model, namely the crystal model, has been modified to calculate the radius and density distribution of light nuclei up to ⁸Be. The crystal model has been modified according to solid-state physics, which uses the analogy between nucleon distribution and atoms distribution in the crystal. The model has analytical analysis to calculate the radius where the density distribution of light nuclei has obtained from analogy of crystal lattice. The distribution of nucleons over crystal has been discussed in a general form. The equation that has been used to calculate binding energy was taken from the solid-state model of repulsive and attractive force. The numbers of the protons were taken to control repulsive force, where the atomic number was responsible for the attractive force. The parameter has been calculated from the crystal model was found to be proportional to the radius of the nucleus. The density distribution of light nuclei was taken as a summation of two clusters distribution as in ⁶Li=alpha+deuteron configuration. A test has been done on the data obtained for radius and density distribution using double folding for d+⁶,⁷Li with M3Y nucleon-nucleon interaction. Good agreement has been obtained for both the radius and density distribution of light nuclei. The model failed to calculate the radius of ⁹Be, so modifications should be done to overcome discrepancy.

Keywords: nuclear physics, nuclear lattice, study nucleus as crystal, light nuclei till to ⁸Be

Procedia PDF Downloads 176
2264 Advancing Early Intervention Strategies for United States Adolescents and Young Adults with Schizophrenia in the Post-COVID-19 Era

Authors: Peggy M. Randon, Lisa Randon

Abstract:

Introduction: The post-COVID-19 era has presented unique challenges for addressing complex mental health issues, particularly due to exacerbated stress, increased social isolation, and disrupted continuity of care. This article outlines relevant health disparities and policy implications within the context of the United States while maintaining international relevance. Methods: A comprehensive literature review (including studies, reports, and policy documents) was conducted to examine concerns related to childhood-onset schizophrenia and the impact on patients and their families. Qualitative and quantitative data were synthesized to provide insights into the complex etiology of schizophrenia, the effects of the pandemic, and the challenges faced by socioeconomically disadvantaged populations. Case studies were employed to illustrate real-world examples and areas requiring policy reform. Results: Early intervention in childhood is crucial for preventing or mitigating the long-term impact of complex psychotic disorders, particularly schizophrenia. A comprehensive understanding of the genetic, environmental, and physiological factors contributing to the development of schizophrenia is essential. The COVID-19 pandemic worsened symptoms and disrupted treatment for many adolescent patients with schizophrenia, emphasizing the need for adaptive interventions and the utilization of virtual platforms. Health disparities, including stigma, financial constraints, and language or cultural barriers, further limit access to care, especially for socioeconomically disadvantaged populations. Policy implications: Current US health policies inadequately support patients with schizophrenia. The limited availability of longitudinal care, insufficient resources for families, and stigmatization represent ongoing policy challenges. Addressing these issues necessitates increased research funding, improved access to affordable treatment plans, and cultural competency training for healthcare providers. Public awareness campaigns are crucial to promote knowledge, awareness, and acceptance of mental health disorders. Conclusion: The unique challenges faced by children and families in the US affected by schizophrenia and other psychotic disorders have yet to be adequately addressed on institutional and systemic levels. The relevance of findings to an international audience is emphasized by examining the complex factors contributing to the onset of psychotic disorders and their global policy implications. The broad impact of the COVID-19 pandemic on mental health underscores the need for adaptive interventions and global responses. Addressing policy challenges, improving access to care, and reducing the stigma associated with mental health disorders are crucial steps toward enhancing the lives of adolescents and young adults with schizophrenia and their family members. The implementation of virtual platforms can help overcome barriers and ensure equitable access to support and resources for all patients, enabling them to lead healthy and fulfilling lives.

Keywords: childhood, schizophrenia, policy, United, States, health, disparities

Procedia PDF Downloads 76
2263 Influence of Ball Milling Time on Mechanical Properties of Porous Ti-20Nb-5Ag Alloy

Authors: M. J. Shivaram, Shashi Bhushan Arya, Jagannath Nayak, Bharat Bhooshan Panigrahi

Abstract:

Titanium and its alloys have become more significant implant materials due to their mechanical properties, excellent biocompatibility and high corrosion resistance. Biomaterials can be produce by using the powder metallurgy (PM) methods and required properties can tailored by varying the processing parameters, such as ball milling time, space holder particles, and sintering temperature. The desired properties such as, structural and mechanical properties can be obtained by powder metallurgy method.  In the present study, deals with fabrication of solid and porous Ti-20Nb-5Ag alloy using high energy ball milling for different times (5 and 20 h). The resultant powder particles were used to fabricate solid and porous Ti-20Nb-5Ag alloy by adding space holder particles (NH4HCO3). The resultant powder particles, fabricated solid and porous samples were characterized by scanning electron microscopy (SEM). The compressive strength, elastic modulus and microhardness properties were investigated. Solid and porous Ti-20Nb-5Ag alloy samples showed good mechanical properties for 20 h ball milling time as compare to 5 h ball milling.

Keywords: ball milling, compressive strengths, microstructure, porous titanium alloy

Procedia PDF Downloads 300
2262 Synthesis of Carbonyl Iron Particles Modified with Poly (Trimethylsilyloxyethyl Methacrylate) Nano-Grafts

Authors: Martin Cvek, Miroslav Mrlik, Michal Sedlacik, Tomas Plachy

Abstract:

Magnetorheological elastomers (MREs) are multi-phase composite materials containing micron-sized ferromagnetic particles dispersed in an elastomeric matrix. Their properties such as modulus, damping, magneto-striction, and electrical conductivity can be controlled by an external magnetic field and/or pressure. These features of the MREs are used in the development of damping devices, shock attenuators, artificial muscles, sensors or active elements of electric circuits. However, imperfections on the particle/matrix interfaces result in the lower performance of the MREs when compared with theoretical values. Moreover, magnetic particles are susceptible to corrosion agents such as acid rains or sea humidity. Therefore, the modification of particles is an effective tool for the improvement of MRE performance due to enhanced compatibility between particles and matrix as well as improvements of their thermo-oxidation and chemical stability. In this study, the carbonyl iron (CI) particles were controllably modified with poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) nano-grafts to develop magnetic core–shell structures exhibiting proper wetting with various elastomeric matrices resulting in improved performance within a frame of rheological, magneto-piezoresistance, pressure-piezoresistance, or radio-absorbing properties. The desired molecular weight of PHEMATMS nano-grafts was precisely tailored using surface-initiated atom transfer radical polymerization (ATRP). The CI particles were firstly functionalized using a 3-aminopropyltriethoxysilane agent, followed by esterification reaction with α-bromoisobutyryl bromide. The ATRP was performed in the anisole medium using ethyl α-bromoisobutyrate as a macroinitiator, N, N´, N´´, N´´-pentamethyldiethylenetriamine as a ligand, and copper bromide as an initiator. To explore the effect PHEMATMS molecular weights on final properties, two variants of core-shell structures with different nano-graft lengths were synthesized, while the reaction kinetics were designed through proper reactant feed ratios and polymerization times. The PHEMATMS nano-grafts were characterized by nuclear magnetic resonance and gel permeation chromatography proving information to their monomer conversions, molecular chain lengths, and low polydispersity indexes (1.28 and 1.35) as the results of the executed ATRP. The successful modifications were confirmed via Fourier transform infrared- and energy-dispersive spectroscopies while expected wavenumber outputs and element presences, respectively, of constituted PHEMATMS nano-grafts, were occurring in the spectra. The surface morphology of bare CI and their PHEMATMS-grafted analogues was further studied by scanning electron microscopy, and the thicknesses of grafted polymeric layers were directly observed by transmission electron microscopy. The contact angles as a measure of particle/matrix compatibility were investigated employing the static sessile drop method. The PHEMATMS nano-grafts enhanced compatibility of hydrophilic CI with low-surface-energy hydrophobic polymer matrix in terms of their wettability and dispersibility in an elastomeric matrix. Thus, the presence of possible defects at the particle/matrix interface is reduced, and higher performance of modified MREs is expected.

Keywords: atom transfer radical polymerization, core-shell, particle modification, wettability

Procedia PDF Downloads 200
2261 A Wireless Sensor System for Continuous Monitoring of Particulate Air Pollution

Authors: A. Yawootti, P. Intra, P. Sardyoung, P. Phoosomma, R. Puttipattanasak, S. Leeragreephol, N. Tippayawong

Abstract:

The aim of this work is to design, develop and test the low-cost implementation of a particulate air pollution sensor system for continuous monitoring of outdoors and indoors particulate air pollution at a lower cost than existing instruments. In this study, measuring electrostatic charge of particles technique via high efficiency particulate-free air filter was carried out. The developed detector consists of a PM10 impactor, a particle charger, a Faraday cup electrometer, a flow meter and controller, a vacuum pump, a DC high voltage power supply and a data processing and control unit. It was reported that the developed detector was capable of measuring mass concentration of particulate ranging from 0 to 500 µg/m3 corresponding to number concentration of particulate ranging from 106 to 1012 particles/m3 with measurement time less than 1 sec. The measurement data of the sensor connects to the internet through a GSM connection to a public cellular network. In this development, the apparatus was applied the energy by a 12 V, 7 A internal battery for continuous measurement of about 20 hours. Finally, the developed apparatus was found to be close agreement with the import standard instrument, portable and benefit for air pollution and particulate matter measurements.

Keywords: particulate, air pollution, wireless communication, sensor

Procedia PDF Downloads 367
2260 Decoupling PM₂.₅ Emissions and Economic Growth in China over 1998-2016: A Regional Investment Perspective

Authors: Xi Zhang, Yong Geng

Abstract:

It is crucial to decouple economic growth from environmental pollution in China. This study aims to evaluate the decoupling degree between PM₂.₅ emissions and economic growth in China from a regional investment perspective. Using the panel data of 30 Chinese provinces for the period of 1998-2016, this study combines decomposition analysis with decoupling analysis to identify the roles of conventional factors and three novel investment factors in the mitigation and decoupling of PM₂.₅ emissions in China and its four sub-regions. The results show that China’s PM₂.₅ emissions were weakly decoupled to economic growth during the period of 1998-2016, as well as in China’s four sub-regions. At the national level, investment scale played the dominant role while investment structure had a marginal effect. In contrast, emission intensity was the largest driver in promoting the decoupling effect, followed by investment efficiency and energy intensity. The investment scale effect in the western region far exceeded those in other three sub-regions. At the provincial level, the investment structure of Inner Mongolia and investment scales of Xinjiang and Inner Mongolia had the greatest impacts on PM₂.₅ emission growth. Finally, several policy recommendations are raised for China to mitigate its PM₂.₅ emissions.

Keywords: decoupling, economic growth, investment, PM₂.₅ emissions

Procedia PDF Downloads 119
2259 Big Data and Health: An Australian Perspective Which Highlights the Importance of Data Linkage to Support Health Research at a National Level

Authors: James Semmens, James Boyd, Anna Ferrante, Katrina Spilsbury, Sean Randall, Adrian Brown

Abstract:

‘Big data’ is a relatively new concept that describes data so large and complex that it exceeds the storage or computing capacity of most systems to perform timely and accurate analyses. Health services generate large amounts of data from a wide variety of sources such as administrative records, electronic health records, health insurance claims, and even smart phone health applications. Health data is viewed in Australia and internationally as highly sensitive. Strict ethical requirements must be met for the use of health data to support health research. These requirements differ markedly from those imposed on data use from industry or other government sectors and may have the impact of reducing the capacity of health data to be incorporated into the real time demands of the Big Data environment. This ‘big data revolution’ is increasingly supported by national governments, who have invested significant funds into initiatives designed to develop and capitalize on big data and methods for data integration using record linkage. The benefits to health following research using linked administrative data are recognised internationally and by the Australian Government through the National Collaborative Research Infrastructure Strategy Roadmap, which outlined a multi-million dollar investment strategy to develop national record linkage capabilities. This led to the establishment of the Population Health Research Network (PHRN) to coordinate and champion this initiative. The purpose of the PHRN was to establish record linkage units in all Australian states, to support the implementation of secure data delivery and remote access laboratories for researchers, and to develop the Centre for Data Linkage for the linkage of national and cross-jurisdictional data. The Centre for Data Linkage has been established within Curtin University in Western Australia; it provides essential record linkage infrastructure necessary for large-scale, cross-jurisdictional linkage of health related data in Australia and uses a best practice ‘separation principle’ to support data privacy and security. Privacy preserving record linkage technology is also being developed to link records without the use of names to overcome important legal and privacy constraint. This paper will present the findings of the first ‘Proof of Concept’ project selected to demonstrate the effectiveness of increased record linkage capacity in supporting nationally significant health research. This project explored how cross-jurisdictional linkage can inform the nature and extent of cross-border hospital use and hospital-related deaths. The technical challenges associated with national record linkage, and the extent of cross-border population movements, were explored as part of this pioneering research project. Access to person-level data linked across jurisdictions identified geographical hot spots of cross border hospital use and hospital-related deaths in Australia. This has implications for planning of health service delivery and for longitudinal follow-up studies, particularly those involving mobile populations.

Keywords: data integration, data linkage, health planning, health services research

Procedia PDF Downloads 216
2258 Economic Load Dispatch with Valve-Point Loading Effect by Using Differential Evolution Immunized Ant Colony Optimization Technique

Authors: Nur Azzammudin Rahmat, Ismail Musirin, Ahmad Farid Abidin

Abstract:

Economic load dispatch is performed by the utilities in order to determine the best generation level at the most feasible operating cost. In order to guarantee satisfying energy delivery to the consumer, a precise calculation of generation level is required. In order to achieve accurate and practical solution, several considerations such as prohibited operating zones, valve-point effect and ramp-rate limit need to be taken into account. However, these considerations cause the optimization to become complex and difficult to solve. This research focuses on the valve-point effect that causes ripple in the fuel-cost curve. This paper also proposes Differential Evolution Immunized Ant Colony Optimization (DEIANT) in solving economic load dispatch problem with valve-point effect. Comparative studies involving DEIANT, EP and ACO are conducted on IEEE 30-Bus RTS for performance assessments. Results indicate that DEIANT is superior to the other compared methods in terms of calculating lower operating cost and power loss.

Keywords: ant colony optimization (ACO), differential evolution (DE), differential evolution immunized ant colony optimization (DEIANT), economic load dispatch (ELD)

Procedia PDF Downloads 449
2257 Spectroscopy Investigation of Ni0.5Zn0.5Fe2O4 Nano Ferrite Prepared by Soft Mechanochemical Synthesis

Authors: Z. Ž. Lazarević, Č. Jovalekić, V. N. Ivanovski, N. Ž. Romčević

Abstract:

Nickel-zinc ferrite, Ni0.5Zn0.5Fe2O4 was prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2, Zn(OH)2 and Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 5 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase Ni0.5Zn0.5Fe2O4 samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra alows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.

Keywords: ferrite, X-ray diffraction, infrared spectroscopy, Raman spectroscopy, Mössbauer spectroscopy

Procedia PDF Downloads 505
2256 An Analysis of Uncoupled Designs in Chicken Egg

Authors: Pratap Sriram Sundar, Chandan Chowdhury, Sagar Kamarthi

Abstract:

Nature has perfected her designs over 3.5 billion years of evolution. Research fields such as biomimicry, biomimetics, bionics, bio-inspired computing, and nature-inspired designs have explored nature-made artifacts and systems to understand nature’s mechanisms and intelligence. Learning from nature, the researchers have generated sustainable designs and innovation in a variety of fields such as energy, architecture, agriculture, transportation, communication, and medicine. Axiomatic design offers a method to judge if a design is good. This paper analyzes design aspects of one of the nature’s amazing object: chicken egg. The functional requirements (FRs) of components of the object are tabulated and mapped on to nature-chosen design parameters (DPs). The ‘independence axiom’ of the axiomatic design methodology is applied to analyze couplings and to evaluate if eggs’ design is good (i.e., uncoupled design) or bad (i.e., coupled design). The analysis revealed that eggs design is a good design, i.e., uncoupled design. This approach can be applied to any nature’s artifacts to judge whether their design is a good or a bad. This methodology is valuable for biomimicry studies. This approach can also be a very useful teaching design consideration of biology and bio-inspired innovation.

Keywords: uncoupled design, axiomatic design, nature design, design evaluation

Procedia PDF Downloads 173
2255 Transcending Boundaries: Integrating Urban Vibrancy with Contemporary Interior Design through Vivid Wall Pieces

Authors: B. C. Biermann

Abstract:

This in-depth exploration investigates the transformative integration of urban vibrancy into contemporary interior design through the strategic incorporation of vivid wall pieces. Bridging the gap between public dynamism and private tranquility, this study delves into the nuanced methodologies, creative processes, and profound impacts of this innovative approach. Drawing inspiration from street art's dynamic language and the timeless allure of natural beauty, these artworks serve as conduits, orchestrating a dialogue that challenges traditional boundaries and redefines the relationship between external chaos and internal sanctuaries. The fusion of urban vibrancy with contemporary interior design represents a paradigm shift, where the inherent dynamism of public spaces harmoniously converges with the curated tranquility of private environments. This paper aims to explore the underlying principles, creative processes, and transformative impacts of integrating vivid wall pieces as instruments for bringing the "outside in." Employing an innovative and meticulous methodology, street art elements are synthesized with the refined aesthetics of contemporary design. This delicate balance necessitates a nuanced understanding of both artistic realms, ensuring a synthesis that captures the essence of urban energy while seamlessly blending with the sophistication of modern interior design. The creative process involves a strategic selection of street art motifs, colors, and textures that resonate with the organic beauty found in natural landscapes, creating a symbiotic relationship between the grittiness of the streets and the elegance of interior spaces. This groundbreaking approach defies traditional boundaries by integrating dynamic street art into interior spaces, blurring the demarcation between external chaos and internal tranquility. Vivid wall pieces serve as dynamic focal points, transforming physical spaces and challenging conventional perceptions of where art belongs. This redefinition asserts that boundaries are fluid and meant to be transcended. Case studies illustrate the profound impact of integrating vivid wall pieces on the aesthetic appeal of interior spaces. Urban vibrancy revitalizes the atmosphere, infusing it with palpable energy that resonates with the vivacity of public spaces. The curated tranquility of private interiors coexists harmoniously with the dynamic visual language of street art, fostering a unique and evolving relationship between inhabitants and their living spaces. Emphasizing harmonious coexistence, the paper underscores the potential for a seamless dialogue between public urban spaces and private interiors. The integration of vivid wall pieces acts as a bridge rather than a dichotomy, merging the dynamism of street art with the curated elegance of contemporary design. This unique visual tapestry transcends traditional categorizations, fostering a symbiotic relationship between contrasting worlds. In conclusion, this paper posits that the integration of vivid wall pieces represents a transformative tool for contemporary interior design, challenging and redefining conventional boundaries. By strategically bringing the "outside in," this approach transforms interior spaces and heralds a paradigm shift in the relationship between urban aesthetics and contemporary living. The ongoing narrative between urban vibrancy and interior design creates spaces that reflect the dynamic and ever-evolving nature of the surrounding environment.

Keywords: Art Integration, Contemporary Interior Design, Interior Space Transformation, Vivid Wall Pieces

Procedia PDF Downloads 82
2254 Adsorption of Malachite Green Dye on Graphene Oxide Nanosheets from Aqueous Solution: Kinetics and Thermodynamics Studies

Authors: Abeer S. Elsherbiny, Ali H. Gemeay

Abstract:

In this study, graphene oxide (GO) nanosheets have been synthesized and characterized using different spectroscopic tools such as X-ray diffraction spectroscopy, infrared Fourier transform (FT-IR) spectroscopy, BET specific surface area and Transmission Electronic Microscope (TEM). The prepared GO was investigated for the removal of malachite green, a cationic dye from aqueous solution. The removal methods of malachite green has been proceeded via adsorption process. GO nanosheets can be predicted as a good adsorbent material for the adsorption of cationic species. The adsorption of the malachite green onto the GO nanosheets has been carried out at different experimental conditions such as adsorption kinetics, concentration of adsorbate, pH, and temperature. The kinetics of the adsorption data were analyzed using four kinetic models such as the pseudo first-order model, pseudo second-order model, intraparticle diffusion, and the Boyd model to understand the adsorption behavior of malachite green onto the GO nanosheets and the mechanism of adsorption. The adsorption isotherm of adsorption of the malachite green onto the GO nanosheets has been investigated at 25, 35 and 45 °C. The equilibrium data were fitted well to the Langmuir model. Various thermodynamic parameters such as the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) change were also evaluated. The interaction of malachite green onto the GO nanosheets has been investigated by infrared Fourier transform (FT-IR) spectroscopy.

Keywords: adsorption, graphene oxide, kinetics, malachite green

Procedia PDF Downloads 411
2253 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance

Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif

Abstract:

The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.

Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant

Procedia PDF Downloads 298
2252 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications

Authors: Ildar Akhmadullin, Mayank Tyagi

Abstract:

The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126℃, the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.

Keywords: downhole heat exchangers, geothermal power generation, organic rankine cycle, refrigerants, working fluids

Procedia PDF Downloads 315
2251 Driver Behavior Analysis and Inter-Vehicular Collision Simulation Approach

Authors: Lu Zhao, Nadir Farhi, Zoi Christoforou, Nadia Haddadou

Abstract:

The safety test of deploying intelligent connected vehicles (ICVs) on the road network is a critical challenge. Road traffic network simulation can be used to test the functionality of ICVs, which is not only time-saving and less energy-consuming but also can create scenarios with car collisions. However, the relationship between different human driver behaviors and the car-collision occurrences has been not understood clearly; meanwhile, the procedure of car-collisions generation in the traffic numerical simulators is not fully integrated. In this paper, we propose an approach to identify specific driver profiles from real driven data; then, we replicate them in numerical traffic simulations with the purpose of generating inter-vehicular collisions. We proposed three profiles: (i) 'aggressive': short time-headway, (ii) 'inattentive': long reaction time, and (iii) 'normal' with intermediate values of reaction time and time-headway. These three driver profiles are extracted from the NGSIM dataset and simulated using the intelligent driver model (IDM), with an extension of reaction time. At last, the generation of inter-vehicular collisions is performed by varying the percentages of different profiles.

Keywords: vehicular collisions, human driving behavior, traffic modeling, car-following models, microscopic traffic simulation

Procedia PDF Downloads 171
2250 Lean Mass and Fat Mass Distribution in Ukrainian Postmenopausal Women with Abdominal Овesity and Metabolic Syndrome

Authors: V. V. Povoroznyuk, Lar. P. Martynyuk, N. I. Dzerovych, Lil. P. Martyntyuk

Abstract:

Objective: Menopause-related changes in female body are associated with the greater risk of metabolic syndrome (MS), which includes obesity, dyslipidemia, impaired glucose tolerance, hypertension. The aim of our study was to reveal peculiarities of fat and lean mass distribution between postmenopausal women with abdominal obesity and with MS. Materials and Methods: The sample consisted of 43 postmenopausal 60 – 69 years old women (age: mean = 64,8; S.D. = 0,4); duration of menopause: mean = 14,5; S.D.= 0,9). The diagnosis of MS was considered according to IDF (2005 yr) criteria. Lean and fat mass distrubution were measured by dual-energy X-ray absortiometry, and were compared for the cohorts with and without MS. Data were analyzed using Statistical Package 6.0 (Statsoft). Results: Findings revealed that 24 (55,8 %) of postmenopausal women had MS. In patients with and without MS compared, fat mass was higher in the former group (41248,25±2263,89 and 29817,68±2397,78 respectively; F=11,9; p=0,001) and at different body regions also: gynoid fat (6563,72±348,19 and 5115,21±392,43 respectively; F=7,6; p=0,008), android fat (3815,45±200,8128 and 2798,15±282,79 respectively; F=9,06; p=0,004. Lean mass comparing didn’t show significant differences in female with and without MS (42548,0±1239,18 and 40667,53±1223,78 respectively; F=1,1; p=0,29) and at different body regions also. Conclusion: These findings suggest that in postmenopausal women with MS there is prevalence of fat mass without increasing of lean mass quantity in compare to female with abdominal obesity without MS.

Keywords: lean mass, fat mass, овesity, metabolic syndrome, women, postmenopausal period

Procedia PDF Downloads 460
2249 An Online Space for Practitioners in the Water, Sanitation and Hygiene Sector

Authors: Olivier Mills, Bernard McDonell, Laura A. S. MacDonald

Abstract:

The increasing availability and quality of internet access throughout the developing world provides an opportunity to utilize online spaces to disseminate water, sanitation and hygiene (WASH) knowledge to practitioners. Since 2001, CAWST has provided in-person education, training and consulting services to thousands of WASH practitioners all over the world, supporting them to start, troubleshoot, improve and expand their WASH projects. As CAWST continues to grow, the organization faces challenges in meeting demand from clients and in providing consistent, timely technical support. In 2012, CAWST began utilizing online spaces to expand its reach by developing a series of resources websites and webinars. CAWST has developed a WASH Education and Training resources website, a Biosand Filter (BSF) Knowledge Base, a Household Water Treatment and Safe Storage Knowledge Base, a mobile app for offline users, a live chat support tool, a WASH e-library, and a series of webinar-style online training sessions to complement its in-person capacity development services. In order to determine the preliminary outcomes of providing these online services, CAWST has monitored and analyzed registration to the online spaces, downloads of the educational materials, and webinar attendance; as well as conducted user surveys. The purpose of this analysis was to find out who was using the online spaces, where users came from, and how the resources were being used. CAWST’s WASH Resources website has served over 5,800 registered users from 3,000 organizations in 183 countries. Additionally, the BSF Knowledge Base has served over 1000 registered users from 68 countries, and over 540 people from 73 countries have attended CAWST’s online training sessions. This indicates that the online spaces are effectively reaching a large numbers of users, from a range of countries. A 2016 survey of the Biosand Filter Knowledge Base showed that approximately 61% of users are practitioners, and 39% are either researchers or students. Of the respondents, 46% reported using the BSF Knowledge Base to initiate a BSF project and 43% reported using the information to train BSF technicians. Finally, 61% indicated they would like even greater support from CAWST’s Technical Advisors going forward. The analysis has provided an encouraging indication that CAWST’s online spaces are contributing to its objective of engaging and supporting WASH practitioners to start, improve and expand their initiatives. CAWST has learned several lessons during the development of these online spaces, in particular related to the resources needed to create and maintain the spaces, and respond to the demand created. CAWST plans to continue expanding its online spaces, improving user experience of the sites, and involving new contributors and content types. Through the use of online spaces, CAWST has been able to increase its global reach and impact without significantly increasing its human resources by connecting WASH practitioners with the information they most need, in a practical and accessible manner. This paper presents on CAWST’s use of online spaces through the CAWST-developed platforms discussed above and the analysis of the use of these platforms.

Keywords: education and training, knowledge sharing, online resources, water and sanitation

Procedia PDF Downloads 266
2248 Computational Study of Flow and Heat Transfer Characteristics of an Incompressible Fluid in a Channel Using Lattice Boltzmann Method

Authors: Imdat Taymaz, Erman Aslan, Kemal Cakir

Abstract:

The Lattice Boltzmann Method (LBM) is performed to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a 2D channel with a built-in triangular prism. Both momentum and energy transport is modelled by the LBM. A uniform lattice structure with a single time relaxation rule is used. Interpolation methods are applied for obtaining a higher flexibility on the computational grid, where the information is transferred from the lattice structure to the computational grid by Lagrange interpolation. The flow is researched on for different Reynolds number, while Prandtl number is keeping constant as a 0.7. The results show how the presence of a triangular prism effects the flow and heat transfer patterns for the steady-state and unsteady-periodic flow regimes. As an evaluation of the accuracy of the developed LBM code, the results are compared with those obtained by a commercial CFD code. It is observed that the present LBM code produces results that have similar accuracy with the well-established CFD code, as an additionally, LBM needs much smaller CPU time for the prediction of the unsteady phonema.

Keywords: laminar forced convection, lbm, triangular prism

Procedia PDF Downloads 373
2247 MHD Stagnation-Point Flow over a Plate

Authors: H. Niranjan, S. Sivasankaran

Abstract:

Heat and mass transfer near a steady stagnation point boundary layer flow of viscous incompressible fluid through porous media investigates along a vertical plate is thoroughly studied under the presence of magneto hydrodynamic (MHD) effects. The fluid flow is steady, laminar, incompressible and in two-dimensional. The nonlinear differential coupled parabolic partial differential equations of continuity, momentum, energy and specie diffusion are converted into the non-similar boundary layer equations using similarity transformation, which are then solved numerically using the Runge-Kutta method along with shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.

Keywords: MHD, porous medium, slip, convective boundary condition, stagnation point

Procedia PDF Downloads 302
2246 Handover for Dense Small Cells Heterogeneous Networks: A Power-Efficient Game Theoretical Approach

Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz

Abstract:

In this paper, a non-cooperative game method is formulated where all players compete to transmit at higher power. Every base station represents a player in the game. The game is solved by obtaining the Nash equilibrium (NE) where the game converges to optimality. The proposed method, named Power Efficient Handover Game Theoretic (PEHO-GT) approach, aims to control the handover in dense small cell networks. Players optimize their payoff by adjusting the transmission power to improve the performance in terms of throughput, handover, power consumption and load balancing. To select the desired transmission power for a player, the payoff function considers the gain of increasing the transmission power. Then, the cell selection takes place by deploying Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). A game theoretical method is implemented for heterogeneous networks to validate the improvement obtained. Results reveal that the proposed method gives a throughput improvement while reducing the power consumption and minimizing the frequent handover.

Keywords: energy efficiency, game theory, handover, HetNets, small cells

Procedia PDF Downloads 127
2245 The Role of Poling Protocol on Augmentation of Magnetoelectricity in BCZT/NZFO Layered Composites

Authors: Pankhuri Bansal, Sanjeev Kumar

Abstract:

We examined the exotic role of electrical poling of layered BCZT-NZFO bulk composite for sustainable advancement of magnetoelectric (ME) technology. Practically, it seems quite difficult to access the full potential of ME composites due to their weak ME coupling performances. Using a standard poling protocol, we successfully deployed the coupling performance of laminated ME composite, comprised of a ferroelectric (FE) layer of BCZT and a ferrite layer of NZFO. However, the ME coupling constant of laminated composite is optimized by lowering the volume fraction of the FE component to strengthen the mechanical strain in the piezoelectric layer while fixing the thickness of the magnetostrictive ferrite layer. Here, we employed systematic zero field cooled (ZFC) and field cooled (FC) electrical poling protocol on morphotropic phase boundary (MPB) based BCZT composition, well-appreciated for it’s remarkable electromechanical activity. We report a record augmentation in magnetoelectric coupling as a consequence of a prudent field-cooled poling mechanism. On the basis of our findings, we emphasize that the degree of magnetoelectricity may be significantly improved for the miniaturization of efficient devices via proper execution of the poling technique.

Keywords: magnetoelectric, lead-free, ferroelctric, ferromagnetic, energy harvesting

Procedia PDF Downloads 43
2244 Controlling the Surface Morphology of the Biocompatible Hydroxyapatite Layer Deposited by Using a Flame-Coating

Authors: Nabaa M. Abdul Rahim, Mohammed A.Kadhim, Fadhil K. Fuliful

Abstract:

A biocompatible layer is prepared from calcium phosphate, which plays a role in building damaged bones and is used in many applications. In this research, calcium phosphate is coated on stainless steel substrates (SS 316) by using the flame coating. FE-SEM images show that the behavior of the sample surfaces varies with distance, at 3cm, appeared with nanostructures of bumps shaped of diameter about 317 nm. The contents of the elements are analyzed by energy-dispersive X-ray spectroscopy (EDX). The chemical elements C, Ca, Fe, Ni, Cr, Mn and O corresponding to calcium phosphate and the alloy are revealed by EDX analysis of the coating layer. XRD patterns for the calcium phosphate layers indicate the formation of the Hap layer on the deposited layers. The samples are immersed in a solution of simulated body fluids (SBF) for 21 days to examine the biocompatibility, as the tests show that the calcium phosphate ratio of 1.65 is the appropriate and biocompatible ratio in the human body. The assays show antibacterial activity using the diffusion disk procedure. On the surface of the agar, observed infested E.coli bacteria and incubated for 24 hours at 37°C. Bacteria grow on the entire agar rather than in some areas around some samples at a distance of 3 cm from the flame hole.

Keywords: biomaterial, flame coating, antibacterial activity, stainless steel

Procedia PDF Downloads 97
2243 Modular Probe for Basic Monitoring of Water and Air Quality

Authors: Andrés Calvillo Téllez, Marianne Martínez Zanzarric, José Cruz Núñez Pérez

Abstract:

A modular system that performs basic monitoring of both water and air quality is presented. Monitoring is essential for environmental, aquaculture, and agricultural disciplines, where this type of instrumentation is necessary for data collection. The system uses low-cost components, which allows readings close to those with high-cost probes. The probe collects readings such as the coordinates of the geographical position, as well as the time it records the target parameters of the monitored. The modules or subsystems that make up the probe are the global positioning (GPS), which shows the altitude, latitude, and longitude data of the point where the reading will be recorded, a real-time clock stage, the date marking the time, the module SD memory continuously stores data, data acquisition system, central processing unit, and energy. The system acquires parameters to measure water quality, conductivity, pressure, and temperature, and for air, three types of ammonia, dioxide, and carbon monoxide gases were censored. The information obtained allowed us to identify the schedule of modification of the parameters and the identification of the ideal conditions for the growth of microorganisms in the water.

Keywords: calibration, conductivity, datalogger, monitoring, real time clock, water quality

Procedia PDF Downloads 103
2242 Influence of Cryo-Grinding on Antioxidant Activity and Amount of Free Phenolic Acids, Rutin and Tyrosol in Whole Grain Buckwheat and Pumpkin Seed Cake

Authors: B. Voucko, M. Benkovic, N. Cukelj, S. Drakula, D. Novotni, S. Balbino, D. Curic

Abstract:

Oxidative stress is considered as one of the causes leading to metabolic disorders in humans. Therefore, the ability of antioxidants to inhibit free radical production is their primary role in the human organism. Antioxidants originating from cereals, especially flavonoids and polyphenols, are mostly bound and indigestible. Micronization damages the cell wall which consecutively results in bioactive material to be more accessible in vivo. In order to ensure complete fragmentation, micronization is often combined with high temperatures (e.g., for bran 200°C) which can lead to degradation of bioactive compounds. The innovative non-thermal technology of cryo-milling is an ultra-fine micronization method that uses liquid nitrogen (LN2) at a temperature of 195°C to freeze and cool the sample during milling. Freezing at such low temperatures causes the material to become brittle which ensures the generation of fine particles while preserving the bioactive content of the material. The aim of this research was to determine if production of ultra-fine material with cryo-milling will result in the augmentation of available bioactive compounds of buckwheat and pumpkin seed cake. For that reason, buckwheat and pumpkin seed cake were ground in a ball mill (CryoMill, Retch, Germany) with and without the use of LN2 for 8 minutes, in a 50 mL stainless steel jar containing one grinding ball (Ø 25 mm) at an oscillation frequency of 30 Hz. The cryo-milled samples were cooled with LN2 for 2 minutes prior to milling, followed by the first cycle of milling (4 minutes), intermediary cooling (2 minutes), and finally the second cycle of milling (further 4 minutes). A continuous process of milling was applied to the samples ground without freezing with LN2. Particle size distribution was determined using the Scirocco 2000 dry dispersion unit (Malvern Instruments, UK). Antioxidant activity was determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test and ferric reducing antioxidant power (FRAP) assay, while the total phenol content was determined using the Folin Ciocalteu method, using the ultraviolet-visible spectrophotometer (Specord 50 Plus, Germany). The content of the free phenolic acids, rutin in buckwheat, tyrosol in pumpkin seed cake, was determined with an HPLC-PDA method (Agilent 1200 series, Germany). Cryo-milling resulted in 11 times smaller size of buckwheat particles, and 3 times smaller size of pumpkin seed particles than milling without the use of LN2, but also, a lower uniformity of the particle size distribution. Lack of freezing during milling of pumpkin seed cake caused a formation of agglomerates due to its high-fat content (21 %). Cryo-milling caused augmentation of buckwheat flour antioxidant activity measured by DPPH test (23,9%) and an increase in available rutin content (14,5%). Also, it resulted in an augmentation of the total phenol content (36,9%) and available tyrosol content (12,5%) of pumpkin seed cake. Antioxidant activity measured with the FRAP test, as well as the content of phenolic acids remained unchanged independent of the milling process. The results of this study showed the potential of cryo-milling for complete raw material utilization in the food industry, as well as a tool for extraction of aimed bioactive components.

Keywords: bioactive, ball-mill, buckwheat, cryo-milling, pumpkin seed cake

Procedia PDF Downloads 132
2241 Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method

Authors: A. Ashok, K.Satapathy, B. Prerana Nashine

Abstract:

The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium.

Keywords: participating media, finite volume method, radiation coupled with conduction, transient radiative heat transfer

Procedia PDF Downloads 389