Search results for: wool fiber
436 Effect of Surface Treatment on Physico-Mechanical Properties of Sisal Fiber-Unsaturated Polyester Composites
Authors: A. H. Birniwa, A. A. Salisu, M. Y. Yakasai, A. Sabo, K. Aujara, A. Isma’il
Abstract:
Sisal fibre was extracted from Sisal leaves by enzymatic retting method. A portion of the fibre was subjected to treatment with alkali, benzoyl chloride and silane compounds. Sisal fibre composites were fabricated using unsaturated polyester resin, by hand lay-up technique using both the treated and untreated fibre. Tensile, flexural and water absorption tests were conducted and evaluated on the composites. The results obtained were found to increase in the treated fibre compared to untreated fibre. Surface morphology of the fibre was observed using scanning electron microscopy (SEM) and the result obtained showed variation in the morphology of the treated and untreated fibre. FT-IR results showed inclusion of benzoyl and silane groups on the fibre surface. The fibre chemical modification improves its adhesion to the matrix, mechanical properties of the composites were also found to improve.Keywords: composite, flexural strength, matrix, sisal fibre
Procedia PDF Downloads 395435 Recycling of Post-Industrial Cotton Wastes: Quality and Rotor Spinning of Reclaimed Fibers
Authors: Béchir Wanassi, Béchir Azzouz, Taher Halimi, Mohamed Ben Hassen
Abstract:
Mechanical recycling of post-industrial cotton yarn wastes, as well as the effects of passage number on the properties of reclaimed fibers, have been investigated. A new Modified Fiber Quality Index (MFQI) and Spinning Consistency Index (MSCI) for the characterization of the quality are presented. This index gives the real potential of spinnability according to its physical properties. The best quality of reclaimed fibers (after 7th passage) was used to produce rotor yarns. 100% recycling cotton yarns were produced in open-end spinning system with different rotor speed (i.e. 65000, 70000, and 80000 rpm), opening roller speed (i.e. 7700, 8200, and 8700 rpm) and twist factor (i.e. 137, 165, and 183). The effects of spinning parameters were investigated to evaluate a 100% recycling cotton yarns quality (TQI, hairiness, thin places, and thick places) using DOE method.Keywords: cotton wastes, DOE, mechanical recycling, rotor spinning
Procedia PDF Downloads 306434 Continuous Dyeing of Graphene and Polyaniline on Textiles for Electromagnetic Interference Shielding: An Application of Intelligent Fabrics
Authors: Mourad Makhlouf, Meriem Boutamine, Hachemi Hichem, Zoubir Benmaamar, Didier Villemin
Abstract:
This study explores the use of intelligent textiles for electromagnetic shielding through the continuous dyeing of graphene and polyaniline onto cotton fabric. Graphene was obtained by recycling graphite from spent batteries, and polyaniline was obtained in situ using H2O2. Graphene and polyaniline were bottom-modified on the fiber surface to improve adhesion and achieve a uniform distribution. This study evaluated the effect of the specific gravity percentage on sheet performance and active shielding against electromagnetic interference (EMI). Results showed that the dyed fabrics of graphene, polyaniline, and graphene/polyaniline demonstrated higher conductivity and EMI SE values of 9 to 16 dB in the 8 to 9 GHz range of the X-band, with potential applications in electromagnetic shielding. The use of intelligent textiles offers a sustainable and effective approach to achieving EMI shielding, with the added benefits of recycling waste materials and improving the properties of cotton fabrics.Keywords: 'ntelligent textiles, graphene, polyaniline, electromagnetic shielding, conductivity, recycling.
Procedia PDF Downloads 38433 Investigation of Comfort Properties of Knitted Fabrics
Authors: Mehmet Karahan, Nevin Karahan
Abstract:
Water and air permeability and thermal resistance of fabrics are the important attributes which strongly influence the thermo-physiological comfort properties of sportswear fabrics in different environmental conditions. In this work, terry and fleece fabrics were developed by varying the fiber content and areal density of fabrics. Further, the thermo-physical properties, including air permeability, water vapor permeability, and thermal resistance, of the developed fabrics were analyzed before and after washing. The multi-response optimization of thermo-physiological comfort properties was done by using principal component analysis (PCA) and Taguchi signal to noise ratio (PCA-S/N ratio) for optimal properties. It was found that the selected parameters resulted in a significant effect on thermo-physiological comfort properties of knitted fabrics. The PCA analysis showed that before wash, 100% cotton fabric with an aerial weight of 220 g.m⁻² gave optimum values of thermo-physiological comfort.Keywords: thermo-physiological comfort, fleece knitted fabric, air permeability, water vapor transmission, cotton/polyester
Procedia PDF Downloads 117432 Determining the Mode II Intra Ply Energy Release Rate of Composites Made of Prepreg
Authors: Philip Rose, Markus Linke, David Busquets
Abstract:
The distinction between interlaminar and intralaminar fracture toughness has already been investigated by several authors. For loading mode I, the double cantilever beam specimens were often used for the interlaminar fracture toughness and the compact tension specimen for the intralaminar fracture toughness. In order to minimize the influence of the different specimen geometries, a method was developed which allows the determination of both the interlaminar and the intralaminar fracture toughness on an almost identical specimen geometry. However, as this method is not applicable to prepreg semi-finished products, a further modification was developed, which is also suitable for prepreg laminates. After the successful application for the investigation of mode I with this method, the application of the method for loading mode II is presented in this paper. In addition to manufacturing differences, due to an additional fiber ply in which the controlled crack growth takes place, the adapted test procedure is also explained. By comparing the test results of standardized end-notched flexure (ENF) specimens with those of the modified ENF specimen, the difference between the interlaminar and intralaminar fracture toughness of the material Hexply 8552/IM7 is shown.Keywords: ENF, fracture toughness, interlaminar, mode II
Procedia PDF Downloads 136431 Improving Concrete Properties with Fibers Addition
Authors: E. Mello, C. Ribellato, E. Mohamedelhassan
Abstract:
This study investigated the improvement in concrete properties with addition of cellulose, steel, carbon and PET fibers. Each fiber was added at four percentages to the fresh concrete, which was moist-cured for 28-days and then tested for compressive, flexural and tensile strengths. Changes in strength and increases in cost were analyzed. Results showed that addition of cellulose caused a decrease between 9.8% and 16.4% in compressive strength. This range may be acceptable as cellulose fibers can significantly increase the concrete resistance to fire, and freezing and thawing cycles. Addition of steel fibers to concrete increased the compressive strength by up to 20%. Increases 121.5% and 80.7% were reported in tensile and flexural strengths respectively. Carbon fibers increased flexural and tensile strengths by up to 11% and 45%, respectively. Concrete strength properties decreased after the addition of PET fibers. Results showed that improvement in strength after addition of steel and carbon fibers may justify the extra cost of fibers.Keywords: concrete, compressive strength, fibers, flexural strength, tensile strength
Procedia PDF Downloads 442430 Differences in Preschool Educators' and Parents' Interactive Behavior during a Cooperative Task with Children
Authors: Marina Fuertes
Abstract:
Introduction: In everyday life experiences, children are solicited to cooperate with others. Often they perform cooperative tasks with their parents (e.g., setting the table for dinner) or in school. These tasks are very significant since children may learn to turn taking in interactions, to participate as well to accept others participation, to trust, to respect, to negotiate, to self-regulate their emotions, etc. Indeed, cooperative tasks contribute to children social, motor, cognitive and linguistic development. Therefore, it is important to study what learning, social and affective experiences are provided to children during these tasks. In this study, we included parents and preschool educators. Parents and educators are both significant: educative, interactive and affective figures. Rarely parents and educators behavior have been compared in studies about cooperative tasks. Parents and educators have different but complementary styles of interaction and communication. Aims: Therefore, this study aims to compare parents and educators' (of both genders) interactive behavior (cooperativity, empathy, ability to challenge the child, reciprocity, elaboration) during a play/individualized situation involving a cooperative task. Moreover, to compare parents and educators' behavior with girls and boys. Method: A quasi-experimental study with 45 dyads educators-children and 45 dyads with parents and their children. In this study, participated children between 3 and 5 years old and with age appropriate development. Adults and children were videotaped using a variety of materials (e.g., pencils, wood, wool) and tools (e.g., scissors, hammer) to produce together something of their choice during 20-minutes. Each dyad (one adult and one child) was observed and videotaped independently. Adults and children agreed and consented to participate. Experimental conditions were suitable, pleasant and age appropriated. Results: Findings indicate that parents and teachers offer different learning experiences. Teachers were more likely to challenged children to explore new concepts and to accept children ideas. In turn, parents gave more support to children actions and were more likely to use their own example to teach children. Multiple regression analysis indicates that parent versus educator status predicts their behavior. Gender of both children and adults affected the results. Adults acted differently with girls and boys (e.g., adults worked more cooperatively with girls than boys). Male participants supported more girls participation rather than boys while female adults allowed boys to make more decisions than girls. Discussion: Taking our results and past studies, we learn that different qualitative interactions and learning experiences are offered by parents, educators according to parents and children gender. Thus, the same child needs to learn different cooperative strategies according to their interactive patterns and specific context. Yet, cooperative play and individualized activities with children generate learning opportunities and benefits children participation and involvement.Keywords: early childhood education, parenting, gender, cooperative tasks, adult-child interaction
Procedia PDF Downloads 324429 A Thermal Analysis Based Approach to Obtain High Carbonaceous Fibers from Chicken Feathers
Authors: Y. Okumuş, A. Tuna, A. T. Seyhan, H. Çelebi
Abstract:
Useful carbon fibers were derived from chicken feathers (PCFs) based on a two-step pyrolysis method. The collected PCFs were cleaned and categorized as black, white and brown. Differential scanning calorimeter (DSC) and thermo-gravimetric analyzer (TGA) were systemically used to design the pyrolysis steps. Depending on colors, feathers exhibit different glass transition (Tg) temperatures. Long-time heat treatment applied to the feathers emerged influential on the surface quality of the resulting carbon fibers. Fourier Transformation Infrared (FTIR) examination revealed that the extent of disulfide bond cleavage is highly associated with the feather melting stability. Scanning electron microscopy (SEM) examinations were employed to evaluate the morphological changes of feathers after pyrolysis. Of all, brown feathers were found to be the most promising to turn into useful carbon fibers without any trace of melting and shape distortion when pyrolysis was carried out at 230°C for 24 hours and at 450°C for 1 hour.Keywords: poultry chicken feather, keratin protein fiber, pyrolysis, high carbonaceous fibers
Procedia PDF Downloads 329428 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel
Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler
Abstract:
Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process
Procedia PDF Downloads 135427 Synthesis of Smart Materials Based on Polyaniline Coated Fibers
Authors: Mihaela Beregoi, Horia Iovu, Cristina Busuioc, Alexandru Evanghelidis, Elena Matei, Monica Enculescu, Ionut Enculescu
Abstract:
Nanomaterials field is very attractive for all researchers who are attempting to develop new devices with the same or improved properties than the micro-sized ones, while reducing the reagents and power consumptions. In this way, a wide range of nanomaterials were fabricated and integrated in applications for electronics, optoelectronics, solar cells, tissue reconstruction and drug delivery. Obviously, the most appealing ones are those dedicated to the medical domain. Different types of nano-sized materials, such as particles, fibers, films etc., can be synthesized by using physical, chemical or electrochemical methods. One of these techniques is electrospinning, which enable the production of fibers with nanometric dimensions by pumping a polymeric solution in a high electric field; due to the electrostatic charging and solvent evaporation, the precursor mixture is converted into nonwoven meshes with different fiber densities and mechanical properties. Moreover, polyaniline is a conducting polymer with interesting optical properties, suitable for displays and electrochromic windows. Otherwise, polyaniline is an electroactive polymer that can contract/expand by applying electric stimuli, due to the oxidation/reduction reactions which take place in the polymer chains. These two main properties can be exploited in order to synthesize smart materials that change their dimensions, exhibiting in the same time good electrochromic properties. In the context aforesaid, a poly(methyl metacrylate) solution was spun to get webs composed of fibers with diameter values between 500 nm and 1 µm. Further, the polymer meshes were covered with a gold layer in order to make them conductive and also appropriate as working electrode in an electrochemical cell. The gold shell was deposited by DC sputtering. Such metalized fibers can be transformed into smart materials by covering them with a thin layer of conductive polymer. Thus, the webs were coated with a polyaniline film by the electrochemical route, starting from and aqueous solution of aniline and sulfuric acid, where sulfuric acid acts as oxidant agent. For the polymerization of aniline, a saturated calomel electrode was employed as reference, a platinum plate as counter electrode and the gold covered webs as working electrode. Chronoamperometry was selected as deposition method for polyaniline, by modifying the deposition time. Metalized meshes with different fiber densities were used, the transmission ranging between 70 and 80 %. The morphological investigation showed that polyaniline layer has a granular structure for all deposition experiments. As well, some preliminary optical tests were done by using sulfuric acid as electrolyte, which revealed the modification of polyaniline colour from green to dark blue when applying a voltage. In conclusion, new multilayered materials were obtained by a simple approach: the merge of the electrospinning method benefits with polyaniline chemistry. This synthesis method allows the fabrication of structures with reproducible characteristics, suitable for display or tissue substituents.Keywords: electrospinning, fibers, smart materials, polyaniline
Procedia PDF Downloads 293426 Performance of Modified Wedge Anchorage System for Pre-Stressed FRP Bars
Authors: Othman S. Alsheraida, Sherif El-Gamal
Abstract:
Fiber Reinforced Polymers (FRP) is a composite material with exceptional properties that are capable of replacing conventional steel reinforcement in reinforced and pre-stressed concrete structures. However, the main obstacle for their wide use in the pre-stressed concrete application is the anchorage system. Due to the weakness of FRP in the transverse direction, the pre-stressing capacity of FRP bars is limited. This paper investigates the modification of the conventional wedge anchorage system to be used for stressing of FRP bars in pre-stressed applications. Epoxy adhesive material with glass FRP (GFRP) bars and conventional steel wedge were used in this paper. The GFRP bars are encased with epoxy at the anchor zone and the wedge system was used in the pull-out test. The results showed a loading capacity of 47.6 kN which is 69% of the bar ultimate capacity. Additionally, nylon wedge was made with the same dimensions of the steel wedge and tested for GFRP bars without epoxy layer. The nylon wedge showed a loading capacity of 19.7 kN which is only 28.5% of the ultimate bar capacity.Keywords: anchorage, concrete, epoxy, frp, pre-stressed
Procedia PDF Downloads 296425 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite
Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan
Abstract:
Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.Keywords: natural fibers, polymer matrix composites, jute, compression molding, biodegradation
Procedia PDF Downloads 145424 Punching Shear Strengthening of Reinforced Concrete Flat Slabs Using Internal Square Patches of Carbon Fiber Reinforced Polymer
Authors: Malik Assi
Abstract:
This research presents a strengthening technique for enhancing the punching shear resistance of concrete flat slabs. Internal square patches of CFRP were centrally installed inside 450*450mm concrete panels during casting at a chosen distance from the tension face to produce six simply supported samples. The dimensions of those patches ranged from 50*50mm to 360*360mm. All the examined slabs contained the same amount of tensile reinforcement, had identical dimensions, were designed according to the American Concrete Institute code (ACI) and tested to failure. Compared to the control unstrengthened spacemen, all the strengthened slabs have shown an enhancement in punching capacity and stiffness. This enhancement has been found to be proportional to the area of the installed CFRP patches. In addition to the reasonably enhanced stiffness and punching shear, this strengthening technique can change the slab failure mode from shear to flexural.Keywords: CFRP patches, Flat slabs, Flexural, Stiffness, Punching shear
Procedia PDF Downloads 266423 Raman Line Mapping on Melt Spun Polycarbonate/MWNT Fiber-Based Nanocomposites
Authors: Poonam Yadav, Dong Bok Lee
Abstract:
Raman spectroscopy was used for characterization of multi-wall carbon nanotube (MWNT) and Polycarbonate/multi-wall carbon nanotube (PC/MWNT) based fibers with 0.55% and 0.75% of MWNT (PC/MWNT55 and PC/MWNT75). PC/MWNT55 and PC/MWNT75 fibers was prepared by melt spinning device using nanocomposites made by two different route, viz., solvent casting and melt extrusion. Fibers prepared from melt extruded nanocomposites showed smooth and uniform morphology as compared to solvent casting based nanocomposites. The Raman mapping confirmed that the melt extruded based nanocomposites had better dispersion of MWNT in Polycarbonate (PC) than solvent casting carbon nanotube.Keywords: dispersion, melt extrusion, multi-wall carbon nanotube, mapping
Procedia PDF Downloads 347422 Nanostructural Analysis of the Polylactic Acid (PLA) Fibers Functionalized by RF Plasma Treatment
Authors: J. H. O. Nascimento, F. R. Oliveira, K. K. O. S. Silva, J. Neves, V. Teixeira, J. Carneiro
Abstract:
These the aliphatic polyesters such as Polylactic Acid (PLA) in the form of fibers, nanofibers or plastic films, generally possess chemically inert surfaces, free porosity, and surface free energy (ΔG) lesser than 32 mN/m. It is therefore considered a low surface energy material, consequently has a low work of adhesion. For this reason, the products manufactured using these polymers are often subjected to surface treatments in order to change its physic-chemical surface, improving their wettability and the Work of Adhesion (WA). Plasma Radio Frequency low pressure (RF) treatment was performed in order to improve the Work of Adhesion (WA) on PLA fibers. Different parameters, such as, power, ratio of working gas (Argon/Oxygen) and treatment time were used to optimize the plasma conditions to modify the PLA surface properties. With plasma treatment, a significant increase in the work of adhesion on PLA fiber surface was observed. The analysis performed by XPS showed an increase in polar functional groups and the SEM and AFM image revealed a considerable increase in roughness.Keywords: RF plasma, surface modification, PLA fabric, atomic force macroscopic, Nanotechnology
Procedia PDF Downloads 537421 Use of Natural Fibers in Landfill Leachate Treatment
Authors: Araujo J. F. Marina, Araujo F. Marcus Vinicius, Mulinari R. Daniella
Abstract:
Due to the resultant leachate from waste decomposition in landfills has polluter potential hundred times greater than domestic sewage, this is considered a problem related to the depreciation of environment requiring pre-disposal treatment. In seeking to improve this situation, this project proposes the treatment of landfill leachate using natural fibers intercropped with advanced oxidation processes. The selected natural fibers were palm, coconut and banana fiber. These materials give sustainability to the project because, besides having adsorbent capacity, are often part of waste discarded. The study was conducted in laboratory scale. In trials, the effluents were characterized as Chemical Oxygen Demand (COD), Turbidity and Color. The results indicate that is technically promising since that there were extremely oxidative conditions, the use of certain natural fibers in the reduction of pollutants in leachate have been obtained results of COD removals between 67.9% and 90.9%, Turbidity between 88.0% and 99.7% and Color between 67.4% and 90.4%. The expectation generated is to continue evaluating the association of efficiency of other natural fibers with other landfill leachate treatment processes.Keywords: lndfill leachate, chemical treatment, natural fibers, advanced oxidation processes
Procedia PDF Downloads 357420 Optimization of Cutting Forces in Drilling of Polimer Composites via Taguchi Methodology
Authors: Eser Yarar, Fahri Vatansever, A. Tamer Erturk, Sedat Karabay
Abstract:
In this study, drilling behavior of multi-layer orthotropic polyester composites reinforced with woven polyester fiber and PTFE particle was investigated. Conventional drilling methods have low cost and ease of use. Therefore, it is one of the most preferred machining methods. The increasing range of use of composite materials in many areas has led to the investigation of the machinability performance of these materials. The drilling capability of the synthetic polymer composite material was investigated by measuring the cutting forces using different tool diameters, feed rate and high cutting speed parameters. Cutting forces were measured using a dynamometer in the experiments. In order to evaluate the results of the experiment, the Taguchi experimental design method was used. According to the results, the optimum cutting parameters were obtained for 0.1 mm/rev, 1070 rpm and 2 mm diameter drill bit. Verification tests were performed for the optimum cutting parameters obtained according to the model. Verification experiments showed the success of the established model.Keywords: cutting force, drilling, polimer composite, Taguchi
Procedia PDF Downloads 162419 Development of PCL/Chitosan Core-Shell Electrospun Structures
Authors: Hilal T. Sasmazel, Seda Surucu
Abstract:
Skin tissue engineering is a promising field for the treatment of skin defects using scaffolds. This approach involves the use of living cells and biomaterials to restore, maintain, or regenerate tissues and organs in the body by providing; (i) larger surface area for cell attachment, (ii) proper porosity for cell colonization and cell to cell interaction, and (iii) 3-dimensionality at macroscopic scale. Recent studies on this area mainly focus on fabrication of scaffolds that can closely mimic the natural extracellular matrix (ECM) for creation of tissue specific niche-like environment at the subcellular scale. Scaffolds designed as ECM-like architectures incorporating into the host with minimal scarring/pain and facilitate angiogenesis. This study is related to combining of synthetic PCL and natural chitosan polymers to form 3D PCL/Chitosan core-shell structures for skin tissue engineering applications. Amongst the polymers used in tissue engineering, natural polymer chitosan and synthetic polymer poly(ε-caprolactone) (PCL) are widely preferred in the literature. Chitosan has been among researchers for a very long time because of its superior biocompatibility and structural resemblance to the glycosaminoglycan of bone tissue. However, the low mechanical flexibility and limited biodegradability properties reveals the necessity of using this polymer in a composite structure. On the other hand, PCL is a versatile polymer due to its low melting point (60°C), ease of processability, degradability with non-enzymatic processes (hydrolysis) and good mechanical properties. Nevertheless, there are also several disadvantages of PCL such as its hydrophobic structure, limited bio-interaction and susceptibility to bacterial biodegradation. Therefore, it became crucial to use both of these polymers together as a hybrid material in order to overcome the disadvantages of both polymers and combine advantages of those. The scaffolds here were fabricated by using electrospinning technique and the characterizations of the samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-Ray Photoelectron spectroscopy (XPS). Additionally, gas permeability test, mechanical test, thickness measurement and PBS absorption and shrinkage tests were performed for all type of scaffolds (PCL, chitosan and PCL/chitosan core-shell). By using ImageJ launcher software program (USA) from SEM photographs the average inter-fiber diameter values were calculated as 0.717±0.198 µm for PCL, 0.660±0.070 µm for chitosan and 0.412±0.339 µm for PCL/chitosan core-shell structures. Additionally, the average inter-fiber pore size values exhibited decrease of 66.91% and 61.90% for the PCL and chitosan structures respectively, compare to PCL/chitosan core-shell structures. TEM images proved that homogenous and continuous bead free core-shell fibers were obtained. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. Measured average gas permeability value of produced PCL/chitosan core-shell structure was determined 2315±3.4 g.m-2.day-1. In the future, cell-material interactions of those developed PCL/chitosan core-shell structures will be carried out with L929 ATCC CCL-1 mouse fibroblast cell line. Standard MTT assay and microscopic imaging methods will be used for the investigation of the cell attachment, proliferation and growth capacities of the developed materials.Keywords: chitosan, coaxial electrospinning, core-shell, PCL, tissue scaffold
Procedia PDF Downloads 481418 Hyperelastic Formulation for Orthotropic Materials
Authors: Daniel O'Shea, Mario M. Attard, David C. Kellermann
Abstract:
In this paper, we propose a hyperelastic strain energy function that maps isotopic hyperelastic constitutive laws for the use of orthotropic materials without the use of structural tensors or any kind of fiber vector, or the use of standard invariants. In particular, we focus on neo-Hookean class of models and represent them using an invariant-free formulation. To achieve this, we revise the invariant-free formulation of isotropic hyperelasticity. The formulation uses quadruple contractions between fourth-order tensors, rather than scalar products of scalar invariants. We also propose a new decomposition of the orthotropic Hookean stiffness tensor into two fourth-order Lamé tensors that collapse down to the classic Lamé parameters for isotropic continua. The resulting orthotropic hyperelastic model naturally maintains all of the advanced properties of the isotropic counterparts, and similarly collapse back down to their isotropic form by nothing more than equality of parameters in all directions (isotropy). Comparisons are made with large strain experimental results for transversely isotropic rubber type materials under tension.Keywords: finite strain, hyperelastic, invariants, orthotropic
Procedia PDF Downloads 446417 Structure and Properties of Meltblown Polyetherimide as High Temperature Filter Media
Authors: Gajanan Bhat, Vincent Kandagor, Daniel Prather, Ramesh Bhave
Abstract:
Polyetherimide (PEI), an engineering plastic with very high glass transition temperature and excellent chemical and thermal stability, has been processed into a controlled porosity filter media of varying pore size, performance, and surface characteristics. A special grade of the PEI was processed by melt blowing to produce microfiber nonwovens suitable as filter media. The resulting microfiber webs were characterized to evaluate their structure and properties. The fiber webs were further modified by hot pressing, a post processing technique, which reduces the pore size in order to improve the barrier properties of the resulting membranes. This ongoing research has shown that PEI can be a good candidate for filter media requiring high temperature and chemical resistance with good mechanical properties. Also, by selecting the appropriate processing conditions, it is possible to achieve desired filtration performance from this engineering plastic.Keywords: nonwovens, melt blowing, polyehterimide, filter media, microfibers
Procedia PDF Downloads 315416 Exploring the Biochemical and Therapeutic Properties of Aged Garlic
Authors: Farhan Saeed
Abstract:
The core objective of this work is to explicate the biochemical and therapeutic properties of aged garlic. For this purpose, two varieties of garlic were obtained from Ayub Agricultural Research Institute (AARI) Faisalabad-Pakistan. Additionally, fresh garlic was converted into aged garlic via fermentation method in the incubator at 70 to 80 % humidity level and 60C0 temperature for one month. Similarly, biochemical and antioxidant properties of fresh and aged garlic were also elucidated. Mean values showed that moisture content was decreased, whereas crude fat, crude protein, crude fiber, crude ash and total carbohydrates were enhanced after fermentation. Additionally, crude protein of fresh and aged garlic was 7.57±0.16 and 5.52±0.12%, respectively, whilst 9.68±0.41 and 8.78±0.29%, respectively, after the fermentation process. In addition, NFE contents were also enhanced up to 39% after the fermentation method. Moreover, Zn, S, Al, K, Fe, Na, Mg, and Cu contents were also increased. Furthermore, Total phenolic contents (TPC) of fresh and aged garlic were 2498.70 & 2188.50mg GAE/kg whilst 3008.59, & 2591.81mg GAE/kg for aged garlic. In conclusion, aged garlic explicated the better biochemical properties, mineral profile and antioxidant properties as compared to fresh garlic.Keywords: aged garlic, nutritional values, bioactive properties, fermentation
Procedia PDF Downloads 174415 Investigate the Performance of SMA-FRP Composite Bars in Seismic Regions under Corrosion Conditions
Authors: Amirmozafar Benshams, Saman Shafeinejad, Mohammad Zaman Kabir, Farzad Hatami, Mohammadreza Khedmati, Mesbah Saybani
Abstract:
Steel bars has been used in concrete structures for more than one hundred years but lack of corrosion resistance of steel reinforcement has resulted in many structural failures. Fiber Reinforced Polymer (FRP) bar is an acceptable solution to replace steel to mitigate corrosion problem. Since FRP is a brittle material its use in seismic region has been a concern. FRP RC structures can be made ductile by employing a ductile material such as Shape Memory Alloy (SMA) at the plastic hinge region and FRP at the other regions on the other hand SMA is highly resistant to corrosion. Shape Memory Alloy has the unique ability to undergo large inelastic deformation and regain its initial shape through stress removal therefore utilizing composite SMA-FRP bars not only have good corrosion resistance but also have good performance in seismic region. The result show indicate that such composite SMA-FRP bars can substantially reduce the residual drift with adequate energy dissipation capacity during earthquake.Keywords: steel bar, shape memory alloy, FRP, corrosion
Procedia PDF Downloads 392414 Combination of Electrochemical Impedance Spectroscopy and Electromembrane Extraction for the Determination of Zolpidem Using Modified Screen-Printed Electrode
Authors: Ali Naeemy, Mir Ghasem Hoseini
Abstract:
In this study, for the first time, an analytical method developed and validated by combining electrochemical impedance spectroscopy and electromembrane extraction (EIS-EME) by Vulcan/poly pyrrole nanocomposite modified screen-printed electrode (PPY–VU/SPE) for accurately quantifying zolpidem. EME parameters optimized, including solvent composition, voltage, pH adjustments and extraction time. Zolpidem was transferred from a donor solution (pH 5) to an acceptor solution (pH 13) using a hollow fiber in 1-octanol as a membrane, driven by a 60 V voltage for 25 minutes, ensuring precise and selective extraction. In comparison with SPE, VU/SPE and PPY/SPE, the PPY–VU/SPE was much more efficient for ZP oxidation. Calibration curves with good linearity were obtained in the concentration range of 2-75 µmol L-1 using the EIS-EME with the detection limit of 0.5 µmol L-1 . Finally, the EIS-EME by using the PPY– VU/SPE was successfully used to determine ZP in tablet dosage form, urine and plasma samples. Keywords: Electrochemical impedance spectroscopy, Electromembrane extraction, Zolpidem, Vulcan, poly pyrrole, Screen printed electrodeKeywords: electrochemical impedance spectroscopy, electromembrane extraction, screen printed electrode, zolpidem
Procedia PDF Downloads 40413 On the Hirota Bilinearization of Fokas-Lenells Equation to Obtain Bright N-Soliton Solution
Authors: Sagardeep Talukdar, Gautam Kumar Saharia, Riki Dutta, Sudipta Nandy
Abstract:
In non-linear optics, the Fokas-Lenells equation (FLE) is a well-known integrable equation that describes how ultrashort pulses move across optical fiber. It admits localized wave solutions, just like any other integrable equation. We apply the Hirota bilinearization method to obtain the soliton solution of FLE. The proposed bilinearization makes use of an auxiliary function. We apply the method to FLE with a vanishing boundary condition, that is, to obtain bright soliton. We have obtained bright 1-soliton, 2-soliton solutions and propose the scheme for obtaining N-soliton solution. We have used an additional parameter which is responsible for the shift in the position of the soliton. Further analysis of the 2-soliton solution is done by asymptotic analysis. We discover that the suggested bilinearization approach, which makes use of the auxiliary function, greatly simplifies the process while still producing the desired outcome. We think that the current analysis will be helpful in understanding how FLE is used in nonlinear optics and other areas of physics.Keywords: asymptotic analysis, fokas-lenells equation, hirota bilinearization method, soliton
Procedia PDF Downloads 119412 Microplastics in Two Bivalves of The Bay of Bengal Coast, Bangladesh
Authors: Showmitra Chowdhury, M. Shahadat Hossain, S. M. Sharifuzzaman, Sayedur Rahman Chowdhury, Subrata Sarker, M. Shah Nawaz Chowdhury
Abstract:
Microplastics were identified in mussel (Pernaviridis) and Oyster (Crassostrea madrasensis) from the south east coast of Bangladesh. Samples were collected from four sites of the coast based on their availability, and gastrointestinal tracts were assessed following isolation, floatation, filtration, microscopic observation, and polymer identification by micro-Fourier Transformed Infrared Spectroscope (μ-FTIR) for microplastics determination. A total of 1527 microplastics were identified from 130 samples. The amount of microplastics varied from 0.66 to 3.10 microplastics/g and from 3.20 to 27.60 items/individual. Crassostrea madrasensiscontained on average 1.64 items/g and exhibited the highest level of microplastics by weight. Fiber was the most dominant type, accounting for 72% of total microplastics. Polyethylene, polypropylene, polystyrene, polyester, and nylon were the major polymer types. In both species, transparent/ black color and filamentous shape was dominant. The most common size ranges from 0.005 to 0.25mm and accounted for 39% to 67%. The study revealed microplastics pollution is widespread and relatively high in the bivalves of Bangladesh.Keywords: microplastics, bivalves, mussel, oyster, bay of bengal, Bangladesh
Procedia PDF Downloads 111411 Flexural Behavior of Voided Slabs Reinforced With Basalt Bars
Authors: Jazlah Majeed Sulaiman, Lakshmi P.
Abstract:
Concrete slabs are considered to be very ductile structural members. Openings in reinforced slabs are necessary so as to install the mechanical, electrical and pumping (MEP) conduits and ducts. However, these openings reduce the load-carrying capacity, stiffness, energy, and ductility of the slabs. To resolve the undesirable effects of openings in the slab behavior, it is significant to achieve the desired strength against the loads acting on it. The use of Basalt Fiber Reinforcement Polymers (BFRP) as reinforcement has become a valid sustainable option as they produce less greenhouse gases, resist corrosion and have higher tensile strength. In this paper, five slab models are analyzed using non-linear static analysis in ANSYS Workbench to study the effect of openings on slabs reinforced with basalt bars. A parametric numerical study on the loading condition and the shape and size of the opening is conducted, and their load and displacement values are compared. One of the models is validated experimentally.Keywords: concrete slabs, openings, BFRP, sustainable, corrosion resistant, non-linear static analysis, ANSYS
Procedia PDF Downloads 111410 Evaluating the Methods of Retrofitting and Renovating of the Masonry Schools
Authors: Navid Khayat
Abstract:
This study investigates the retrofitting of schools in Ahvaz City. Three schools, namely, Enghelab, Sherafat, and Golchehreh, in Ahvaz City are initially examined through Schmidt hammer and ultrasonic tests. Given the tests and controls on the structures of these schools, the methods are presented for their reconstruction. The plan is presented for each school by estimating the cost and generally the feasibility and estimated the duration of project reconstruction. After reconstruction, the mentioned tests are re-performed for rebuilt parts and the results indicate a significant improvement in performance of structure because of reconstruction. According to the results, despite the fact that the use of fiber reinforced polymers (FRP) for structure retrofitting is costly, due to the low executive costs and also other benefits of FRP, it is generally considered as one of the most effective ways of retrofitting. Building the concrete coating on walls is another effective method in retrofitting the buildings. According to this method, a grid of horizontal and vertical bars is installed on the wall and then the concrete is poured on it. The use of concrete coating on the concrete and brick structures leads to the useful results and the experience indicates that the poured concrete filled the joints well and provides the appropriate binding and adhesion.Keywords: renovation, retrofitting, masonry structures, old school
Procedia PDF Downloads 280409 Utilization of Mustard Leaves (Brassica juncea) Powder for the Development of Cereal Based Extruded Snacks
Authors: Maya S. Rathod, Bahadur Singh Hathan
Abstract:
Mustard leaves are rich in folates, vitamin A, K and B-complex. Mustard greens are low in calories and fats and rich in dietary fiber. They are rich in potassium, manganese, iron, copper, calcium, magnesium and low in sodium. It is very rich in antioxidants and Phytonutrients. For the optimization of process variables (moisture content and mustard leave powder), the experiments were conducted according to central composite Face Centered Composite design of RSM. The mustard leaves powder was replaced with composite flour (a combination of rice, chickpea and corn in the ratio of 70:15:15). The extrudate was extruded in a twin screw extruder at a barrel temperature of 120°C. The independent variables were mustard leaves powder (2-10 %) and moisture content (12-20 %). Responses analyzed were bulk density, water solubility index, water absorption index, lateral expansion, hardness, antioxidant activity, total phenolic content and overall acceptability. The optimum conditions obtained were 7.19 g mustard leaves powder in 100 g premix having 16.8 % moisture content (w.b).Keywords: extrusion, mustard leaves powder, optimization, response surface methodology
Procedia PDF Downloads 545408 Finite Element Assessment on Bond Behaviour of FRP-to-Concrete Joints under Cyclic Loading
Authors: F. Atheer, Al-Saoudi, Robin Kalfat, Riadh Al-Mahaidi
Abstract:
Over the last two decades, externally bonded fiber reinforced polymer (FRP) composites bonded to concrete substrates has become a popular method for strengthening reinforced concrete (RC) highway and railway bridges. Such structures are exposed to severe cyclic loading throughout their lifetime often resulting in fatigue damage to structural components and a reduction in the service life of the structure. Since experimental and numerical results on the fatigue performance of FRP-to-concrete joints are still limited, the current research focuses on assessing the fatigue performance of externally bonded FRP-to-concrete joints using a direct shear test. Some early results indicate that the stress ratio and the applied cyclic stress level have a direct influence on the fatigue life of the externally bonded FRP. In addition, a calibrated finite element model is developed to provide further insight into the influence of certain parameters such as: concrete strength, FRP thickness, number of cycles, frequency and stiffness on the fatigue life of the FRP-to-concrete joints.Keywords: FRP, concrete bond, control, fatigue, finite element model
Procedia PDF Downloads 449407 Novel CFRP Adhesive Joints and Structures for Offshore Application
Authors: M. R. Abusrea, Shiyi Jiang, Dingding Chen, Kazuo Arakawa
Abstract:
Novel wind-lens turbine designs can augment power output. Vacuum-Assisted Resin Transfer Molding (VARTM) is used to form large and complex structures from a Carbon Fiber Reinforced Polymer (CFRP) composite. Typically, wind-lens turbine structures are fabricated in segments, and then bonded to form the final structure. This paper introduces five new adhesive joints, divided into two groups: One is constructed between dry carbon and CFRP fabrics, and the other is constructed with two dry carbon fibers. All joints and CFRP fabrics were made in our laboratory using VARTM manufacturing techniques. Specimens were prepared for tensile testing to measure joint performance. The results showed that the second group of joints achieved a higher tensile strength than the first group. On the other hand, the tensile fracture behavior of the two groups showed the same pattern of crack originating near the joint ends followed by crack propagation until fracture.Keywords: adhesive joints, CFRP, VARTM, resin transfer molding
Procedia PDF Downloads 436