Search results for: transition regression model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20150

Search results for: transition regression model

19250 Bayesian Reliability of Weibull Regression with Type-I Censored Data

Authors: Al Omari Moahmmed Ahmed

Abstract:

In the Bayesian, we developed an approach by using non-informative prior with covariate and obtained by using Gauss quadrature method to estimate the parameters of the covariate and reliability function of the Weibull regression distribution with Type-I censored data. The maximum likelihood seen that the estimators obtained are not available in closed forms, although they can be solved it by using Newton-Raphson methods. The comparison criteria are the MSE and the performance of these estimates are assessed using simulation considering various sample size, several specific values of shape parameter. The results show that Bayesian with non-informative prior is better than Maximum Likelihood Estimator.

Keywords: non-informative prior, Bayesian method, type-I censoring, Gauss quardature

Procedia PDF Downloads 503
19249 Attribution of Strategic Motive, Business Efficiencies, Firm Economies, and Market Factors as Motivations of Restaurant Industry Vertical Integration Adoption: A Structural Equation Model

Authors: Sy, Melecio Jr

Abstract:

The decision to adopt vertical integration (VI) is firm-specific, but there is a common practice among businesses in an industry to maximize the massive potential benefits of VI. This study aims to determine VI adoption in the restaurant industry in Davao City. Using a two-step sampling process, the study used a validated survey questionnaire among 264 restaurant owners and managers randomly selected and geographically classified. It is a quantitative study where the data were subjected to a structural equation model (SEM). The results revealed that VI is present but limited to procurement, production, restaurant services, and online marketing. Raw materials were outsourced while delivery to customers through third-party delivery services. VI slowly increased over ten years except for online marketing, which has grown significantly in a few years. The endogenous and exogenous variables were correlated and established the linear regression model. The SEM's best fit model revealed that strategic motives (SMOT) and market factors (MFAC) influenced VI adoption while MFAC is the best predictor. Favorable market factors may lead restaurants to adopt VI. It is, thus, recommended for restaurants to institutionalize strategic management, quantify the impact of double marginalization in future studies as a reason for VI and conduct this study during the new normal to see the influence of business efficiencies and firm economies on VI adoption.

Keywords: business efficiencies, business management, davao city, firm economies, market factors, philippines, strategic motives, structural equation model, supply chain, vertical integration adoption

Procedia PDF Downloads 70
19248 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time

Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani

Abstract:

This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.

Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management

Procedia PDF Downloads 84
19247 Profiling the Food Security Status of Farming Households in Chanchaga Area of Nigeria’s Guinea Savana

Authors: Olorunsanya E. O., Adedeji S. O., Anyanwu A. A.

Abstract:

Food insecurity is a challenge to many nations Nigeria inclusive. It is increasingly becoming a major problem among farm households due to many factors chief of which is low labour productivity. This study therefore profiles the food security status of a representative randomly selected 90 farming households in Chanchaga area of Nigeria’s Guinea Savana using structured interview schedule Descriptive and inferential statistics were used as analytical tools for the study. The results of the descriptive statistics show that majority (35.56%) of the surveyed household heads fall within the age range of 40 – 49 years and (88.89%) are male while (78.89) are married. More than half of the respondents have formal education. About 43.3% of the household heads have farm experience of 11- 20 years and a modal household size class range of 7 – 12. The results further reveal that majority (68.8%) earned more than N12, 500 (22.73 US Dollar) per month. The result of households’ food expenditure pattern reveals that an average household spends about N3, 644.44 (6.63 US Dollar) on food and food items on a weekly basis. The result of the analysis of food diversity intake in the study area shows that 63.33% of the sampled households fell under the low household food diversity intake, while 33 households, representing 36.67% ranks high in term of household food diversity intake. The result for the food security status shows that the sampled population was food secure (58.89%) while 41.11% falls below the recommended threshold. The result for the logistics regression model shows that age, engagement in off farm employment and household size are significant in determining the food security status of farm household in the study area. The three variables were significant at 10%, 5% and 1% respectively. The study therefore recommends among others, that measures be put in place by stakeholders to make agriculture attractive for youth since age is a significant determinant of food security in the study area. Awareness should also be created by stakeholders on the needs for effective family planning methods to be adopted by farm household in the study area.

Keywords: Niger State, Guinea Savana, food diversity, logit regression model and food security

Procedia PDF Downloads 106
19246 An Under-Recognized Factor in the Development of Postpartum Depression: Infertility

Authors: Memnun Seven, Aygül Akyüz

Abstract:

Having a baby, giving birth and being a mother are generally considered happy events, especially for women who have had a history of infertility and may have suffered emotionally, physically and financially. Although the transition from the prenatal period to the postnatal period is usually desired and planned, it is a developmental and cognitive transition period full of complex emotional reactions. During this period, common mood disorders for women include maternity blues, postpartum depression and postpartum psychosis. Postpartum depression is a common and serious mood disorder which can jeopardize the health of the mother, baby and family within the first year of delivery. Knowing the risks factors is an important issue for the early detection and early intervention of postpartum depression. However, knowing that a history of infertility may contribute to the development of postpartum depression, there are few studies assessing the effects of infertility during the diagnosis and treatment of depression. In this review, the effects of infertility on the development of postpartum depression and nurse/midwives’ roles in this issue are discussed in light with the literature.

Keywords: infertility, postpartum depression, risk factors, mood disorder

Procedia PDF Downloads 478
19245 Plackett-Burman Design to Evaluate the Influence of Operating Parameters on Anaerobic Orthophosphate Release from Enhanced Biological Phosphorus Removal Sludge

Authors: Reza Salehi, Peter L. Dold, Yves Comeau

Abstract:

The aim of the present study was to investigate the effect of a total of 6 operating parameters including pH (X1), temperature (X2), stirring speed (X3), chemical oxygen demand (COD) (X4), volatile suspended solids (VSS) (X5) and time (X6) on anaerobic orthophosphate release from enhanced biological phosphorus removal (EBPR) sludge. An 8-run Plackett Burman design was applied and the statistical analysis of the experimental data was performed using Minitab16.2.4 software package. The Analysis of variance (ANOVA) results revealed that temperature, COD, VSS and time had a significant effect with p-values of less than 0.05 whereas pH and stirring speed were identified as non-significant parameters, but influenced orthophosphate release from the EBPR sludge. The mathematic expression obtained by the first-order multiple linear regression model between orthophosphate release from the EBPR sludge (Y) and the operating parameters (X1-X6) was Y=18.59+1.16X1-3.11X2-0.81X3+3.79X4+9.89X5+4.01X6. The model p-value and coefficient of determination (R2) value were 0.026 and of 99.87%, respectively, which indicates the model is significant and the predicted values of orthophosphate release from the EBPR sludge have been excellently correlated with the observed values.

Keywords: anaerobic, operating parameters, orthophosphate release, Plackett-Burman design

Procedia PDF Downloads 279
19244 Evaluating the Influence of Financial Technology (FinTech) on Sustainable Finance: A Comprehensive Global Analysis

Authors: Muhammad Kashif

Abstract:

The primary aim of this paper is to investigate the influence of financial technology (FinTech) on sustainable finance. The sample for this study spans from 2010 to 2021, encompassing data from 89 countries worldwide. The study employed two-stage least squares (2SLS) regression approach with the instrumental variables and validated the findings using a two-step system generalized method of moments (GMM). The findings indicate that fintech has a significant favorable impact on sustainable finance. While other factors such as institutional quality, socio-economic condition, and renewable energy have a significant and beneficial influence on the trajectory of sustainable finance, except globalization's impact is positive but insignificant. Furthermore, fintech is crucial in driving the transition toward a sustainable future characterized by a lower carbon economy. The study found that fintech has extensive application across various sectors of sustainable finance and has substantial potential to create long-term positive effects on sustainable finance. Fintech can integrate extensively with other technologies to facilitate diversified growth in sustainable finance. Additionally, this study highlights fintech-related trends and research opportunities in sustainable finance, showing how these can promote each other worldwide with important policy implications for countries looking to advance sustainable finance through technology.

Keywords: sustainable development goals (SDGs), financial technology (FinTech), genuine savings index (GSI), financial stability index, sustainable finance

Procedia PDF Downloads 134
19243 Markov-Chain-Based Optimal Filtering and Smoothing

Authors: Garry A. Einicke, Langford B. White

Abstract:

This paper describes an optimum filter and smoother for recovering a Markov process message from noisy measurements. The developments follow from an equivalence between a state space model and a hidden Markov chain. The ensuing filter and smoother employ transition probability matrices and approximate probability distribution vectors. The properties of the optimum solutions are retained, namely, the estimates are unbiased and minimize the variance of the output estimation error, provided that the assumed parameter set are correct. Methods for estimating unknown parameters from noisy measurements are discussed. Signal recovery examples are described in which performance benefits are demonstrated at an increased calculation cost.

Keywords: optimal filtering, smoothing, Markov chains

Procedia PDF Downloads 317
19242 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions

Authors: Oscar E. Cariceo, Claudia V. Casal

Abstract:

Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.

Keywords: cyberbullying, evidence based practice, machine learning, social work research

Procedia PDF Downloads 168
19241 How Information Sharing Can Improve Organizational Performance?

Authors: Syed Abdul Rehman Khan

Abstract:

In today’s world, information sharing plays a vital role in successful operations of supply chain; and boost to the profitability of the organizations (end-to-end supply chains). Many researches have been completed over the role of information sharing in supply chain. In this research article, we will investigate the ‘how information sharing can boost profitability & productivity of the organization; for this purpose, we have developed one conceptual model and check to that model through collected data from companies. We sent questionnaire to 369 companies; and will filled form received from 172 firms and the response rate was almost 47%. For the data analysis, we have used Regression in (SPSS software) In the research findings, our all hypothesis has been accepted significantly and due to the information sharing between suppliers and manufacturers ‘quality of material and timely delivery’ increase and also ‘collaboration & trust’ will become more stronger and these all factors will lead to the company’s profitability directly and in-directly. But unfortunately, companies could not avail the all fruitful benefits of information sharing due to the fear of ‘compromise confidentiality or leakage of information’.

Keywords: collaboration, information sharing, risk factor, timely delivery

Procedia PDF Downloads 417
19240 Location Choice: The Effects of Network Configuration upon the Distribution of Economic Activities in the Chinese City of Nanning

Authors: Chuan Yang, Jing Bie, Zhong Wang, Panagiotis Psimoulis

Abstract:

Contemporary studies investigating the association between the spatial configuration of the urban network and economic activities at the street level were mostly conducted within space syntax conceptual framework. These findings supported the theory of 'movement economy' and demonstrated the impact of street configuration on the distribution of pedestrian movement and land-use shaping, especially retail activities. However, the effects varied between different urban contexts. In this paper, the relationship between economic activity distribution and the urban configurational characters was examined at the segment level. In the study area, three kinds of neighbourhood types, urban, suburban, and rural neighbourhood, were included. And among all neighbourhoods, three kinds of urban network form, 'tree-like', grid, and organic pattern, were recognised. To investigate the nested effects of urban configuration measured by space syntax approach and urban context, multilevel zero-inflated negative binomial (ZINB) regression models were constructed. Additionally, considering the spatial autocorrelation, spatial lag was also concluded in the model as an independent variable. The random effect ZINB model shows superiority over the ZINB model or multilevel linear (ML) model in the explanation of economic activities pattern shaping over the urban environment. And after adjusting for the neighbourhood type and network form effects, connectivity and syntax centrality significantly affect economic activities clustering. The comparison between accumulative and new established economic activities illustrated the different preferences for economic activity location choice.

Keywords: space syntax, economic activities, multilevel model, Chinese city

Procedia PDF Downloads 124
19239 How Social Support, Interaction with Clients and Work-Family Conflict Contribute to Mental Well-Being for Employees in the Human Service System

Authors: Uwe C. Fischer

Abstract:

Mental health and well-being for employees working in the human service system are getting more and more important given the increasing rate of absenteeism at work. Besides individual capacities, social and community factors seem to be important in the working setting. Starting from a demand resource framework including the classical demand control aspects, social support systems, specific demands and resources of the client work, and work-family conflict were considered in the present study. We state hypothetically, that these factors have a meaningful association with the mental quality of life of employees working in the field of social, educational and health sectors. 1140 employees, working in human service organizations (education, youth care, nursing etc.) were asked for strains and resources at work (selected scales from Salutogenetic Subjective Work Assessment SALSA and own new scales for client work), work-family conflict, and mental quality of life from the German Short Form Health Survey. Considering the complex influences of the variables, we conducted a multiple hierarchical regression analysis. One third of the whole variance of the mental quality of life can be declared by the different variables of the model. When the variables concerning social influences were included in the hierarchical regression, the influence of work related control resource decreased. Excessive workload, work-family conflict, social support by supervisors, co-workers and other persons outside work, as well as strains and resources associated with client work had significant regression coefficients. Conclusions: Social support systems are crucial in the social, educational and health related service sector, regarding the influence on mental well-being. Especially the work-family conflict focuses on the importance of the work-life balance. Also the specific strains and resources of the client work, measured with new constructed scales, showed great impact on mental health. Therefore occupational health promotion should focus more on the social factors within and outside the working place.

Keywords: client interaction, human service system, mental health, social support, work-family conflict

Procedia PDF Downloads 439
19238 The Role of Nano Glass Flakes on Morphology, Dynamic-Mechanical Properties and Crystallization Behavior of Poly (Ethylene Terephthalate)

Authors: Fatemeh Alsadat Miri, Morteza Ehsani, Hossein Ali Khonakdar, Behjat Kavyani

Abstract:

This paper studies the effect of nano glass flakes on morphology, dynamic-mechanical properties, and crystallization behavior of poly (ethylene terephthalate) (PET). The concentration of nano glass flakes was varied from 0.5, 1, 2, and 3% wt of the total formulation. Scanning electron microscopy (SEM) micrographs showed the poor distribution of nano-glass flake particles in PET, as well as low adhesion of particles to the polymer matrix. According to differential scanning calorimetry (DSC), the crystallization rate and crystallization temperature of PET were increased by the addition of nano glass flakes. The crystallization rate of PET was increased from 31.41% to 34.25% by the incorporation of 1%wt of nano glass flakes. Based on the results of the dynamic-mechanical analysis, the storage modulus of PET gets increased by adding nano glass flakes, especially below glass transition temperature (Tg). The glass transition of PET did not change remarkably with the addition of nano glass flakes. Moreover, the use of nano glass flakes reduced the impact strength of PET.

Keywords: PET, nano glass flakes, morphology, crystallization

Procedia PDF Downloads 127
19237 Strength Evaluation by Finite Element Analysis of Mesoscale Concrete Models Developed from CT Scan Images of Concrete Cube

Authors: Nirjhar Dhang, S. Vinay Kumar

Abstract:

Concrete is a non-homogeneous mix of coarse aggregates, sand, cement, air-voids and interfacial transition zone (ITZ) around aggregates. Adoption of these complex structures and material properties in numerical simulation would lead us to better understanding and design of concrete. In this work, the mesoscale model of concrete has been prepared from X-ray computerized tomography (CT) image. These images are converted into computer model and numerically simulated using commercially available finite element software. The mesoscale models are simulated under the influence of compressive displacement. The effect of shape and distribution of aggregates, continuous and discrete ITZ thickness, voids, and variation of mortar strength has been investigated. The CT scan of concrete cube consists of series of two dimensional slices. Total 49 slices are obtained from a cube of 150mm and the interval of slices comes approximately 3mm. In CT scan images, the same cube can be CT scanned in a non-destructive manner and later the compression test can be carried out in a universal testing machine (UTM) for finding its strength. The image processing and extraction of mortar and aggregates from CT scan slices are performed by programming in Python. The digital colour image consists of red, green and blue (RGB) pixels. The conversion of RGB image to black and white image (BW) is carried out, and identification of mesoscale constituents is made by putting value between 0-255. The pixel matrix is created for modeling of mortar, aggregates, and ITZ. Pixels are normalized to 0-9 scale considering the relative strength. Here, zero is assigned to voids, 4-6 for mortar and 7-9 for aggregates. The value between 1-3 identifies boundary between aggregates and mortar. In the next step, triangular and quadrilateral elements for plane stress and plane strain models are generated depending on option given. Properties of materials, boundary conditions, and analysis scheme are specified in this module. The responses like displacement, stresses, and damages are evaluated by ABAQUS importing the input file. This simulation evaluates compressive strengths of 49 slices of the cube. The model is meshed with more than sixty thousand elements. The effect of shape and distribution of aggregates, inclusion of voids and variation of thickness of ITZ layer with relation to load carrying capacity, stress-strain response and strain localizations of concrete have been studied. The plane strain condition carried more load than plane stress condition due to confinement. The CT scan technique can be used to get slices from concrete cores taken from the actual structure, and the digital image processing can be used for finding the shape and contents of aggregates in concrete. This may be further compared with test results of concrete cores and can be used as an important tool for strength evaluation of concrete.

Keywords: concrete, image processing, plane strain, interfacial transition zone

Procedia PDF Downloads 239
19236 Estimates of Freshwater Content from ICESat-2 Derived Dynamic Ocean Topography

Authors: Adan Valdez, Shawn Gallaher, James Morison, Jordan Aragon

Abstract:

Global climate change has impacted atmospheric temperatures contributing to rising sea levels, decreasing sea ice, and increased freshening of high latitude oceans. This freshening has contributed to increased stratification inhibiting local mixing and nutrient transport and modifying regional circulations in polar oceans. In recent years, the Western Arctic has seen an increase in freshwater volume at an average rate of 397+-116 km3/year. The majority of the freshwater volume resides in the Beaufort Gyre surface lens driven by anticyclonic wind forcing, sea ice melt, and Arctic river runoff. The total climatological freshwater content is typically defined as water fresher than 34.8. The near-isothermal nature of Arctic seawater and non-linearities in the equation of state for near-freezing waters result in a salinity driven pycnocline as opposed to the temperature driven density structure seen in the lower latitudes. In this study, we investigate the relationship between freshwater content and remotely sensed dynamic ocean topography (DOT). In-situ measurements of freshwater content are useful in providing information on the freshening rate of the Beaufort Gyre; however, their collection is costly and time consuming. NASA’s Advanced Topographic Laser Altimeter System (ATLAS) derived dynamic ocean topography (DOT), and Air Expendable CTD (AXCTD) derived Freshwater Content are used to develop a linear regression model. In-situ data for the regression model is collected across the 150° West meridian, which typically defines the centerline of the Beaufort Gyre. Two freshwater content models are determined by integrating the freshwater volume between the surface and an isopycnal corresponding to reference salinities of 28.7 and 34.8. These salinities correspond to those of the winter pycnocline and total climatological freshwater content, respectively. Using each model, we determine the strength of the linear relationship between freshwater content and satellite derived DOT. The result of this modeling study could provide a future predictive capability of freshwater volume changes in the Beaufort-Chukchi Sea using non in-situ methods. Successful employment of the ICESat-2’s DOT approximation of freshwater content could potentially reduce reliance on field deployment platforms to characterize physical ocean properties.

Keywords: ICESat-2, dynamic ocean topography, freshwater content, beaufort gyre

Procedia PDF Downloads 86
19235 Gravitational Water Vortex Power Plant: Experimental-Parametric Design of a Hydraulic Structure Capable of Inducing the Artificial Formation of a Gravitational Water Vortex Appropriate for Hydroelectric Generation

Authors: Henrry Vicente Rojas Asuero, Holger Manuel Benavides Muñoz

Abstract:

Approximately 80% of the energy consumed worldwide is generated from fossil sources, which are responsible for the emission of a large volume of greenhouse gases. For this reason, the global trend, at present, is the widespread use of energy produced from renewable sources. This seeks safety and diversification of energy supply, based on social cohesion, economic feasibility and environmental protection. In this scenario, small hydropower systems (P ≤ 10MW) stand out due to their high efficiency, economic competitiveness and low environmental impact. Small hydropower systems, along with wind and solar energy, are expected to represent a significant percentage of the world's energy matrix in the near term. Among the various technologies present in the state of the art, relating to small hydropower systems, is the Gravitational Water Vortex Power Plant, a recent technology that excels because of its versatility of operation, since it can operate with jumps in the range of 0.70 m-2.00 m and flow rates from 1 m3/s to 20 m3/s. Its operating system is based on the utilization of the energy of rotation contained within a large water vortex artificially induced. This paper presents the study and experimental design of an optimal hydraulic structure with the capacity to induce the artificial formation of a gravitational water vortex trough a system of easy application and high efficiency, able to operate in conditions of very low head and minimum flow. The proposed structure consists of a channel, with variable base, vortex inductor, tangential flow generator, coupled to a circular tank with a conical transition bottom hole. In the laboratory test, the angular velocity of the water vortex was related to the geometric characteristics of the inductor channel, as well as the influence of the conical transition bottom hole on the physical characteristics of the water vortex. The results show angular velocity values of greater magnitude as a function of depth, in addition the presence of the conical transition in the bottom hole of the circular tank improves the water vortex formation conditions while increasing the angular velocity values. Thus, the proposed system is a sustainable solution for the energy supply of rural areas near to watercourses.

Keywords: experimental model, gravitational water vortex power plant, renewable energy, small hydropower

Procedia PDF Downloads 290
19234 The Prediction of Effective Equation on Drivers' Behavioral Characteristics of Lane Changing

Authors: Khashayar Kazemzadeh, Mohammad Hanif Dasoomi

Abstract:

According to the increasing volume of traffic, lane changing plays a crucial role in traffic flow. Lane changing in traffic depends on several factors including road geometrical design, speed, drivers’ behavioral characteristics, etc. A great deal of research has been carried out regarding these fields. Despite of the other significant factors, the drivers’ behavioral characteristics of lane changing has been emphasized in this paper. This paper has predicted the effective equation based on personal characteristics of lane changing by regression models.

Keywords: effective equation, lane changing, drivers’ behavioral characteristics, regression models

Procedia PDF Downloads 450
19233 Corporate Governance, Performance, and Financial Reporting Quality of Listed Manufacturing Firms in Nigeria

Authors: Jamila Garba Audu, Shehu Usman Hassan

Abstract:

The widespread failure in the financial information quality has created the need to improve the financial information quality and to strengthen the control of managers by setting up good firms structures. Published accounting information in financial statements is required to provide various users - shareholders, employees, suppliers, creditors, financial analysts, stockbrokers and government agencies – with timely and reliable information useful for making prudent, effective and efficient decisions. The relationship between corporate governance and performance to financial reporting quality is imperative; this is because despite rapid researches in this area the findings obtained from these studies are constantly inconclusive. Data for the study were extracted from the firms’ annual reports and accounts. After running the OLS regression, a robustness test was conducted for the validity of statistical inferences; the data was empirically tested. A multiple regression was employed to test the model as a technique for data analysis. The results from the analysis revealed a negative association between all the regressors and financial reporting quality except the performance of listed manufacturing firms in Nigeria. This indicates that corporate governance plays a significant role in mitigating earnings management and improving financial reporting quality while performance does not. The study recommended among others that the composition of audit committee should be made in accordance with the provision for code of corporate governance which is not more than six (6) members with at least one (1) financial expert.

Keywords: corporate governance, financial reporting quality, manufacturing firms, Nigeria, performance

Procedia PDF Downloads 245
19232 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates

Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe

Abstract:

Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.

Keywords: machine learning, MTB, WGS, drug resistant TB

Procedia PDF Downloads 52
19231 Investigating the Potential of Spectral Bands in the Detection of Heavy Metals in Soil

Authors: Golayeh Yousefi, Mehdi Homaee, Ali Akbar Norouzi

Abstract:

Ongoing monitoring of soil contamination by heavy metals is critical for ecosystem stability and environmental protection, and food security. The conventional methods of determining these soil contaminants are time-consuming and costly. Spectroscopy in the visible near-infrared (VNIR) - short wave infrared (SWIR) region is a rapid, non-destructive, noninvasive, and cost-effective method for assessment of soil heavy metals concentration by studying the spectral properties of soil constituents. The aim of this study is to derive spectral bands and important ranges that are sensitive to heavy metals and can be used to estimate the concentration of these soil contaminants. In other words, the change in the spectral properties of spectrally active constituents of soil can lead to the accurate identification and estimation of the concentration of these compounds in soil. For this purpose, 325 soil samples were collected, and their spectral reflectance curves were evaluated at a range of 350-2500 nm. After spectral preprocessing operations, the partial least-squares regression (PLSR) model was fitted on spectral data to predict the concentration of Cu and Ni. Based on the results, the spectral range of Cu- sensitive spectra were 480, 580-610, 1370, 1425, 1850, 1920, 2145, and 2200 nm, and Ni-sensitive ranges were 543, 655, 761, 1003, 1271, 1415, 1903, 2199 nm. Finally, the results of this study indicated that the spectral data contains a lot of information that can be applied to identify the soil properties, such as the concentration of heavy metals, with more detail.

Keywords: heavy metals, spectroscopy, spectral bands, PLS regression

Procedia PDF Downloads 84
19230 AutoML: Comprehensive Review and Application to Engineering Datasets

Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili

Abstract:

The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.

Keywords: automated machine learning, uncertainty, engineering dataset, regression

Procedia PDF Downloads 61
19229 Factors That Facilitate and Hinder Friendship with Peers: A Qualitative Study Involving Early Adolescents

Authors: I. Stacher, B. Schrank, K. Stiehl, K. A. Woodcock

Abstract:

Background: The need and desire for connectedness and belonging to a peer group is a major concern in middle childhood. This is particularly true for the period of school transition when making and maintaining friendships is put to the test. Social relations are important for enhancing self-esteem, confidence, and mental health. Conflicts with peers and victimization mark challenges in the complex social environment of early adolescents. Thus, the promotion of supportive peer relationships is an important social goal. The current literature lacks an in-depth analysis of young people’s experiences connected to making and maintaining friendships. Aim: This qualitative study aims to understand the factors that facilitate and hinder friendship and peer relations within the complex context of school transition. Methods: Youth engagement workshops at primary and secondary schools were conducted with 53 classes (N = 906 pupils; M age = 10.44; SD = .912) in 29 different schools across lower Austria. A big poster was created with the entire class, collecting early adolescents’ ideas on ways they can support each other in the school environment. Then, students were divided into smaller groups and encouraged to share their personal experiences of friendship. Verbatim quotes from students were collected on observation sheets and sticky notes during the activities. A thematic analysis was conducted. Results: Early adolescents describe facilitating factors that allow them to connect with peers. These descriptions are mainly on a behavioral level and are relevant for face-to-face and digital contact, e.g., practical and emotional support, spending time together, pleasure and fun. Specific challenges such as offensive actions, betrayal, and lack of emotion regulation exist and need to be addressed if aiming to reduce barriers between peers. Conclusion: Knowing first-hand experiences, desires, and barriers for making and maintaining friends at the time of school transition will help researchers to develop preventive health programs that adequately address the needs and preferences of today’s youth.

Keywords: youth voice, experts by experience, friendship, peer relations, primary-secondary school, transition

Procedia PDF Downloads 124
19228 Properties of Rigid Polyurethane Foam for Imitation Wood Blown by Distilled Water and Cyclopentane

Authors: Ratchanon Boonachathong, Bordin Kaewnok, Suksun Amornraksa

Abstract:

Rigid polyurethane foam (RPUF) used for imitation wood is typically prepared by using 1-Dichloro-1-fluoroethane (HCFC-141b) as a blowing agent. However, this chemical is a hydrofluorocarbon which severely causes ozone depletion to the atmosphere. In this work, a more environmental-friendly RPUF was prepared by using distilled water and cyclopentane (CP) as alternative blowing agent. Several properties of the prepared RPUF were investigated and measured such as density (kg/m³), surface hardness (shore D), and glass transition temperature (°C). It was found that when the amount of the blowing agents decreased, the foam density is increased as well as the surface hardness and glass transition temperature. The results showed that the proper amount of water and cylopentane blowing agent is around 0.3–1.2% and 0.5-1.3% respectively. And the new RPUF produced has a good potential to substitute for a conventional RPUF.

Keywords: blowing agent, cyclopentane co-blown, imitation wood, rigid polyurethane foam, surface hardness

Procedia PDF Downloads 170
19227 Hidden Markov Model for Financial Limit Order Book and Its Application to Algorithmic Trading Strategy

Authors: Sriram Kashyap Prasad, Ionut Florescu

Abstract:

This study models the intraday asset prices as driven by Markov process. This work identifies the latent states of the Hidden Markov model, using limit order book data (trades and quotes) to continuously estimate the states throughout the day. This work builds a trading strategy using estimated states to generate signals. The strategy utilizes current state to recalibrate buy/ sell levels and the transition between states to trigger stop-loss when adverse price movements occur. The proposed trading strategy is tested on the Stevens High Frequency Trading (SHIFT) platform. SHIFT is a highly realistic market simulator with functionalities for creating an artificial market simulation by deploying agents, trading strategies, distributing initial wealth, etc. In the implementation several assets on the NASDAQ exchange are used for testing. In comparison to a strategy with static buy/ sell levels, this study shows that the number of limit orders that get matched and executed can be increased. Executing limit orders earns rebates on NASDAQ. The system can capture jumps in the limit order book prices, provide dynamic buy/sell levels and trigger stop loss signals to improve the PnL (Profit and Loss) performance of the strategy.

Keywords: algorithmic trading, Hidden Markov model, high frequency trading, limit order book learning

Procedia PDF Downloads 151
19226 Impact of Perceived Stress on Psychological Well-Being, Aggression and Emotional Regulation

Authors: Nishtha Batra

Abstract:

This study was conducted to identify the effect of perceived stress on emotional regulation, aggression and psychological well-being. Analysis was conducted using correlational and regression models to examine the relationships between perceived stress (independent variable) and psychological factors containing emotional intelligence, psychological well-being and aggression. Subjects N=100, Male students 50 and Female students 50. The data was collected using Cohen's Perceived Stress Scale, Gross’s Emotional Regulation Questionnaire (ERQ), Ryff’s Psychological Well-being scale and Orispina’s aggression scale. Correlation and regression (SPSS version 22) Emotional regulation and psychological well-being had a significant relationship with Perceived stress.

Keywords: perceived stress, psychological well-being, aggression, emotional regulation, students

Procedia PDF Downloads 27
19225 Effect of Humidity on In-Process Crystallization of Lactose During Spray Drying

Authors: Amirali Ebrahimi, T. A. G. Langrish

Abstract:

The effect of various humidities on process yields and degrees of crystallinity for spray-dried powders from spray drying of lactose with humid air in a straight-through system have been studied. It has been suggested by Williams–Landel–Ferry kinetics (WLF) that a higher particle temperature and lower glass-transition temperature would increase the crystallization rate of the particles during the spray-drying process. Freshly humidified air produced by a Buchi-B290 spray dryer as a humidifier attached to the main spray dryer decreased the particle glass-transition temperature (Tg), while allowing the particle temperature (Tp) to reach higher values by using an insulated drying chamber. Differential scanning calorimetry (DSC) and moisture sorption analysis were used to measure the degree of crystallinity for the spray-dried lactose powders. The results showed that higher Tp-Tg, as a result of applying humid air, improved the process yield from 21 ± 4 to 26 ± 2% and crystallinity of the particles by decreasing the latent heat of crystallization from 43 ± 1 to 30 ± 11 J/g and the sorption peak height from 7.3 ± 0.7% to 6 ± 0.7%.

Keywords: lactose, crystallization, spray drying, humid air

Procedia PDF Downloads 426
19224 Nonequilibrium Effects in Photoinduced Ultrafast Charge Transfer Reactions

Authors: Valentina A. Mikhailova, Serguei V. Feskov, Anatoly I. Ivanov

Abstract:

In the last decade the nonequilibrium charge transfer have attracted considerable interest from the scientific community. Examples of such processes are the charge recombination in excited donor-acceptor complexes and the intramolecular electron transfer from the second excited electronic state. In these reactions the charge transfer proceeds predominantly in the nonequilibrium mode. In the excited donor-acceptor complexes the nuclear nonequilibrium is created by the pump pulse. The intramolecular electron transfer from the second excited electronic state is an example where the nuclear nonequilibrium is created by the forward electron transfer. The kinetics of these nonequilibrium reactions demonstrate a number of peculiar properties. Most important from them are: (i) the absence of the Marcus normal region in the free energy gap law for the charge recombination in excited donor-acceptor complexes, (ii) extremely low quantum yield of thermalized charge separated state in the ultrafast charge transfer from the second excited state, (iii) the nonexponential charge recombination dynamics in excited donor-acceptor complexes, (iv) the dependence of the charge transfer rate constant on the excitation pulse frequency. This report shows that most of these kinetic features can be well reproduced in the framework of stochastic point-transition multichannel model. The model involves an explicit description of the nonequilibrium excited state formation by the pump pulse and accounts for the reorganization of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent relaxation. The model is able to quantitatively reproduce complex nonequilibrium charge transfer kinetics observed in modern experiments. The interpretation of the nonequilibrium effects from a unified point of view in the terms of the multichannel point transition stochastic model allows to see similarities and differences of electron transfer mechanism in various molecular donor-acceptor systems and formulates general regularities inherent in these phenomena. The nonequilibrium effects in photoinduced ultrafast charge transfer which have been studied for the last 10 years are analyzed. The methods of suppression of the ultrafast charge recombination, similarities and dissimilarities of electron transfer mechanism in different molecular donor-acceptor systems are discussed. The extremely low quantum yield of the thermalized charge separated state observed in the ultrafast charge transfer from the second excited state in the complex consisting of 1,2,4-trimethoxybenzene and tetracyanoethylene in acetonitrile solution directly demonstrates that its effectiveness can be close to unity. This experimental finding supports the idea that the nonequilibrium charge recombination in the excited donor-acceptor complexes can be also very effective so that the part of thermalized complexes is negligible. It is discussed the regularities inherent to the equilibrium and nonequilibrium reactions. Their fundamental differences are analyzed. Namely the opposite dependencies of the charge transfer rates on the dynamical properties of the solvent. The increase of the solvent viscosity results in decreasing the thermal rate and vice versa increasing the nonequilibrium rate. The dependencies of the rates on the solvent reorganization energy and the free energy gap also can considerably differ. This work was supported by the Russian Science Foundation (Grant No. 16-13-10122).

Keywords: Charge recombination, higher excited states, free energy gap law, nonequilibrium

Procedia PDF Downloads 326
19223 Exploring the Applications of Neural Networks in the Adaptive Learning Environment

Authors: Baladitya Swaika, Rahul Khatry

Abstract:

Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.

Keywords: computer adaptive tests, item response theory, machine learning, neural networks

Procedia PDF Downloads 175
19222 The Relationship between Employee Commitment, Job Satisfaction and External Market Orientation in Vietnamese Joint-Stock Commercial Banks

Authors: Nguyen Ngoc Que Tran

Abstract:

Purpose: The purpose of this paper is to investigate the relationship between internal market orientation, external market orientation, employee commitment and job satisfaction. Design/methodology/approach: This study collected data through a survey and utilized simple linear regression and multiple regression analysis to determine if there was any support for the research hypotheses as presented in the previous chapter. Findings: Using data from 256 employees of four leading joint stock banks in Vietnam, the empirical results indicates that employee commitment is positively related with external market orientation, job satisfaction is positively related to employee commitment, and employee commitment and job satisfaction are positively related to external market orientation. However, job satisfaction has no significant positive effect on external market orientation. Theoretical contribution: The primary contribution to marketing theory arising from this study is the integration of job satisfaction, employee commitment, and external market orientation in a single research model. Practical implications: The major contribution to practice is an external market oriented bank has to respond rapidly to the future needs and preferences of its customers. This could result in high levels of commitment to the service process and in doing so provide Vietnamese joint-stock commercial banks with a competitive advantage. The finding is important for the banking service sector in general and the Vietnamese banking industry in particular.

Keywords: employee commitment, job satisfaction and external market orientation, vietnam, bank

Procedia PDF Downloads 414
19221 Health Belief Model to Predict Sharps Injuries among Health Care Workers at First Level Care Facilities in Rural Pakistan

Authors: Mohammad Tahir Yousafzai, Amna Rehana Siddiqui, Naveed Zafar Janjua

Abstract:

We assessed the frequency and predictors of sharp injuries (SIs) among health care workers (HCWs) at first level care facilities (FLCF) in rural Pakistan. HCWs working at public clinic (PC), privately owned licensed practitioners’ clinic (LPC) and non-licensed practitioners’ clinic (NLC) were interviewed on universal precautions (UPs) and constructs of health belief model (HBM) to assess their association with SIs through negative-binomial regression. From 365 clinics, 485 HCWs were interviewed. Overall annual rate of Sis was 192/100 HCWs/year; 78/100 HCWs among licensed prescribers, 191/100 HCWs among non-licensed prescribers, 248/100 HCWs among qualified assistants, and 321/100 HCWs among non-qualified assistants. Increasing knowledge score about bloodborne pathogens (BBPs) transmission (rate-ratio (RR): 0.93; 95%CI: 0.89–0.96), fewer years of work experience, being a non-licensed prescriber (RR: 2.02; 95%CI: 1.36–2.98) licensed (RR: 2.86; 9%CI: 1.81–4.51) or non-licensed assistant (RR: 2.78; 95%CI: 1.72–4.47) compared to a licensed prescriber, perceived barriers (RR: 1.06;95%CI: 1.03–1.08), and compliance with UPs scores (RR: 0.93; 95%CI: 0.87–0.97) were significant predictors of SIs. Improved knowledge about BBPs, compliance with UPs and reduced barriers to follow UPs could reduce SIs to HCWs.

Keywords: health belief model, sharp injuries, needle stick injuries, healthcare workers

Procedia PDF Downloads 312