Search results for: traditional knowledge resources classification
16640 A t-SNE and UMAP Based Neural Network Image Classification Algorithm
Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang
Abstract:
Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.Keywords: t-SNE, UMAP, fashion MNIST, neural networks
Procedia PDF Downloads 19816639 Knowledge Acquisition as Determinant of Outputs of Innovative Business in Regions of the Czech Republic
Authors: P. Hajek, J. Stejskal
Abstract:
The aim of this paper is to analyze the ability to identify and acquire knowledge from external sources at the regional level in the Czech Republic. The results show that the most important sources of knowledge for innovative activities are sources within the businesses themselves, followed by customers and suppliers. Furthermore, the analysis of relationships between the objective of the innovative activity and the ability to identify and acquire knowledge implies that knowledge obtained from a) customers aims at replacing outdated products and increasing product quality; b) suppliers aims at increasing capacity and flexibility of production; and c) competing businesses aims at growing market share and increasing the flexibility of production and services. Regions should therefore direct their support especially into development and strengthening of networks within the value chain.Keywords: knowledge, acquisition, innovative business, Czech republic, region
Procedia PDF Downloads 37216638 Surface to the Deeper: A Universal Entity Alignment Approach Focusing on Surface Information
Authors: Zheng Baichuan, Li Shenghui, Li Bingqian, Zhang Ning, Chen Kai
Abstract:
Entity alignment (EA) tasks in knowledge graphs often play a pivotal role in the integration of knowledge graphs, where structural differences often exist between the source and target graphs, such as the presence or absence of attribute information and the types of attribute information (text, timestamps, images, etc.). However, most current research efforts are focused on improving alignment accuracy, often along with an increased reliance on specific structures -a dependency that inevitably diminishes their practical value and causes difficulties when facing knowledge graph alignment tasks with varying structures. Therefore, we propose a universal knowledge graph alignment approach that only utilizes the common basic structures shared by knowledge graphs. We have demonstrated through experiments that our method achieves state-of-the-art performance in fair comparisons.Keywords: knowledge graph, entity alignment, transformer, deep learning
Procedia PDF Downloads 4516637 Constructing a Semi-Supervised Model for Network Intrusion Detection
Authors: Tigabu Dagne Akal
Abstract:
While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.Keywords: intrusion detection, data mining, computer science, data mining
Procedia PDF Downloads 29616636 Sustainable Traditional Architecture and Urban Planning in Hot-Arid Climate of Iran
Authors: Farnaz Nazem
Abstract:
The aim of sustainable architecture is to design buildings with the least adverse effects on the environment and provide better conditions for people. What building forms make the best use of land? This question was addressed in the late 1960s at the center of Land Use and Built Form Studies in Cambridge. This led to a number of influential papers which had a great influence on the practice of urban design. This paper concentrates on the results of sustainability caused by climatic conditions in Iranian traditional architecture in hot-arid regions. As people spent a significant amount of their time in houses, it was very important to have such houses to fulfill their needs physically and spiritually as well as satisfying their cultural and religious aspects of their lifestyles. In a vast country such as Iran with different climatic zones, traditional builders have presented series of logical solutions for human comfort. These solutions have been able to response to the environmental problems for a long period of time. As a result, by considering the experience in traditional architecture of hot–arid climate in Iran, it is possible to attain sustainable architecture.Keywords: hot-arid climate, Iran, sustainable traditional architecture, urban planning
Procedia PDF Downloads 47216635 A Resource Optimization Strategy for CPU (Central Processing Unit) Intensive Applications
Authors: Junjie Peng, Jinbao Chen, Shuai Kong, Danxu Liu
Abstract:
On the basis of traditional resource allocation strategies, the usage of resources on physical servers in cloud data center is great uncertain. It will cause waste of resources if the assignment of tasks is not enough. On the contrary, it will cause overload if the assignment of tasks is too much. This is especially obvious when the applications are the same type because of its resource preferences. Considering CPU intensive application is one of the most common types of application in the cloud, we studied the optimization strategy for CPU intensive applications on the same server. We used resource preferences to analyze the case that multiple CPU intensive applications run simultaneously, and put forward a model which can predict the execution time for CPU intensive applications which run simultaneously. Based on the prediction model, we proposed the method to select the appropriate number of applications for a machine. Experiments show that the model can predict the execution time accurately for CPU intensive applications. To improve the execution efficiency of applications, we propose a scheduling model based on priority for CPU intensive applications. Extensive experiments verify the validity of the scheduling model.Keywords: cloud computing, CPU intensive applications, resource optimization, strategy
Procedia PDF Downloads 27916634 Dynamic Distribution Calibration for Improved Few-Shot Image Classification
Authors: Majid Habib Khan, Jinwei Zhao, Xinhong Hei, Liu Jiedong, Rana Shahzad Noor, Muhammad Imran
Abstract:
Deep learning is increasingly employed in image classification, yet the scarcity and high cost of labeled data for training remain a challenge. Limited samples often lead to overfitting due to biased sample distribution. This paper introduces a dynamic distribution calibration method for few-shot learning. Initially, base and new class samples undergo normalization to mitigate disparate feature magnitudes. A pre-trained model then extracts feature vectors from both classes. The method dynamically selects distribution characteristics from base classes (both adjacent and remote) in the embedding space, using a threshold value approach for new class samples. Given the propensity of similar classes to share feature distributions like mean and variance, this research assumes a Gaussian distribution for feature vectors. Subsequently, distributional features of new class samples are calibrated using a corrected hyperparameter, derived from the distribution features of both adjacent and distant base classes. This calibration augments the new class sample set. The technique demonstrates significant improvements, with up to 4% accuracy gains in few-shot classification challenges, as evidenced by tests on miniImagenet and CUB datasets.Keywords: deep learning, computer vision, image classification, few-shot learning, threshold
Procedia PDF Downloads 6716633 The Impact of the Core Competencies in Business Management to the Existence and Progress of Traditional Foods Business with the Case of Study: Gudeg Sagan Yogyakarta
Authors: Lutfi AuliaRahman, Hari Rizki Ananda
Abstract:
The traditional food is a typical food of a certain region that has a taste of its own unique and typically consumed by a society in certain areas, one of which is Gudeg, a regional specialties traditional food of Yogyakarta and Central Java which is made of young jackfruit cooked in coconut milk, edible with rice and served with thick coconut milk (areh), chicken, eggs, tofu and sambal goreng krecek. However, lately, the image of traditional food has declined among people, so with gudeg, which today's society, especially among young people, tend to prefer modern types of food such as fast food and some other foods that are popular. Moreover, traditional food usually only preferred by consumers of local communities and lack of demand by consumers from different areas for different tastes. Thus, the traditional food producers increasingly marginalized and their consumers are on the wane. This study aimed to evaluate the management used by producers of traditional food with a case study of Gudeg Sagan which located in the city of Yogyakarta, with the ability of their management in creating core competencies, which includes the competence of cost, competence of flexibility, competence of quality, competence of time, and value-based competence. And then, in addition to surviving and continuing to exist with the existing external environment, Gudeg Sagan can increase the number of consumers and also reach a broader segment of teenagers and adults as well as consumers from different areas. And finally, in this paper will be found positive impact on the creation of the core competencies of the existence and progress of the traditional food business based on case study of Gudeg Sagan.Keywords: Gudeg Sagan, traditional food, core competencies, existence
Procedia PDF Downloads 25216632 Facial Pose Classification Using Hilbert Space Filling Curve and Multidimensional Scaling
Authors: Mekamı Hayet, Bounoua Nacer, Benabderrahmane Sidahmed, Taleb Ahmed
Abstract:
Pose estimation is an important task in computer vision. Though the majority of the existing solutions provide good accuracy results, they are often overly complex and computationally expensive. In this perspective, we propose the use of dimensionality reduction techniques to address the problem of facial pose estimation. Firstly, a face image is converted into one-dimensional time series using Hilbert space filling curve, then the approach converts these time series data to a symbolic representation. Furthermore, a distance matrix is calculated between symbolic series of an input learning dataset of images, to generate classifiers of frontal vs. profile face pose. The proposed method is evaluated with three public datasets. Experimental results have shown that our approach is able to achieve a correct classification rate exceeding 97% with K-NN algorithm.Keywords: machine learning, pattern recognition, facial pose classification, time series
Procedia PDF Downloads 35016631 A Proposal of Multi-modal Teaching Model for College English
Authors: Huang Yajing
Abstract:
Multimodal discourse refers to the phenomenon of using various senses such as hearing, vision, and touch to communicate through various means and symbolic resources such as language, images, sounds, and movements. With the development of modern technology and multimedia, language and technology have become inseparable, and foreign language teaching is becoming more and more modal. Teacher-student communication resorts to multiple senses and uses multiple symbol systems to construct and interpret meaning. The classroom is a semiotic space where multimodal discourses are intertwined. College English multi-modal teaching is to rationally utilize traditional teaching methods while mobilizing and coordinating various modern teaching methods to form a joint force to promote teaching and learning. Multimodal teaching makes full and reasonable use of various meaning resources and can maximize the advantages of multimedia and network environments. Based upon the above theories about multimodal discourse and multimedia technology, the present paper will propose a multi-modal teaching model for college English in China.Keywords: multimodal discourse, multimedia technology, English education, applied linguistics
Procedia PDF Downloads 6816630 Project-Based Learning Application: Applying Systems Thinking Concepts to Assure Continuous Improvement
Authors: Kimberley Kennedy
Abstract:
The major findings of this study discuss the importance of understanding and applying Systems thinking concepts to ensure an effective Project-Based Learning environment. A pilot project study of a major pedagogical change was conducted over a five year period with the goal to give students real world, hands-on learning experiences and the opportunity to apply what they had learned over the past two years of their business program. The first two weeks of the fifteen week semester utilized teaching methods of lectures, guest speakers and design thinking workshops to prepare students for the project work. For the remaining thirteen weeks of the semester, the students worked with actual business owners and clients on projects and challenges. The first three years of the five year study focused on student feedback to ensure a quality learning experience and continuous improvement process was developed. The final two years of the study, examined the conceptual understanding and perception of learning and teaching by faculty using Project-Based Learning pedagogy as compared to lectures and more traditional teaching methods was performed. Relevant literature was reviewed and data collected from program faculty participants who completed pre-and post-semester interviews and surveys over a two year period. Systems thinking concepts were applied to better understand the challenges for faculty using Project-Based Learning pedagogy as compared to more traditional teaching methods. Factors such as instructor and student fatigue, motivation, quality of work and enthusiasm were explored to better understand how to provide faculty with effective support and resources when using Project-Based Learning pedagogy as the main teaching method. This study provides value by presenting generalizable, foundational knowledge by offering suggestions for practical solutions to assure student and teacher engagement in Project-Based Learning courses.Keywords: continuous improvement, project-based learning, systems thinking, teacher engagement
Procedia PDF Downloads 11916629 Exploring Multi-Feature Based Action Recognition Using Multi-Dimensional Dynamic Time Warping
Authors: Guoliang Lu, Changhou Lu, Xueyong Li
Abstract:
In action recognition, previous studies have demonstrated the effectiveness of using multiple features to improve the recognition performance. We focus on two practical issues: i) most studies use a direct way of concatenating/accumulating multi features to evaluate the similarity between two actions. This way could be too strong since each kind of feature can include different dimensions, quantities, etc; ii) in many studies, the employed classification methods lack of a flexible and effective mechanism to add new feature(s) into classification. In this paper, we explore an unified scheme based on recently-proposed multi-dimensional dynamic time warping (MD-DTW). Experiments demonstrated the scheme's effectiveness of combining multi-feature and the flexibility of adding new feature(s) to increase the recognition performance. In addition, the explored scheme also provides us an open architecture for using new advanced classification methods in the future to enhance action recognition.Keywords: action recognition, multi features, dynamic time warping, feature combination
Procedia PDF Downloads 43716628 Teaching for Knowledge Transfer: Best Practices from a Graduate-Level Educational Psychology Distance Learning Program
Authors: Bobby Hoffman
Abstract:
One measure of effective instruction is the ability to solve authentic, real-world problems by effectively transferring and applying classroom and textbook knowledge. While many students can productively earn high grades and learn course content, they are not always able to apply the knowledge they gain. As such, this quasi-experimental study compared the comprehensive exit exam results of learners across instructional modalities who completed a prominent graduate-level educational psychology program. ANCOVA revealed superior knowledge transfer for blended-learning students compared to those who completed distance education and significantly greater transfer of declarative, procedural, and self-regulatory knowledge by the blended-learning students. This paper briefly summarizes the study results while highlighting evidence-based programmatic and course level modifications that were implemented to specifically address the transfer of learning and practical application of educational psychology knowledge.Keywords: assessment, distance learning, educational psychology, knowledge transfer
Procedia PDF Downloads 17716627 Water Management of Polish Agriculture and Adaptation to Climate Change
Authors: Dorota M. Michalak
Abstract:
The agricultural sector, due to the growing demand for food and over-exploitation of the natural environment, contributes to the deepening of climate change, on the one hand, and on the other hand, shrinking freshwater resources, as a negative effect of climate change, threaten the food security of each country. Therefore, adaptation measures to climate change should take into account effective water management and seek solutions ensuring food production at an unchanged or higher level, while not burdening the environment and not contributing to the worsening of the negative consequences of climate change. The problems of Poland's water management result not only from relatively small, natural water resources but to a large extent on the low efficiency of their use. Appropriate agricultural practices and state solutions in this field can contribute to achieving significant benefits in terms of economical water management in agriculture, providing a greater amount of water that could also be used for other purposes, including for purposes related to environmental protection. The aim of the article is to determine the level of use of water resources in Polish agriculture and the advancement of measures aimed at adapting Polish agriculture in the field of water management to climate change. The study provides knowledge about Polish legal regulations and water management tools, the shaping of water policy of Polish agriculture against the background of EU countries and other sources of energy, and measures supporting Polish agricultural holdings in the effective management of water resources run by state budget institutions. In order to achieve the above-mentioned goals, the author used research tools such as the analysis of existing sources and a survey conducted among five groups of entities, i.e. agricultural advisory centers and departments, agricultural, rural and environmental protection departments, regional water management boards, provincial agricultural chambers and restructuring and modernization of agriculture. The main conclusion of the analyses carried out is the low use of water in Polish agriculture in relation to other EU countries, other sources of intake in Poland, as well as irrigation. The analysis allows us to observe another problem, which is the lack of reporting and data collection, which is extremely important from the point of view of the effectiveness of adaptation measures to climate change. The results obtained from the survey indicate a very low level of support for government institutions in the implementation of adaptation measures to climate change and the water management of Polish farms. Some of the basic problems of the adaptation policy to change climate with regard to water management in Polish agriculture include a lack of knowledge regarding climate change, the possibilities of adapting, the available tools or ways to rationalize the use of water resources. It also refers to the lack of ordering procedures and the separation of responsibility with a proper territorial unit, non-functioning channels of information flow and practically low effects.Keywords: water management, adaptation policy, agriculture, climate change
Procedia PDF Downloads 14216626 Ethnopharmacology of Urinary Deseases in Algerian Sahara
Authors: Khaled Sekkoum
Abstract:
The traditional pharmacopoeia of Algerian Sahara is very rich on vegetable drugs. The great resources and biodiversity of Algerian Sahara flora seem responsible. A survey of medicinal plants used by the local population of the south west of Algeria for the urinary disorders is reported. Sixty-three plant species belonging to thirty-three families were identified. Their botanical and local names, plant part used, mode of use and ailment treated are given.Keywords: medicinal plants, urinary diseases, Sahara, Algeria
Procedia PDF Downloads 33416625 The Amount of Conformity of Persian Subject Headlines with Users' Social Tagging
Authors: Amir Reza Asnafi, Masoumeh Kazemizadeh, Najmeh Salemi
Abstract:
Due to the diversity of information resources in the web0.2 environment, which is increasing in number from time to time, the social tagging system should be used to discuss Internet resources. Studying the relevance of social tags to thematic headings can help enrich resources and make them more accessible to resources. The present research is of applied-theoretical type and research method of content analysis. In this study, using the listing method and content analysis, the level of accurate, approximate, relative, and non-conformity of social labels of books available in the field of information science and bibliography of Kitabrah website with Persian subject headings was determined. The exact matching of subject headings with social tags averaged 22 items, the approximate matching of subject headings with social tags averaged 36 items, the relative matching of thematic headings with social tags averaged 36 social items, and the average matching titles did not match the title. The average is 116. According to the findings, the exact matching of subject headings with social labels is the lowest and the most inconsistent. This study showed that the average non-compliance of subject headings with social labels is even higher than the sum of the three types of exact, relative, and approximate matching. As a result, the relevance of thematic titles to social labels is low. Due to the fact that the subject headings are in the form of static text and users are not allowed to interact and insert new selected words and topics, and on the other hand, in websites based on Web 2 and based on the social classification system, this possibility is available for users. An important point of the present study and the studies that have matched the syntactic and semantic matching of social labels with thematic headings is that the degree of conformity of thematic headings with social labels is low. Therefore, these two methods can complement each other and create a hybrid cataloging that includes subject headings and social tags. The low level of conformity of thematic headings with social tags confirms the results of backgrounds and writings that have compared the social tags of books with the thematic headings of the Library of Congress. It is not enough to match social labels with thematic headings. It can be said that these two methods can be complementary.Keywords: Web 2/0, social tags, subject headings, hybrid cataloging
Procedia PDF Downloads 16016624 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time
Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma
Abstract:
Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.Keywords: multiclass classification, convolution neural network, OpenCV
Procedia PDF Downloads 17616623 A Systematic Literature Review on Security and Privacy Design Patterns
Authors: Ebtehal Aljedaani, Maha Aljohani
Abstract:
Privacy and security patterns are both important for developing software that protects users' data and privacy. Privacy patterns are designed to address common privacy problems, such as unauthorized data collection and disclosure. Security patterns are designed to protect software from attack and ensure reliability and trustworthiness. Using privacy and security patterns, software engineers can implement security and privacy by design principles, which means that security and privacy are considered throughout the software development process. These patterns are available to translate "security & privacy-by-design" into practical advice for software engineering. Previous research on privacy and security patterns has typically focused on one category of patterns at a time. This paper aims to bridge this gap by merging the two categories and identifying their similarities and differences. To do this, the authors conducted a systematic literature review of 25 research papers on privacy and security patterns. The papers were analysed based on the category of the pattern, the classification of the pattern, and the security requirements that the pattern addresses. This paper presents the results of a comprehensive review of privacy and security design patterns. The review is intended to help future IT designers understand the relationship between the two types of patterns and how to use them to design secure and privacy-preserving software. The paper provides a clear classification of privacy and security design patterns, along with examples of each type. The authors found that there is only one widely accepted classification of privacy design patterns, while there are several competing classifications of security design patterns. Three types of security design patterns were found to be the most commonly used.Keywords: design patterns, security, privacy, classification of patterns, security patterns, privacy patterns
Procedia PDF Downloads 13316622 Diagnosis and Analysis of Automated Liver and Tumor Segmentation on CT
Authors: R. R. Ramsheeja, R. Sreeraj
Abstract:
For view the internal structures of the human body such as liver, brain, kidney etc have a wide range of different modalities for medical images are provided nowadays. Computer Tomography is one of the most significant medical image modalities. In this paper use CT liver images for study the use of automatic computer aided techniques to calculate the volume of the liver tumor. Segmentation method is used for the detection of tumor from the CT scan is proposed. Gaussian filter is used for denoising the liver image and Adaptive Thresholding algorithm is used for segmentation. Multiple Region Of Interest(ROI) based method that may help to characteristic the feature different. It provides a significant impact on classification performance. Due to the characteristic of liver tumor lesion, inherent difficulties appear selective. For a better performance, a novel proposed system is introduced. Multiple ROI based feature selection and classification are performed. In order to obtain of relevant features for Support Vector Machine(SVM) classifier is important for better generalization performance. The proposed system helps to improve the better classification performance, reason in which we can see a significant reduction of features is used. The diagnosis of liver cancer from the computer tomography images is very difficult in nature. Early detection of liver tumor is very helpful to save the human life.Keywords: computed tomography (CT), multiple region of interest(ROI), feature values, segmentation, SVM classification
Procedia PDF Downloads 50916621 A Model of Empowerment Evaluation of Knowledge Management in Private Banks Using Fuzzy Inference System
Authors: Nazanin Pilevari, Kamyar Mahmoodi
Abstract:
The purpose of this research is to provide a model based on fuzzy inference system for evaluating empowerment of Knowledge management. The first prototype of the research was developed based on the study of literature. In the next step, experts were provided with these models and after implementing consensus-based reform, the views of Fuzzy Delphi experts and techniques, components and Index research model were finalized. Culture, structure, IT and leadership were considered as dimensions of empowerment. Then, In order to collect and extract data for fuzzy inference system based on knowledge and Experience, the experts were interviewed. The values obtained from designed fuzzy inference system, made review and assessment of the organization's empowerment of Knowledge management possible. After the design and validation of systems to measure indexes ,empowerment of Knowledge management and inputs into fuzzy inference) in the AYANDEH Bank, a questionnaire was used. In the case of this bank, the system output indicates that the status of empowerment of Knowledge management, culture, organizational structure and leadership are at the moderate level and information technology empowerment are relatively high. Based on these results, the status of knowledge management empowerment in AYANDE Bank, was moderate. Eventually, some suggestions for improving the current situation of banks were provided. According to studies of research history, the use of powerful tools in Fuzzy Inference System for assessment of Knowledge management and knowledge management empowerment such an assessment in the field of banking, are the innovation of this Research.Keywords: knowledge management, knowledge management empowerment, fuzzy inference system, fuzzy Delphi
Procedia PDF Downloads 36016620 Using Problem-Based Learning on Teaching Early Intervention for College Students
Authors: Chen-Ya Juan
Abstract:
In recent years, the increasing number of children with special needs has brought a lot of attention by many scholars and experts in education, which enforced the preschool teachers face the harsh challenge in the classroom. To protect the right of equal education for all children, enhance the quality of children learning, and take care of the needs of children with special needs, the special education paraprofessional becomes one of the future employment trends for students of the department of the early childhood care and education. Problem-based learning is a problem-oriented instruction, which is different from traditional instruction. The instructor first designed an ambiguous problem direction, following the basic knowledge of early intervention, students had to find clues to solve the problem defined by themselves. In the class, the total instruction included 20 hours, two hours per week. The primary purpose of this paper is to investigate the relationship of student academic scores, self-awareness, learning motivation, learning attitudes, and early intervention knowledge. A total of 105 college students participated in this study and 97 questionnaires were effective. The effective response rate was 90%. The student participants included 95 females and two males. The average age of the participants was 19 years old. The questionnaires included 125 questions divided into four major dimensions: (1) Self-awareness, (2) learning motivation, (3) learning attitudes, and (4) early intervention knowledge. The results indicated (1) the scores of self-awareness were 58%; the scores of the learning motivations was 64.9%; the scores of the learning attitudes was 55.3%. (2) After the instruction, the early intervention knowledge has been increased to 64.2% from 38.4%. (3) Student’s academic performance has positive relationship with self-awareness (p < 0.05; R = 0.506), learning motivation (p < 0.05; R = 0.487), learning attitudes (p < 0.05; R = 0.527). The results implied that although students had gained early intervention knowledge by using PBL instruction, students had medium scores on self-awareness and learning attitudes, medium high in learning motivations.Keywords: college students, children with special needs, problem-based learning, learning motivation
Procedia PDF Downloads 15716619 The Use Management of the Knowledge Management and the Information Technologies in the Competitive Strategy of a Self-Propelling Industry
Authors: Guerrero Ramírez Sandra, Ramos Salinas Norma Maricela, Muriel Amezcua Vanesa
Abstract:
This article presents the beginning of a wider study that intends to demonstrate how within organizations of the automotive industry from the city of Querétaro. Knowledge management and technological management are required, as well as people’s initiative and the interaction embedded at the interior of it, with the appropriate environment that facilitates information conversion with wide information technologies management (ITM) range. A company was identified for the pilot study of this research, where descriptive and inferential research information was obtained. The results of the pilot suggest that some respondents did noted entity the knowledge management topic, even if staffs have access to information technology (IT) that serve to enhance access to knowledge (through internet, email, databases, external and internal company personnel, suppliers, customers and competitors) data, this implicates that there are Knowledge Management (KM) problems. The data shows that academically well-prepared organizations normally do not recognize the importance of knowledge in the business, nor in the implementation of it, which at the end is a great influence on how to manage it, so that it should guide the company to greater in sight towards a competitive strategy search, given that the company has an excellent technological infrastructure and KM was not exploited. Cultural diversity is another factor that was observed by the staff.Keywords: Knowledge Management (KM), Technological Knowledge Management (TKM), Technology Information Management (TI), access to knowledge
Procedia PDF Downloads 50116618 Differences in Production of Knowledge between Internationally Mobile versus Nationally Mobile and Non-Mobile Scientists
Authors: Valeria Aman
Abstract:
The presented study examines the impact of international mobility on knowledge production among mobile scientists and within the sending and receiving research groups. Scientists are relevant to the dynamics of knowledge production because scientific knowledge is mainly characterized by embeddedness and tacitness. International mobility enables the dissemination of scientific knowledge to other places and encourages new combinations of knowledge. It can also increase the interdisciplinarity of research by forming synergetic combinations of knowledge. Particularly innovative ideas can have their roots in related research domains and are sometimes transferred only through the physical mobility of scientists. Diversity among scientists with respect to their knowledge base can act as an engine for the creation of knowledge. It is therefore relevant to study how knowledge acquired through international mobility affects the knowledge production process. In certain research domains, international mobility may be essential to contextualize knowledge and to gain access to knowledge located at distant places. The knowledge production process contingent on the type of international mobility and the epistemic culture of a research field is examined. The production of scientific knowledge is a multi-faceted process, the output of which is mainly published in scholarly journals. Therefore, the study builds upon publication and citation data covered in Elsevier’s Scopus database for the period of 1996 to 2015. To analyse these data, bibliometric and social network analysis techniques are used. A basic analysis of scientific output using publication data, citation data and data on co-authored publications is combined with a content map analysis. Abstracts of publications indicate whether a research stay abroad makes an original contribution methodologically, theoretically or empirically. Moreover, co-citations are analysed to map linkages among scientists and emerging research domains. Finally, acknowledgements are studied that can function as channels of formal and informal communication between the actors involved in the process of knowledge production. The results provide better understanding of how the international mobility of scientists contributes to the production of knowledge, by contrasting the knowledge production dynamics of internationally mobile scientists with those being nationally mobile or immobile. Findings also allow indicating whether international mobility accelerates the production of knowledge and the emergence of new research fields.Keywords: bibliometrics, diversity, interdisciplinarity, international mobility, knowledge production
Procedia PDF Downloads 29316617 A Novel Approach for the Analysis of Ground Water Quality by Using Classification Rules and Water Quality Index
Authors: Kamakshaiah Kolli, R. Seshadri
Abstract:
Water is a key resource in all economic activities ranging from agriculture to industry. Only a tiny fraction of the planet's abundant water is available to us as fresh water. Assessment of water quality has always been paramount in the field of environmental quality management. It is the foundation for health, hygiene, progress and prosperity. With ever increasing pressure of human population, there is severe stress on water resources. Therefore efficient water management is essential to civil society for betterment of quality of life. The present study emphasizes on the groundwater quality, sources of ground water contamination, variation of groundwater quality and its spatial distribution. The bases for groundwater quality assessment are groundwater bodies and representative monitoring network enabling determination of chemical status of groundwater body. For this study, water samples were collected from various areas of the entire corporation area of Guntur. Water is required for all living organisms of which 1.7% is available as ground water. Water has no calories or any nutrients, but essential for various metabolic activities in our body. Chemical and physical parameters can be tested for identifying the portability of ground water. Electrical conductivity, pH, alkalinity, Total Alkalinity, TDS, Calcium, Magnesium, Sodium, Potassium, Chloride, and Sulphate of the ground water from Guntur district: Different areas of the District were analyzed. Our aim is to check, if the ground water from the above areas are potable or not. As multivariate are present, Data mining technique using JRIP rules was employed for classifying the ground water.Keywords: groundwater, water quality standards, potability, data mining, JRIP, PCA, classification
Procedia PDF Downloads 43016616 A Ratio-Weighted Decision Tree Algorithm for Imbalance Dataset Classification
Authors: Doyin Afolabi, Phillip Adewole, Oladipupo Sennaike
Abstract:
Most well-known classifiers, including the decision tree algorithm, can make predictions on balanced datasets efficiently. However, the decision tree algorithm tends to be biased towards imbalanced datasets because of the skewness of the distribution of such datasets. To overcome this problem, this study proposes a weighted decision tree algorithm that aims to remove the bias toward the majority class and prevents the reduction of majority observations in imbalance datasets classification. The proposed weighted decision tree algorithm was tested on three imbalanced datasets- cancer dataset, german credit dataset, and banknote dataset. The specificity, sensitivity, and accuracy metrics were used to evaluate the performance of the proposed decision tree algorithm on the datasets. The evaluation results show that for some of the weights of our proposed decision tree, the specificity, sensitivity, and accuracy metrics gave better results compared to that of the ID3 decision tree and decision tree induced with minority entropy for all three datasets.Keywords: data mining, decision tree, classification, imbalance dataset
Procedia PDF Downloads 13716615 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning
Authors: Eiman Kattan
Abstract:
This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.Keywords: conventional neural network, remote sensing, land cover, land use
Procedia PDF Downloads 37016614 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation
Authors: Arian Hosseini, Mahmudul Hasan
Abstract:
To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing
Procedia PDF Downloads 5516613 Perception and Knowledge of the Jordanian Society of Occupational Therapy
Authors: Wesam Darawsheh
Abstract:
Background: there are scarcity of studies done to investigate the level of knowledge and the level of awareness and perception of Jordanians about occupational therapy (OT). Aim: to investigate the level of awareness of lay people, clients receiving services and healthcare professionals of OT, identify the common misconceptions about OT, and to explore ways whereby the knowledge and awareness about OT can be increased. Methodology: a cross sectional design was employed in this study where a survey was distributed in the Northern, Southern, Western, Eastern provinces and the Middle (capital city: Amman) province of Jordan. The survey consisted of eight section and 61 questions that aims to investigate the demographics of participants, self evaluation concerning knowledge and awareness about OT, sources of knowledge about OT, the perception of the aims, fields of practice, OT settings, misconceptions about OT, and suggestion to improve knowledge and awareness about OT. Results: A total of 829 participants were enrolled in this study: 459 lay people, 155 clients who are currently receiving OT services, 215 healthcare professionals. About 57% of the participants did not hear about OT, and 48% of those who reported to hear about OT did not have sufficient knowledge about it. There are several misconceptions associated with OT. The statistical analysis was executed using IBM SPSS software, Version 22.0 (SPSS, Chicago, USA). Conclusion: it is the responsibility of OTRs to increase the knowledge and awareness about OT in Jordan. This is required for the profession to proliferate and to be given its status.Keywords: knowledge, occupational therapy misconceptions, healthcare professionals, lay people, Jordan
Procedia PDF Downloads 36216612 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm
Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy
Abstract:
Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification
Procedia PDF Downloads 23816611 UKIYO-E: User Knowledge Improvement Based on Youth Oriented Entertainment, Art Appreciation Support by Interacting with Picture
Authors: Haruya Tamaki, Tsugunosuke Sakai, Ryuichi Yoshida, Ryohei Egusa, Shigenori Inagaki, Etsuji Yamaguchi, Fusako Kusunoki, Miki Namatame, Masanori Sugimoto, Hiroshi Mizoguchi
Abstract:
Art appreciation is important as part of children education. Art appreciation can enrich sensibility and creativity. To enrich sensibility and creativity, the children have to learning knowledge of picture such as social and historical backgrounds and author intention. High learning effect can acquire by actively learning. In short, it is important that encourage learning of the knowledge about pictures actively. It is necessary that children feel like interest to encourage learning of the knowledge about pictures actively. In a general art museum, comments on pictures are done through writing. Thus, we expect that this method cannot arouse the interest of the children in pictures, because children feel like boring. In brief, learning about the picture information is difficult. Therefore, we are developing an art-appreciation support system that will encourage learning of the knowledge about pictures actively by children feel like interest. This system uses that Interacting with Pictures to learning of the knowledge about pictures. To Interacting with Pictures, children have to utterance by themselves. We expect that will encourage learning of the knowledge about pictures actively by Interacting with Pictures. To more actively learning, children can choose who talking with by information that location and movement of the children. This system must be able to acquire real-time knowledge of the location, movement, and voice of the children. We utilize the Microsoft’s Kinect v2 sensor and its library, namely, Kinect for Windows SDK and Speech Platform SDK v11 for this purpose. By using these sensor and library, we can determine the location, movement, and voice of the children. As the first step of this system, we developed ukiyo-e game that use ukiyo-e to appreciation object. Ukiyo-e is a traditional Japanese graphic art that has influenced the western society. Therefore, we believe that the ukiyo-e game will be appreciated. In this study, we applied talking to pictures to learn information about the pictures because we believe that learning information about the pictures by talking to the pictures is more interesting than commenting on the pictures using only texts. However, we cannot confirm if talking to the pictures is more interesting than commenting using texts only. Thus, we evaluated through EDA measurement whether the user develops an interest in the pictures while talking to them using voice recognition or by commenting on the pictures using texts only. Hence, we evaluated that children have interest to picture while talking to them using voice recognition through EDA measurement. In addition, we quantitatively evaluate that enjoyed this game or not and learning information about the pictures for primary schoolchildren. In this paper, we summarize these two evaluation results.Keywords: actively learning, art appreciation, EDA, Kinect V2
Procedia PDF Downloads 285