Search results for: structure guided saturation mutagenesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8605

Search results for: structure guided saturation mutagenesis

7705 Accelerated Evaluation of Structural Reliability under Tsunami Loading

Authors: Sai Hung Cheung, Zhe Shao

Abstract:

It is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis in view of recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 which brought huge losses of lives and properties. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of a recently proposed moving least squares response surface approach for stochastic sampling and the Subset Simulation algorithm is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach.

Keywords: response surface, stochastic simulation, structural reliability tsunami, risk

Procedia PDF Downloads 654
7704 Optimal Risk and Financial Stability

Authors: Rahmoune Abdelhaq

Abstract:

Systemic risk is a key concern for central banks charged with safeguarding overall financial stability. In this work, we investigate how systemic risk is affected by the structure of the financial system. We construct banking systems that are composed of a number of banks that are connected by interbank linkages. We then vary the key parameters that define the structure of the financial system — including its level of capitalization, the degree to which banks are connected, the size of interbank exposures and the degree of concentration of the system — and analyses the influence of these parameters on the likelihood of contagious (knock-on) defaults. First, we find that the better-capitalized banks are, the more resilient is the banking system against contagious defaults and this effect is non-linear. Second, the effect of the degree of connectivity is non-monotonic, that is, initially a small increase in connectivity increases the contagion effect; but after a certain threshold value, connectivity improves the ability of a banking system to absorb shocks. Third, the size of interbank liabilities tends to increase the risk of knock-on default, even if banks hold capital against such exposures. Fourth, more concentrated banking systems are shown to be prone to larger systemic risk, all else equal. In an extension to the main analysis, we study how liquidity effects interact with banking structure to produce a greater chance of systemic breakdown. We finally consider how the risk of contagion might depend on the degree of asymmetry (tier) inherent in the structure of the banking system. A number of our results have important implications for public policy, which this paper also draws out. This paper also discusses why bank risk management is needed to get the optimal one.

Keywords: financial stability, contagion, liquidity risk, optimal risk

Procedia PDF Downloads 382
7703 Spatial Characters Adapted to Rainwater Natural Circulation in Residential Landscape

Authors: Yun Zhang

Abstract:

Urban housing in China is typified by residential districts that occupy 25 to 40 percentage of the urban land. In residential districts, squares, roads, and building facades, as well as plants, usually form a four-grade spatial structure: district entrances, central landscapes, housing cluster entrances, green spaces between dwellings. This spatial structure and its elements not only compose the visible residential landscape but also play a major role of carrying rain water. These elements, therefore, imply ecological significance to urban fitness. Based upon theories of landscape ecology, residential landscape can be understood as a pattern typified by minor soft patch of planted area and major hard patch of buildings and squares, as well as hard corridors of roads. Use five landscape districts in Hangzhou as examples; this paper finds that the size, shape and slope direction of soft patch, the bend of roads, and the form of the four-grade spatial structure are influential for adapting to natural rainwater circulation.

Keywords: Hangzhou China, rainwater, residential landscape, spatial character, urban housing

Procedia PDF Downloads 306
7702 Design and Radio Frequency Characterization of Radial Reentrant Narrow Gap Cavity for the Inductive Output Tube

Authors: Meenu Kaushik, Ayon K. Bandhoyadhayay, Lalit M. Joshi

Abstract:

Inductive output tubes (IOTs) are widely used as microwave power amplifiers for broadcast and scientific applications. It is capable of amplifying radio frequency (RF) power with very good efficiency. Its compactness, reliability, high efficiency, high linearity and low operating cost make this device suitable for various applications. The device consists of an integrated structure of electron gun and RF cavity, collector and focusing structure. The working principle of IOT is a combination of triode and klystron. The cathode lies in the electron gun produces a stream of electrons. A control grid is placed in close proximity to the cathode. Basically, the input part of IOT is the integrated structure of gridded electron gun which acts as an input cavity thereby providing the interaction gap where the input RF signal is applied to make it interact with the produced electron beam for supporting the amplification phenomena. The paper presents the design, fabrication and testing of a radial re-entrant cavity for implementing in the input structure of IOT at 350 MHz operating frequency. The model’s suitability has been discussed and a generalized mathematical relation has been introduced for getting the proper transverse magnetic (TM) resonating mode in the radial narrow gap RF cavities. The structural modeling has been carried out in CST and SUPERFISH codes. The cavity is fabricated with the Aluminum material and the RF characterization is done using vector network analyzer (VNA) and the results are presented for the resonant frequency peaks obtained in VNA.

Keywords: inductive output tubes, IOT, radial cavity, coaxial cavity, particle accelerators

Procedia PDF Downloads 104
7701 Metal Layer Based Vertical Hall Device in a Complementary Metal Oxide Semiconductor Process

Authors: Se-Mi Lim, Won-Jae Jung, Jin-Sup Kim, Jun-Seok Park, Hyung-Il Chae

Abstract:

This paper presents a current-mode vertical hall device (VHD) structure using metal layers in a CMOS process. The proposed metal layer based vertical hall device (MLVHD) utilizes vertical connection among metal layers (from M1 to the top metal) to facilitate hall effect. The vertical metal structure unit flows a bias current Ibias from top to bottom, and an external magnetic field changes the current distribution by Lorentz force. The asymmetric current distribution can be detected by two differential-mode current outputs on each side at the bottom (M1), and each output sinks Ibias/2 ± Ihall. A single vertical metal structure generates only a small amount of hall effect of Ihall due to the short length from M1 to the top metal as well as the low conductivity of the metal, and a series connection between thousands of vertical structure units can solve the problem by providing NxIhall. The series connection between two units is another vertical metal structure flowing current in the opposite direction, and generates negative hall effect. To mitigate the negative hall effect from the series connection, the differential current outputs at the bottom (M1) from one unit merges on the top metal level of the other unit. The proposed MLVHD is simulated in a 3-dimensional model simulator in COMSOL Multiphysics, with 0.35 μm CMOS process parameters. The simulated MLVHD unit size is (W) 10 μm × (L) 6 μm × (D) 10 μm. In this paper, we use an MLVHD with 10 units; the overall hall device size is (W) 10 μm × (L)78 μm × (D) 10 μm. The COMSOL simulation result is as following: the maximum hall current is approximately 2 μA with a 12 μA bias current and 100mT magnetic field; This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP) (No.R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).

Keywords: CMOS, vertical hall device, current mode, COMSOL

Procedia PDF Downloads 283
7700 Real-Time Hybrid Simulation for a Tuned Liquid Column Damper Implementation

Authors: Carlos Riascos, Peter Thomson

Abstract:

Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. Another practical application of RTHS is the evaluation of control systems, as these devices are often nonlinear and their characterization is an important step in the design of controllers with the desired performance. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.

Keywords: structural control, hybrid simulation, tuned liquid column damper, semi-active sontrol strategy

Procedia PDF Downloads 283
7699 Development of Methods for Plastic Injection Mold Weight Reduction

Authors: Bita Mohajernia, R. J. Urbanic

Abstract:

Mold making techniques have focused on meeting the customers’ functional and process requirements; however, today, molds are increasing in size and sophistication, and are difficult to manufacture, transport, and set up due to their size and mass. Presently, mold weight saving techniques focus on pockets to reduce the mass of the mold, but the overall size is still large, which introduces costs related to the stock material purchase, processing time for process planning, machining and validation, and excess waste materials. Reducing the overall size of the mold is desirable for many reasons, but the functional requirements, tool life, and durability cannot be compromised in the process. It is proposed to use Finite Element Analysis simulation tools to model the forces, and pressures to determine where the material can be removed. The potential results of this project will reduce manufacturing costs. In this study, a light weight structure is defined by an optimal distribution of material to carry external loads. The optimization objective of this research is to determine methods to provide the optimum layout for the mold structure. The topology optimization method is utilized to improve structural stiffness while decreasing the weight using the OptiStruct software. The optimized CAD model is compared with the primary geometry of the mold from the NX software. Results of optimization show an 8% weight reduction while the actual performance of the optimized structure, validated by physical testing, is similar to the original structure.

Keywords: finite element analysis, plastic injection molding, topology optimization, weight reduction

Procedia PDF Downloads 276
7698 Comparison of Stereotactic Craniotomy for Brain Metastasis, as Compared to Stereotactic Radiosurgery

Authors: Mostafa El Khashab

Abstract:

Our experience with 50 patients with metastatic tumors located in different locations of the brain by a stereotactic-guided craniotomy and total microsurgical resection. Patients ranged in age from 36 to 73 years. There were 28 women and 22 men. Thirty-four patients presented with hemiparesis and 6 with aphasia and the remaining presented with psychological manifestations and memory issues. Gross total resection was accomplished in all cases, with postoperative imaging confirmation of complete removal. Forty patients were subjected to whole brain irradiation. One patient developed a stroke postoperatively and another one had a flap infection. 4 patients developed different postoperative but unrelated morbidities, including pneumonia and DVT. No mortality was encountered. We believe that with the assistance of stereotactic localization, metastases in vital regions of the brain can be removed with very low neurologic morbidity and that, in comparison to other modalities, they fare better regarding their long-term outcome.

Keywords: stereotactic, craniotomy, radiosurgery, patient

Procedia PDF Downloads 75
7697 Dynamic Behavior of the Nanostructure of Load-Bearing Biological Materials

Authors: Mahan Qwamizadeh, Kun Zhou, Zuoqi Zhang, Yong Wei Zhang

Abstract:

Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories.

Keywords: load-bearing biological materials, nanostructure, staggered structure, stress wave decay

Procedia PDF Downloads 436
7696 Self-Assembly of Monodisperse Oleic Acid-Capped Superparamagnetic Iron Oxide Nanoparticles

Authors: Huseyin Kavas

Abstract:

Oleic acid (OA) capped superparamagnetic iron oxide nanoparticles (SPION) were synthesized by a thermal decomposition method. The composition of nanoparticles was confirmed by X-ray powder diffraction, and the morphology of particles was investigated by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Transmission electron microscopy (TEM). The crystalline and particle size distribution of SPIONS capped with OA were investigated with a mean size of 6.99 nm and 8.9 nm, respectively. It was found that SPIONS have superparamagnetic characteristics with a saturation magnetization value of 64 emu/g. The thin film form of self-assembled SPIONS was fabricated by coating techniques of spin coating and dip coating. SQUID-VSM magnetometer and FMR techniques were performed in order to evaluate the magnetic properties of thin films, especially the existence of magnetic anisotropy. The thin films with magnetic anisotropy were obtained by self-assembled monolayers of SPION.

Keywords: magnetic materials, nanostructures, self-assembly, FMR

Procedia PDF Downloads 88
7695 Behavior of Beam-Column Nodes Reinforced Concrete in Earthquake Zones

Authors: Zaidour Mohamed, Ghalem Ali Jr., Achit Henni Mohamed

Abstract:

This project is destined to study pole junctions of reinforced concrete beams subjected to seismic loads. A literature review was made to clarify the work done by researchers in the last three decades and especially the results of the last two years that were studied for the determination of the method of calculating the transverse reinforcement in the different nodes of a structure. For implementation efforts in the columns and beams of a building R + 4 in zone 3 were calculated using the finite element method through software. These results are the basis of our work which led to the calculation of the transverse reinforcement of the nodes of the structure in question.

Keywords: beam–column joints, cyclic loading, shearing force, damaged joint

Procedia PDF Downloads 531
7694 Analysis and Prediction of the Behavior of the Landslide at Ain El Hammam, Algeria Based on the Second Order Work Criterion

Authors: Zerarka Hizia, Akchiche Mustapha, Prunier Florent

Abstract:

The landslide of Ain El Hammam (AEH) is characterized by a complex geology and a high hydrogeology hazard. AEH's perpetual reactivation compels us to look closely at its triggers and to better understand the mechanisms of its evolution in mass and in depth. This study builds a numerical model to simulate the influencing factors such as precipitation, non-saturation, and pore pressure fluctuations, using Plaxis software. For a finer analysis of instabilities, we use Hill's criterion, based on the sign of the second order work, which is the most appropriate material stability criterion for non-associated elastoplastic materials. The results of this type of calculation allow us, in theory, to predict the shape and position of the slip surface(s) which are liable to ground movements of the slope, before reaching the rupture given by the plastic limit of Mohr Coulomb. To validate the numerical model, an analysis of inclinometer measures is performed to confirm the direction of movement and kinematic of the sliding mechanism of AEH’s slope.

Keywords: landslide, second order work, precipitation, inclinometers

Procedia PDF Downloads 157
7693 Structure-Based Drug Design of Daptomycin, Antimicrobial lipopeptide

Authors: Satya Eswari Jujjavarapu, Swast Dhagat

Abstract:

Contagious diseases enact severe public health problems and have upsetting consequences. The cyclic lipopeptides explained by bacteria Bacillus, Paenibacillus, Pseudomonas, Streptomyces, Serratia, Propionibacterium and fungus Fusarium are very critical in confining the pathogens. As the degree of drug resistance upsurges in unparalleled manner, the perseverance of searching novel cyclic lipopeptides is being professed. The intense study has shown the implication of these bioactive compounds extending beyond antibacterial and antifungal. Lipopeptides, composed of single units of peptide and fatty acyl moiety, show broad spectrum antimicrobial effects. Among the surplus of cyclic lipopeptides, only few have materialized as strong antibiotics. For their functional vigor, polymyxin, daptomycin, surfactin, iturin and bacillomycin have been integrated in mainstream healthcare. In our work daptomycin has been a major part of antimicrobial resource since the past decade. Daptomycin, a cyclic lipopeptide consists of 13-member amino acid with a decanoyl side-chain. This structure of daptomycin confers it the mechanism of action through which it forms pore in the bacterial cell membrane resulting in the death of cell. Daptomycin is produced by Streptococccus roseoporus and acts against Streptococcus pneumonia (PSRP), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). The PDB structure and ligands of daptomycin are available online. The molecular docking studies of these ligands with the lipopeptides were performed and their docking score and glide energy were recorded.

Keywords: daptomycin, molecular docking, structure-based drug design, lipopeptide

Procedia PDF Downloads 245
7692 The Effectiveness of Goldstein’s Social Skillstreaming Model on Social Skills of Special Education Pre-Service Teachers

Authors: Prof. Ragea Alqahtani

Abstract:

The purpose of the study was to measure the effectiveness of the Goldstein’s social skill streaming model based on the special and general pre-service teachers’ knowledge about controlling their emotions in conflict situations. A review of previous pieces of literature guided the design and measurement of the effectiveness of the approach to the control of emotions. The teachers were assessed using the coping strategy, adult anger, and Goldstein’s skill streaming inventories. Lastly, the paper provides various recommendations on the sensitization of the Goldstein’s Social Skill streaming model to both the special and pre-service teachers to promote their knowledge about controlling emotions in conflicts.

Keywords: emotional control, goldstein social skillstreaming model, modeling technique, self-as-a-model, self-efficacy, self-regulation

Procedia PDF Downloads 34
7691 Defect Modes in Multilayered Piezoelectric Structures

Authors: D. G. Piliposyan

Abstract:

Propagation of electro-elastic waves in a piezoelectric waveguide with finite stacks and a defect layer is studied using a modified transfer matrix method. The dispersion equation for a periodic structure consisting of unit cells made up from two piezoelectric materials with metallized interfaces is obtained. An analytical expression, for the transmission coefficient for a waveguide with finite stacks and a defect layer, that is found can be used to accurately detect and control the position of the passband within a stopband. The result can be instrumental in constructing a tunable waveguide made of layers of different or identical piezoelectric crystals and separated by metallized interfaces.

Keywords: piezoelectric layered structure, periodic phononic crystal, bandgap, bloch waves

Procedia PDF Downloads 209
7690 On the Accuracy of Basic Modal Displacement Method Considering Various Earthquakes

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history seismic analysis is supposed to be the most accurate method to predict the seismic demand of structures. On the other hand, the required computational time of this method toward achieving the result is its main deficiency. While being applied in optimization process, in which the structure must be analyzed thousands of time, reducing the required computational time of seismic analysis of structures makes the optimization algorithms more practical. Apparently, the invented approximate methods produce some amount of errors in comparison with exact time history analysis but the recently proposed method namely, Complete Quadratic Combination (CQC) and Sum Root of the Sum of Squares (SRSS) drastically reduces the computational time by combination of peak responses in each mode. In the present research, the Basic Modal Displacement (BMD) method is introduced and applied towards estimation of seismic demand of main structure. Seismic demand of sampled structure is estimated by calculation of modal displacement of basic structure (in which the modal displacement has been calculated). Shear steel sampled structures are selected as case studies. The error applying the introduced method is calculated by comparison of the estimated seismic demands with exact time history dynamic analysis. The efficiency of the proposed method is demonstrated by application of three types of earthquakes (in view of time of peak ground acceleration).

Keywords: time history dynamic analysis, basic modal displacement, earthquake-induced demands, shear steel structures

Procedia PDF Downloads 342
7689 The Effects of Applied Negative Bias Voltage on Structure and Optical Properties of a-C:H Films

Authors: X. L. Zhou, S. Tunmee, I. Toda, K. Komatsu, S. Ohshio, H. Saitoh

Abstract:

Hydrogenated amorphous carbon (a-C:H) films have been synthesized by a radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) technique with different bias voltage from 0.0 to -0.5 kV. The Raman spectra displayed the polymer-like hydrogenated amorphous carbon (PLCH) film with 0.0 to -0.1 and a-C:H films with -0.2 to -0.5 kV of bias voltages. The surface chemical information of all films were studied by X-ray photo electron spectroscopy (XPS) technique, presented to C-C (sp2 and sp3) and C-O bonds, and relative carbon (C) and oxygen (O) atomics contents. The O contamination had affected on structure and optical properties. The true density of PLCH and a-C:H films were characterized by X-ray refractivity (XRR) method, showed the result as in the range of 1.16-1.73 g/cm3 that depending on an increasing of bias voltage. The hardness was proportional to the true density of films. In addition, the optical properties i.e. refractive index (n) and extinction coefficient (k) of these films were determined by a spectroscopic ellipsometry (SE) method that give formation to in 1.62-2.10 (n) and 0.04-0.15 (k) respectively. These results indicated that the optical properties confirmed the Raman results as presenting the structure changed with applied bias voltage increased.

Keywords: negative bias voltage, a-C:H film, oxygen contamination, optical properties

Procedia PDF Downloads 467
7688 Practices Supporting the Wellbeing of Healthcare Staff Post-disaster: Findings from a Narrative Inquiry

Authors: Julaine Allan, Katarzyna Olcon, Padmini Pai, Lynne Keevers, Mim Fox, Maria Mackay, Ruth Everingham

Abstract:

Effective local responses to community needs are grounded in contextual knowledge and build on existing resources. The Stability, Encompassing, Endurance & Direction (SEED) Wellbeing Program was created in 2020 in response to cumulative disasters, bushfires, floods and COVID, experienced by healthcare staff in the Illawarra Shoalhaven Local Health District, NSW Australia. SEED used a participatory action methodology to bring healthcare staff teams together to engage in restorative activities in the workplace. Guided by Practice Theory, this study identified the practices that supported the recovery of healthcare staff.

Keywords: mental health and wellbeing, workplace wellness, healthcare providers, natural disasters, COVID-19, burnout, occupational trauma

Procedia PDF Downloads 70
7687 Single and Sequential Extraction for Potassium Fractionation and Nano-Clay Flocculation Structure

Authors: Chakkrit Poonpakdee, Jing-Hua Tzen, Ya-Zhen Huang, Yao-Tung Lin

Abstract:

Potassium (K) is a known macro nutrient and essential element for plant growth. Single leaching and modified sequential extraction schemes have been developed to estimate the relative phase associations of soil samples. The sequential extraction process is a step in analyzing the partitioning of metals affected by environmental conditions, but it is not a tool for estimation of K bioavailability. While, traditional single leaching method has been used to classify K speciation for a long time, it depend on its availability to the plants and use for potash fertilizer recommendation rate. Clay mineral in soil is a factor for controlling soil fertility. The change of the micro-structure of clay minerals during various environment (i.e. swelling or shrinking) is characterized using Transmission X-Ray Microscopy (TXM). The objective of this study are to 1) compare the distribution of K speciation between single leaching and sequential extraction process 2) determined clay particle flocculation structure before/after suspension with K+ using TXM. Four tropical soil samples: farming without K fertilizer (10 years), long term applied K fertilizer (10 years; 168-240 kg K2O ha-1 year-1), red soil (450-500 kg K2O ha-1 year-1) and forest soil were selected. The results showed that the amount of K speciation by single leaching method were high in mineral K, HNO3 K, Non-exchangeable K, NH4OAc K, exchangeable K and water soluble K respectively. Sequential extraction process indicated that most K speciations in soil were associated with residual, organic matter, Fe or Mn oxide and exchangeable fractions and K associate fraction with carbonate was not detected in tropical soil samples. In farming long term applied K fertilizer and red soil were higher exchangeable K than farming long term without K fertilizer and forest soil. The results indicated that one way to increase the available K (water soluble K and exchangeable K) should apply K fertilizer and organic fertilizer for providing available K. The two-dimension of TXM image of clay particles suspension with K+ shows that the aggregation structure of clay mineral closed-void cellular networks. The porous cellular structure of soil aggregates in 1 M KCl solution had large and very larger empty voids than in 0.025 M KCl and deionized water respectively. TXM nanotomography is a new technique can be useful in the field as a tool for better understanding of clay mineral micro-structure.

Keywords: potassium, sequential extraction process, clay mineral, TXM

Procedia PDF Downloads 268
7686 Displacement Based Design of a Dual Structural System

Authors: Romel Cordova Shedan

Abstract:

The traditional seismic design is the methodology of Forced Based Design (FBD). The Displacement Based Design (DBD) is a seismic design that considers structural damage to achieve a failure mechanism of the structure before the collapse. It is easier to quantify damage of a structure with displacements rather than forces. Therefore, a structure to achieve an inelastic displacement design with good ductility, it is necessary to be damaged. The first part of this investigation is about differences between the methodologies of DBD and FBD with some DBD advantages. In the second part, there is a study case about a dual building 5-story, which is regular in plan and elevation. The building is located in a seismic zone, which acceleration in firm soil is 45% of the acceleration of gravity. Then it is applied both methodologies into the study case to compare its displacements, shear forces and overturning moments. In the third part, the Dynamic Time History Analysis (DTHA) is done, to compare displacements with DBD and FBD methodologies. Three accelerograms were used and the magnitude of the acceleration scaled to be spectrum compatible with design spectrum. Then, using ASCE 41-13 guidelines, the hinge plastics were assigned to structure. Finally, both methodologies results about study case are compared. It is important to take into account that the seismic performance level of the building for DBD is greater than FBD method. This is due to drifts of DBD are in the order of 2.0% and 2.5% comparing with FBD drifts of 0.7%. Therefore, displacements of DBD is greater than the FBD method. Shear forces of DBD result greater than FBD methodology. These strengths of DBD method ensures that structure achieves design inelastic displacements, because those strengths were obtained due to a displacement spectrum reduction factor which depends on damping and ductility of the dual system. Also, the displacements for the study case for DBD results to be greater than FBD and DTHA. In that way, it proves that the seismic performance level of the building for DBD is greater than FBD method. Due to drifts of DBD which are in the order of 2.0% and 2.5% compared with little FBD drifts of 0.7%.

Keywords: displacement-based design, displacement spectrum reduction factor, dynamic time history analysis, forced based design

Procedia PDF Downloads 216
7685 E-Bike FE Model Analysis: Connection Stiffness of Elements with Different DOFs

Authors: Lele Zhang, Hui Leng Choo, Alexander Konyukhov, Shuguang Li

Abstract:

Finite Element (FE) model of simplified e-bike structure was generated by main frame with two tiers, which consisted of pipe, mass, beam, and shell elements (pipe 289, beam188, shell 181, shell 281, combin14, link11, mass21). These elements would be introduced and demonstrated using mathematical formulas. Based on coupling theory, constrain equations was proposed. Exporting all the parameters obtained from theory part, the connection stiffness matrix of the whole e-bike structure between each of these elements was detected.

Keywords: coupling theory, stiffness matrix, e-bike, finite element model

Procedia PDF Downloads 363
7684 Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method

Authors: Nouby Ghazaly, Gamal Fouad, Ali Abd-El-Tawwab, K. A. Abd El-Gwwad

Abstract:

The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.

Keywords: structure analysis, aluminum piston, MgZrO₃, YTZ, mullite and alumina

Procedia PDF Downloads 132
7683 On the Other Side of Shining Mercury: In Silico Prediction of Cold Stabilizing Mutations in Serine Endopeptidase from Bacillus lentus

Authors: Debamitra Chakravorty, Pratap K. Parida

Abstract:

Cold-adapted proteases enhance wash performance in low-temperature laundry resulting in a reduction in energy consumption and wear of textiles and are also used in the dehairing process in leather industries. Unfortunately, the possible drawbacks of using cold-adapted proteases are their instability at higher temperatures. Therefore, proteases with broad temperature stability are required. Unfortunately, wild-type cold-adapted proteases exhibit instability at higher temperatures and thus have low shelf lives. Therefore, attempts to engineer cold-adapted proteases by protein engineering were made previously by directed evolution and random mutagenesis. The lacuna is the time, capital, and labour involved to obtain these variants are very demanding and challenging. Therefore, rational engineering for cold stability without compromising an enzyme's optimum pH and temperature for activity is the current requirement. In this work, mutations were rationally designed with the aid of high throughput computational methodology of network analysis, evolutionary conservation scores, and molecular dynamics simulations for Savinase from Bacillus lentus with the intention of rendering the mutants cold stable without affecting their temperature and pH optimum for activity. Further, an attempt was made to incorporate a mutation in the most stable mutant rationally obtained by this method to introduce oxidative stability in the mutant. Such enzymes are desired in detergents with bleaching agents. In silico analysis by performing 300 ns molecular dynamics simulations at 5 different temperatures revealed that these three mutants were found to be better in cold stability compared to the wild type Savinase from Bacillus lentus. Conclusively, this work shows that cold adaptation without losing optimum temperature and pH stability and additionally stability from oxidative damage can be rationally designed by in silico enzyme engineering. The key findings of this work were first, the in silico data of H5 (cold stable savinase) used as a control in this work, corroborated with its reported wet lab temperature stability data. Secondly, three cold stable mutants of Savinase from Bacillus lentus were rationally identified. Lastly, a mutation which will stabilize savinase against oxidative damage was additionally identified.

Keywords: cold stability, molecular dynamics simulations, protein engineering, rational design

Procedia PDF Downloads 121
7682 Parametric Study of the Structures: Influence of the Shells

Authors: Serikma Mourad, Mezidi Amar

Abstract:

The conception (design) of an earthquake-resistant structure is a complex problem seen the necessity of meeting the requirements of security been imperative by the regulations, and of economy been imperative by the increasing costs of the structures. The resistance of a building in the horizontal actions (shares) is mainly ensured by a mixed brace system; for a concrete building, this system is constituted by frame or shells; or both at the same time. After the earthquake of Boumerdes (May 23; 2003) in Algeria, the studies made by experts, ended in modifications of the Algerian Earthquake-resistant Regulation (AER 99). One of these modifications was to widen the use of shells for the brace system. This modification has create a conflict on the quantities, the positions and the type of the shells at adopt. In the present project, we suggest seeing the effect of the variation of the dimensions, the localization and the conditions of rigidity in extremities of shells. The study will be led on a building (F+5) implanted in zone of seismicity average. To do it, we shall proceed to a classic dynamic study of a structure by using 4 alternatives for shells by varying the lengths and number in order to compare the cost of the structure for 4 dispositions of the shells with a technical-economic study of the brace system by the use of different dispositions of shells and to estimate the quantities of necessary materials (concrete and steel).

Keywords: reinforced concrete, mixed brace system, dynamic analysis, beams, shells

Procedia PDF Downloads 312
7681 Stoner Impurity Model in Nickel Hydride

Authors: Andrea Leon, J. M. Florez, P. Vargas

Abstract:

The effect of hydrogen adsorption on the magnetic properties of fcc Ni has been calculated using the linear-muffin-tin-orbital formalism and using the local-density approximation for the exchange y correlation. The calculations for the ground state show that the sequential addition of hydrogen atoms is found to monotonically reduce the total magnetic moment of the Ni fcc structure, as a result of changes in the exchange-splitting parameter and in the Fermi energy. In order to physically explain the effect of magnetization reduction as the Hydrogen concentration increases, we propose a Stoner impurity model to describe the influence of H impurity on the magnetic properties of Nickel.

Keywords: electronic structure, magnetic properties, Nickel hydride, stoner model

Procedia PDF Downloads 439
7680 The Board Structure of Public and Private Sector Companies and Its Impact on Firm Performance: A Study of Fortune 500 Indian Companies from 2006 to 2015

Authors: Gayathri P. Nair

Abstract:

The focus of this study is to identify whether the board structure has any significant impact on the firm performance and finding out any evidence of being listed in the Fortune 500 list compiled and published by the American business magazine, Fortune and published globally by Time Inc., as the world’s wealthiest companies. The list has been released based on the ranking obtained for the total revenues for the respective fiscal year which has ended on or before March 31st. The study has been conducted on the Indian companies that were listed in the Fortune 500 list for the past 10 years. This study employs a logical regression between the variables, firm performance and board composition as mentioned in the clause 49 of companies act 1956 and 2013. For getting the firm performance, ROA has selected as the key performance metric, as it focuses the management attention on the assets required to run the business. The highlight of the study is that the tools had been applied between public and private sector firms so that, it reveals whether the board composition is helping out to maintain the position in the list. In addition, the findings reveal that apart from independent directors, all other variables have significant impact on firm performance.

Keywords: board structure, Fortune 500 company, firm performance, India

Procedia PDF Downloads 216
7679 A Contrastive Analysis on Hausa and Yoruba Adjectival Phrases

Authors: Abubakar Maikudi

Abstract:

Contrastive analysis is the method of analyzing the structure of any two languages with a view to determining the possible differential aspects of their systems irrespective of their genetic affinity or level of development. Contrastive analysis of two languages becomes useful when it is adequately describing the sound structure and grammatical structure of two languages, with comparative statements giving emphasis to the compatible items in the two systems. This research work uses comparative analysis theory to analyze adjective and adjectival phrases in Hausa and Yorùbá languages. The Hausa language belongs to the Chadic family of the Afro-Asiatic phylum, while the Yorùbá language belongs to the Benue-Congo family of the Niger-Congo phylum. The findings of the research clearly demonstrated that there are significant similarities in the adjectival phrase constructions of the two languages, i.e., nominal (Head) and post-nominal (Post-Head) use of the adjective, predicative function of an adjective, use of the reduplicative adjective, use of the comparative and superlative adjective, etc. However, there are dissimilarities in the adjectival phrase of the two languages in gender/number agreement and pre-nominal (Post-Head) use of adjectives.

Keywords: genetic affinity, contrastive analysis, phylum, pre-head, post-head

Procedia PDF Downloads 206
7678 Application of Electrical Resistivity Tomography to Image the Subsurface Structure of a Sinkhole, a Case Study in Southwestern Missouri

Authors: Shishay T. Kidanu

Abstract:

The study area is located in Southwestern Missouri and is mainly underlain by Mississippian Age limestone which is highly susceptible to karst processes. The area is known for the presence of various karst features like caves, springs and more importantly Sinkholes. Sinkholes are one of the most common karst features and the primary hazard in karst areas. Investigating the subsurface structure and development mechanism of existing sinkholes enables to understand their long-term impact and chance of reactivation and also helps to provide effective mitigation measures. In this study ERT (Electrical Resistivity Tomography), MASW (Multichannel Analysis of Surface Waves) and borehole control data have been used to image the subsurface structure and investigate the development mechanism of a sinkhole in Southwestern Missouri. The study shows that the main process responsible for the development of the sinkhole is the downward piping of fine grained soils. Furthermore, the study reveals that the sinkhole developed along a north-south oriented vertical joint set characterized by a vertical zone of water seepage and associated fine grained soil piping into preexisting fractures.

Keywords: ERT, Karst, MASW, sinkhole

Procedia PDF Downloads 198
7677 Identification of Healthy and BSR-Infected Oil Palm Trees Using Color Indices

Authors: Siti Khairunniza-Bejo, Yusnida Yusoff, Nik Salwani Nik Yusoff, Idris Abu Seman, Mohamad Izzuddin Anuar

Abstract:

Most of the oil palm plantations have been threatened by Basal Stem Rot (BSR) disease which causes serious economic impact. This study was conducted to identify the healthy and BSR-infected oil palm tree using thirteen color indices. Multispectral and thermal camera was used to capture 216 images of the leaves taken from frond number 1, 9 and 17. Indices of normalized difference vegetation index (NDVI), red (R), green (G), blue (B), near infrared (NIR), green – blue (GB), green/blue (G/B), green – red (GR), green/red (G/R), hue (H), saturation (S), intensity (I) and thermal index (T) were used. From this study, it can be concluded that G index taken from frond number 9 is the best index to differentiate between the healthy and BSR-infected oil palm trees. It not only gave high value of correlation coefficient (R=-0.962), but also high value of separation between healthy and BSR-infected oil palm tree. Furthermore, power and S model developed using G index gave the highest R2 value which is 0.985.

Keywords: oil palm, image processing, disease, leaves

Procedia PDF Downloads 485
7676 Population and Age Structure of the Goby Stigmatogobius pleurostigma in the Mekong Delta, Vietnam

Authors: Quang M. Dinh

Abstract:

Stigmatogobius pleurostigma is a commercial fish being caught increasingly in the Mekong Delta. Although it plays an important role for food supply, little is known about this species including morphology, distribution and growth pattern. Meanwhile, its population and age structure is unknown. The present study was conducted in the Mekong Delta to provide new data on population parameters of this goby species. The von Bertalanffy growth parameters were L∞= 8.6 cm, K = 0.83 yr⁻¹, and t0 = -0.07 yr⁻¹ basing on length frequency data analysis of 601 individuals. The fish total length at first capture was 3.8 cm; and fishing, natural and total mortalities of the fish population were 2.31 yr⁻¹, 1.17 yr⁻¹, and 3.48 yr⁻¹ respectively. The maximum fish yield (Eₘₐₓ), economic yield (E₀.₁) and yield of 50% reduction of exploitation (E₅₀) rates were 0.704, 0.555 and 0.335 based on the relative yield-per-recruit and biomass-per-recruit analyses. The fish longevity was 3.61 yr, and growth performance was 1.79. Three fish age groups were recorded in this study (0+, 1+ and 2+). The species is a potential aquaculture candidate because of its high growth parameter. This goby stock was overexploited in the Mekong Delta as its exploitation rate (E=0.34) was higher than E₅₀ (0.335). The mesh size of gillnets should be increased and avoid catching fish in June, recruitment time, for future sustainable fishery management.

Keywords: Stigmatogobius pleurostigma, age, population structure, Vietnam

Procedia PDF Downloads 181