Search results for: soil Nutrients
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3414

Search results for: soil Nutrients

2514 The Influence of the Geogrid Layers on the Bearing Capacity of Layered Soils

Authors: S. A. Naeini, H. R. Rahmani, M. Hossein Zade

Abstract:

Many classical bearing capacity theories assume that the natural soil's layers are homogenous for determining the bearing capacity of the soil. But, in many practical projects, we encounter multi-layer soils. Geosynthetic as reinforcement materials have been extensively used in the construction of various structures. In this paper, numerical analysis of the Plate Load Test (PLT) using of ABAQUS software in double-layered soils with different thicknesses of sandy and gravelly layers reinforced with geogrid was considered. The PLT is one of the common filed methods to calculate parameters such as soil bearing capacity, the evaluation of the compressibility and the determination of the Subgrade Reaction module. In fact, the influence of the geogrid layers on the bearing capacity of the layered soils is investigated. Finally, the most appropriate mode for the distance and number of reinforcement layers is determined. Results show that using three layers of geogrid with a distance of 0.3 times the width of the loading plate has the highest efficiency in bearing capacity of double-layer (sand and gravel) soils. Also, the significant increase in bearing capacity between unreinforced and reinforced soil with three layers of geogrid is caused by the condition that the upper layer (gravel) thickness is equal to the loading plate width.

Keywords: bearing capacity, reinforcement, geogrid, plate load test, layered soils

Procedia PDF Downloads 173
2513 The Effects of Above-Average Precipitation after Extended Drought on Phytoplankton in Southern California Surface Water Reservoirs

Authors: Margaret K. Spoo-Chupka

Abstract:

The Metropolitan Water District of Southern California (MWDSC) manages surface water reservoirs that are a source of drinking water for more than 19 million people in Southern California. These reservoirs experience periodic planktonic cyanobacteria blooms that can impact water quality. MWDSC imports water from two sources – the Colorado River (CR) and the State Water Project (SWP). The SWP brings supplies from the Sacramento-San Joaquin Delta that are characterized as having higher nutrients than CR water. Above average precipitation in 2017 after five years of drought allowed the majority of the reservoirs to fill. Phytoplankton was analyzed during the drought and after the drought at three reservoirs: Diamond Valley Lake (DVL), which receives SWP water exclusively, Lake Skinner, which can receive a blend of SWP and CR water, and Lake Mathews, which generally receives only CR water. DVL experienced a significant increase in water elevation in 2017 due to large SWP inflows, and there were no significant changes to total phytoplankton biomass, Shannon-Wiener diversity of the phytoplankton, or cyanobacteria biomass in 2017 compared to previous drought years despite the higher nutrient loads. The biomass of cyanobacteria that could potentially impact DVL water quality (Microcystis spp., Aphanizomenon flos-aquae, Dolichospermum spp., and Limnoraphis birgei) did not differ significantly between the heavy precipitation year and drought years. Compared to the other reservoirs, DVL generally has the highest concentration of cyanobacteria due to the water supply having greater nutrients. Lake Mathews’ water levels were similar in drought and wet years due to a reliable supply of CR water and there were no significant changes in the total phytoplankton biomass, phytoplankton diversity, or cyanobacteria biomass in 2017 compared to previous drought years. The biomass of cyanobacteria that could potentially impact water quality at Lake Mathews (L. birgei and Microcystis spp.) did not differ significantly between 2017 and previous drought years. Lake Mathews generally had the lowest cyanobacteria biomass due to the water supply having lower nutrients. The CR supplied most of the water to Lake Skinner during drought years, while the SWP was the primary source during 2017. This change in water source resulted in a significant increase in phytoplankton biomass in 2017, no significant change in diversity, and a significant increase in cyanobacteria biomass. Cyanobacteria that could potentially impact water quality at Skinner included: Microcystis spp., Dolichospermum spp., and A.flos-aquae. There was no significant difference in Microcystis spp. biomass in 2017 compared to previous drought years, but biomass of Dolichospermum spp. and A.flos-aquae were significantly greater in 2017 compared to previous drought years. Dolichospermum sp. and A. flos-aquae are two cyanobacteria that are more sensitive to nutrients than Microcystis spp., which are more sensitive to temperature. Patterns in problem cyanobacteria abundance among Southern California reservoirs as a result of above-average precipitation after more than five years of drought were most closely related to nutrient loading.

Keywords: drought, reservoirs, cyanobacteria, and phytoplankton ecology

Procedia PDF Downloads 282
2512 Effect of Plowing the Soil of Faba Bean on Soil Productivity and Quality Improvement

Authors: Khattab E. A., Gehan A. Amin

Abstract:

The aim of the experiment was to investigate yield and yield components under effect of three different tillage systems and three faba bean varieties on clay-loamy soils. The experiment was conducted as split plot design having tillage systems in main plot and varieties in subplot. A field trial was conducted during the winter seasons of 2021-2022 and 2022-2-23, respectively in private of the agricultural lands of Shobra Beddin village, which belongs to Mansoura District of Dakahlia Province 31°, (04457)- N latitude and 31°4757- E longitude. The soil was prepared. The Seeds covered with a thin layer of soil, sown and watered. Three weeks later, the developed plants were thinned. Finally, the plants collected after 110 days of growth. Growth, yield and chemical contents determined. The results showed that the highest yield in the traditional tillage system corresponds to the superior to other tillage systems. In addition, In the variety comparison, the Sakha 1 variety was characterized by the highest yield as well as the highest values of plant growth properties among the three varieties. Conclusion: The traditional tillage system is increase grain yield of variety Sakha 1 compared with other varieties.

Keywords: yield, tillage system, varieties, faba bean

Procedia PDF Downloads 64
2511 Biochar-induced Metals Immobilization in the Soil as Affected by Citric Acid

Authors: Md. Shoffikul Islam, Hongqing Hu

Abstract:

Reducing trace elements' mobility and bioavailability through amendment addition, especially biochar (BC), is a cost-effective and efficient method to address their toxicity in the soil environment. However, the low molecular weight organic acids (LMWOAs) in the rhizosphere could affect BC's efficiency to stabilize trace metals as the LMWOAs could either mobilize or fix metals in the soils. Therefore, understanding the BC's and LMWOAs' interaction mechanisms on metals stabilization in the rhizosphere is crucial. The present study explored the impact of BC derived from rice husk and citric acid (CA) and the combination of BC and CA on the redistribution of cadmium (Cd), lead (Pb), and zinc (Zn) among their geochemical forms through incubation experiment. The changes of zeta potential and X-ray diffraction (XRD) pattern of BC and BC-amended soils to investigate the probable mechanisms of trace elements' immobilization by BC under the CA attack were also examined. The rice husk BC at 5% (w/w) was mixed with the air-dry soil (an Anthrosols) contaminated with Cd, Pb, and Zn in the plastic pot. The 2, 5, 10, and 20 mM kg-1 (w/v) of CA were added separately into the pot. All the ingredients were mixed thoroughly with the soil. A control (CK) treatment was also prepared without BC and CA addition. After 7, 15, and 60 days of incubation with 60% (w/v) moisture level at 25 °C, the incubated soils were determined for pH and EC and were sequentially extracted to assess the metals' transformation in soil. The electronegative charges and XRD peaks of BC and BC-amended soils were also measured. Compared to CK, the application of BC, low level of CA (2 mM kg-1 soil) (CA2), and BC plus the low concentration of CA (BC-CA2) considerably declined the acid-soluble Cd, Pb, and Zn in which BC-CA2 was found to be the most effective treatment. The reversed trends were observed concerning the high levels of CA (>5-20 mM kg-1 soil) and the BC plus high concentrations of CA treatments. BC-CA2 changed the highest amounts of acid-soluble and reducible metals to the oxidizable and residual forms with time. The most increased electronegative charges of BC-CA2 indicate its (BC-CA2) highest Cd, Pb, and Zn immobilizing efficiency, probably through metals adsorption and fixation with the negative charge sites. The XRD study revealed the presence of P, O, CO32-, and Cl1- in BC, which might be responsible for the precipitation of CdCO3, pyromorphite, and hopeite in the case of Cd, Pb, and Zn immobilization, respectively. The findings depicted that the low concentration of CA increased metals' stabilization, whereas the high levels of CA enhanced their mobilization. The BC-CA2 emerged as the best amendment among treatments for metals stabilization in contaminated soils.

Keywords: Biochar, citric acid, immobilization, trace elements contaminated soil

Procedia PDF Downloads 81
2510 Experimental Studies of the Response of Single Piles Under Torsional and Vertical Combined Loads in Contaminated Sand

Authors: Ahmed Mohamed Nasr, Waseim Ragab Azzam, Nada Osama Ramadan

Abstract:

Contaminated soil can weaken the stability of buildings and infrastructure, posing serious risks to their structural integrity. Therefore, this study aims to understand how oil contamination affects the torsion behavior of model steel piles at different soil densities. This research is crucial for evaluating the structural integrity and stability of piles in oil-contaminated environments. Clean sand samples and heavy motor oil were mixed in amounts ranging from 0 to 6% of the soil's dry weight. The mixture was thoroughly mixed to ensure uniform distribution of the oil throughout the sandy soil for simulating the field conditions. In these investigations, the relative densities (Dr), pile slenderness ratio (Lp/Dp), oil content (O.C%), and contaminated sand layer thickness (LC) were all different. Also, the paper presents an analysis of piles that are loaded both vertically and torsionally. The findings demonstrated that the pre-applied torsion load led to a decrease in the vertical bearing ability of the pile. Also, at Dr = 80%, the ultimate vertical load under combined load at constant torsional load T = (1/3Tu, 2/3Tu, and Tu) in the cases of (Lc/Lp) = 0.5 and (Lp/Dp) =13.3 was found to be reduced by (1.48, 2.78, and 4.15%) less than piles under independent vertical load, respectively so it is crucial to consider the torsion load during pile design.

Keywords: torsion-vertical load, oil-contaminated sand, twist angle, steel pile

Procedia PDF Downloads 70
2509 Heavy Metal Contamination in Soils: Detection and Assessment Using Machine Learning Algorithms Based on Hyperspectral Images

Authors: Reem El Chakik

Abstract:

The levels of heavy metals in agricultural lands in Lebanon have been witnessing a noticeable increase in the past few years, due to increased anthropogenic pollution sources. Heavy metals pose a serious threat to the environment for being non-biodegradable and persistent, accumulating thus to dangerous levels in the soil. Besides the traditional laboratory and chemical analysis methods, Hyperspectral Imaging (HSI) has proven its efficiency in the rapid detection of HMs contamination. In Lebanon, a continuous environmental monitoring, including the monitoring of levels of HMs in agricultural soils, is lacking. This is due in part to the high cost of analysis. Hence, this proposed research aims at defining the current national status of HMs contamination in agricultural soil, and to evaluate the effectiveness of using HSI in the detection of HM in contaminated agricultural fields. To achieve the two main objectives of this study, soil samples were collected from different areas throughout the country and were analyzed for HMs using Atomic Absorption Spectrophotometry (AAS). The results were compared to those obtained from the HSI technique that was applied using Hyspex SWIR-384 camera. The results showed that the Lebanese agricultural soils contain high contamination levels of Zn, and that the more clayey the soil is, the lower reflectance it has.

Keywords: agricultural soils in Lebanon, atomic absorption spectrophotometer, hyperspectral imaging., heavy metals contamination

Procedia PDF Downloads 110
2508 Probabilistic Models to Evaluate Seismic Liquefaction In Gravelly Soil Using Dynamic Penetration Test and Shear Wave Velocity

Authors: Nima Pirhadi, Shao Yong Bo, Xusheng Wan, Jianguo Lu, Jilei Hu

Abstract:

Although gravels and gravelly soils are assumed to be non-liquefiable because of high conductivity and small modulus; however, the occurrence of this phenomenon in some historical earthquakes, especially recently earthquakes during 2008 Wenchuan, Mw= 7.9, 2014 Cephalonia, Greece, Mw= 6.1 and 2016, Kaikoura, New Zealand, Mw = 7.8, has been promoted the essential consideration to evaluate risk assessment and hazard analysis of seismic gravelly soil liquefaction. Due to the limitation in sampling and laboratory testing of this type of soil, in situ tests and site exploration of case histories are the most accepted procedures. Of all in situ tests, dynamic penetration test (DPT), Which is well known as the Chinese dynamic penetration test, and shear wave velocity (Vs) test, have been demonstrated high performance to evaluate seismic gravelly soil liquefaction. However, the lack of a sufficient number of case histories provides an essential limitation for developing new models. This study at first investigates recent earthquakes that caused liquefaction in gravelly soils to collect new data. Then, it adds these data to the available literature’s dataset to extend them and finally develops new models to assess seismic gravelly soil liquefaction. To validate the presented models, their results are compared to extra available models. The results show the reasonable performance of the proposed models and the critical effect of gravel content (GC)% on the assessment.

Keywords: liquefaction, gravel, dynamic penetration test, shear wave velocity

Procedia PDF Downloads 199
2507 Conservation Agriculture in North America

Authors: Ying Chen

Abstract:

Conservation Agriculture in a sustainable way of farming, as it brings many benefits, such as preventing soil from erosion and degradation, improving soil health, conserving energy, and sequestrating carbon. However, adoption of conservation agriculture has been progressing slowly in some part of the world due to some challenges. Among them, seeding in heavy crop residue is challenging, especially in corn production systems. Weed control is also challenging in conservation agriculture. This research aimed to investigate some technologies that can address these challenges. For crop residue management, vertical tillage and vertical seeding have been studied in multiple research projects. Results showed that vertical tillage and seeding were able to deal with crop residue through cutting residue into small segments, which would not plug seeder in the sub-sequent seeding. Vertical tillage is a conservation tillage system, as it leaves more than 30% crop residue on soil surface while incorporating some residue into the shallow soil layer for fast residue decomposition. For weed control, mechanical weeding can reduce chemical inputs in crop production. A tine weeder was studied for weed control during the early growing season of several field crops (corn, soybean, flax, and pea). Detail results of these studies will be shared at the conference.

Keywords: tillage, seeding, mechanical weeding, crop residue

Procedia PDF Downloads 73
2506 Potential Use of Spore-Forming Biosurfactant Producing Bacteria in Oil-Pollution Bioremediation

Authors: S. N. Al-Bahry, Y. M. Al-Wahaibi, S. J. Joshi, E. A. Elshafie, A. S. Al-Bimani

Abstract:

Oman is one of the oil producing countries in the Arabian Peninsula and the Gulf region. About 30-40 % of oil produced from the Gulf is transported globally along the seacoast of Oman. Oil pollution from normal tanker operations, ballast water, illegal discharges and accidental spills are always serious threats to terrestrial and marine habitats. Due to Oman’s geographical location at arid region where the temperature ranges between high 40s and low 50s Celsius in summers with low annual rainfall, the main source of fresh water is desalinated sea and brackish water. Oil pollution, therefore, pose a major threat to drinking water. Biosurfactants are secondary metabolites produced by microorganisms in hydrophobic environments to release nutrients from solid surfaces, such as oil. In this study, indigenous oil degrading thermophilic spore forming bacteria were isolated from oil fields contaminated soil. The isolates were identified using MALDI-TOF biotyper and 16s RNA. Their growth conditions were optimized for the production of biosurfactant. Surface tension, interfacial tensions and microbial oil biodegradation capabilities were tested. Some thermophilic bacteria degraded either completely or partially heavy crude oil (API 10-15) within 48h suggesting their high potential in oil spill bioremediation and avoiding the commonly used physical and chemical methods which usually lead to other environmental pollution.

Keywords: bacteria, bioremediation, biosurfactant, crude-oil-pollution

Procedia PDF Downloads 425
2505 Short-Term Effects of Seed Dressing With Azorhizobium Caulinodans on Establishment, Development and Yield of Early Maturing Maize ( Zea Mays L.) In Zimbabwe

Authors: Gabriel Vusanimuzi Nkomo

Abstract:

The majority of soils in communal areas of Zimbabwe are sandy and inherently infertile and sustainable cultivation is not feasible without addition of plant nutrients. Most farmers find it difficult to raise the capital required for investments in mineral fertilizer and find it cheaper to use low nutrition animal manure. An experiment was conducted to determine the effects of nitrokara biofertiliser on early growth, development and maize yield while also comparing nitrokara biofertiliser on availability of nitrogen and phosphorous in soil. The experiment was conducted at Africa University Farm. The experiment had six treatments (nitrokara +300kg/ha Compound D, nitrokara+ 300kg/ha Compound D(7N;14P;7K) + 75kg/ha Ammonium Nitrate(AN), nitrokara +300kg/ha Compound D +150kg AN, nitrokara +300kg/ha Compound D +225kg/ha AN, nitrokara +300kg/ha Compound D + 300 kg/ha AN and 0 nitrokara+300kg/ha Compound D +0 AN). Early maturing SC 403 maize (Zea mays) was inoculated with nitrokara and a compound mineral fertilizer at 300 kg/ha at planting while ammonium nitrate was applied at 45 days after planting. There were no significant differences (P > 0.05) on emergence % from 5days up to 10 days after planting using maize seed inoculated with nitrokara. Emergence percentage varied with the number of days. At 5 days the emergence % was 62% to a high of 97 % at 10 days after emergence among treatments. There were no significant differences (P > 0.05) on plant biomass on treatments 1 to 6 at 4 weeks after planting as well as at 8 weeks after planting. There were no significant differences among the treatments on the availability of nitrogen after 6 weeks (P > 0.05). However at 8 and 10 weeks after planting there were significant differences among treatments on nitrogen availability (P < 0.05). There were no significant differences among the treatments at week 6 after planting on soil pH (p > 0.05). However there were significant differences among treatments pH at weeks 9 and 12 (p < 0.05). There were significant differences among treatments on phosphorous availability at 6, 8 and 10 weeks after planting (p < 0.05). There were no significant differences among treatments on stem diameter at 3 and 6 weeks after planting (p > 0.05).However at 9 and 12 weeks after planting there were significant differences among treatments on stem diameter (p < 0.05).There were no significant differences among treatments on plant height from week 3 up to week 6 on plant height (P > 0.05).However there were significant differences among treatments at week 9 and 12 (p < 0.05). There were significant differences among treatments on days to early, 50% and 100% anthesis (P < 0.05). There were significant differences during early, 50% and 100% days to silking among the treatments (P < 0.05).Also there were significant differences during early, 50% and 100% days to silking among the treatments (P < 0.05).The study revealed that inoculation of nitrokara biofertiliser at planting with subsequent addition of ammonium nitrate has a positive effect on maize crop development and yield.

Keywords: nitrokara, biofertiliser, symbiotic, plant biomass, inoculated

Procedia PDF Downloads 549
2504 Systems of Liquid Organic Fertilizer Application with Respect to Environmental Impact

Authors: Hidayatul Fitri, Petr Šařec

Abstract:

The use of organic fertilizer is increasing nowadays, and the application must be conducted accurately to provide the right benefits for plants and maintain soil health. Improper application of fertilizers can cause problems for both plants and the environment. This study investigated the liquid organic fertilizer application, particularly digestate, varied into different application doses concerning mitigation of adverse environmental impacts, improving water infiltration ability, and crop yields. The experiment was established into eight variants with different digestate doses, conducted on emission monitoring and soil physical properties. As a result, the digestate application with shallow injection (5 cm in depth) was confirmed as an appropriate technique for applying liquid fertilizer into the soil. Gas emissions resulted in low concentration and declined gradually over time, obviously proved from the experiment conducted under two measurements immediately after application and the next day. Applied various doses of liquid digestate fertilizer affected the emission concentrations of NH3 volatilization, differing significantly and decreasing about 40% from the first to second measurement. In this study, winter wheat crop production significantly increases under digestate application with additional N fertilizer. This study suggested the long-term application of digestate to obtain more alteration of soil properties such as bulk density, penetration resistance, and hydraulic conductivity.

Keywords: liquid organic fertilizer, digestate, application, ammonia, emission

Procedia PDF Downloads 285
2503 Role of Matric Suction in Mechanics behind Swelling Characteristics of Expansive Soils

Authors: Saloni Pandya, Nikhil Sharma, Ajanta Sachan

Abstract:

Expansive soils in the unsaturated state are part of vadose zone and encountered in several arid and semi-arid parts of the world. Influence of high temperature, low precipitation and alternate cycles of wetting and drying are responsible for the chemical weathering of rocks, which results in the formation of expansive soils. Shrinkage-swelling (expansive) soils cover a substantial portion of area in India. Damages caused by expansive soils to various geotechnical structures are alarming. Matric suction develops in unsaturated soil due to capillarity and surface tension phenomena. Matric suction influences the geometric arrangement of soil skeleton, which induces the volume change behaviour of expansive soil. In the present study, an attempt has been made to evaluate the role of matric suction in the mechanism behind swelling characteristics of expansive soil. Four different soils have been collected from different parts of India for the current research. Soil sample S1, S2, S3 and S4 were collected from Nagpur, Bharuch, Bharuch-Dahej highway and Ahmedabad respectively. DFSI (Differential Free Swell Index) of these soils samples; S1, S2, S3, and S4; were determined to be 134%, 104%, 70% and 30% respectively. X-ray diffraction analysis of samples exhibited that percentage of Montmorillonite mineral present in the soils reduced with the decrease in DFSI. A series of constant volume swell pressure tests and in-contact filter paper tests were performed to evaluate swelling pressure and matric suction of all four soils at 30% saturation and 1.46 g/cc dry density. Results indicated that soils possessing higher DFSI exhibited higher matric suction as compared to lower DFSI expansive soils. Significant influence of matric suction on swelling pressure of expansive soils was observed with varying DFSI values. Higher matric suction of soil might govern the water uptake in the interlayer spaces of Montmorillonite mineral present in expansive soil leading to crystalline swelling.

Keywords: differential free swell index, expansive soils, matric suction, swelling pressure

Procedia PDF Downloads 164
2502 A Numerical Study for Mixing Depth and Applicability of Partial Cement Mixing Method Utilizing Geogrid and Fixing Unit

Authors: Woo-seok Choi, Eun-sup Kim, Nam-Seo Park

Abstract:

The demand for new technique in soft ground improvement continuously increases as general soft ground methods like PBD and DCM have a application problem in soft grounds with deep depth and wide distribution in Southern coast of Korea and Southeast. In this study, partial cement mixing method utilizing geogrid and fixing unit(CMG) is suggested and Finite element analysis is performed for analyzing the depth of surface soil and deep soil stabilization and comparing with DCM method. In the result of the experiment, the displacement in DCM method were lower than the displacement in CMG, it's because the upper load is transferred to deep part soil not treated by cement in CMG method case. The differential settlement in DCM method was higher than the differential settlement in CMG, because of the effect load transfer effect by surface part soil treated by cement and geogrid. In conclusion, CMG method has the advantage of economics and constructability in embankment road, railway, etc in which differential settlement is the important consideration.

Keywords: soft ground, geogrid, fixing unit, partial cement mixing, finite element analysis

Procedia PDF Downloads 377
2501 Geological Engineering Mapping Approach to Know Factor of Safety Distribution and Its Implication to Landslide Potential at Muria Mountain, Kudus, Central Java Province, Indonesia

Authors: Sony Hartono, Azka Decana, Vilia Yohana, Annisa Luthfianihuda, Yuni Faizah, Tati Andriani, Dewi Kania, Fachri Zulfiqar, Sugiar Yusup, Arman Nugraha

Abstract:

Landslide is a geological hazard that is quite common in some areas in Indonesia and have disadvantages impact for public around. Due to the high frequency of landslides in Indonesia, and extensive damage, landslides should be specifically noted. Landslides caused by a soil or rock unit that has been in a state of unstable slopes and not in ideal state again, so the value of ground resistance or the rock been passed by the value of the forces acting on the slope. Based on this fact, authors held a geological engineering mapping at Muria Mountain, Kudus, Central Java province which is known as an agriculture and religion tourism area. This geological engineering mapping is performed to determine landslides potential at Muria Mountain. Slopes stability will be illustrated by a number called the “factor of safety” where the number can describe how much potential a slope to fall. Slopes stability can be different depending on the physical and mechanical characteristics of the soil and slope conditions. Testing of physical and mechanical characteristics of the soil conducted in the geotechnical laboratory. The characteristics of the soil must be same when sampled as well as in the test laboratory. To meet that requirement, authors used "undisturb sample" method that will be guarantee sample will not be distracted by environtment influences. From laboratory tests on soil physical and mechanical properties obtained characteristics of the soil on a slope, and then inserted into a Geological Information Software that would generate a value of factor of safety and give a visualization slope form area of research. Then, as a result of the study, obtained a map of the ground movement distribution map and i is implications for landslides potential areas.

Keywords: factor of safety, geological engineering mapping, landslides, slope stability, soil

Procedia PDF Downloads 418
2500 Mechanisms Involved in Biological Control of Fusarium Wilt

Authors: Bensaid Fatiha

Abstract:

The objective of our present work is the description of the antagonistic capacities of one strain of Pseudomonas fluorescens and the nonpathogenic fungic isolate Fusarium oxysporum against phytopathogenic agent Fusarium oxysporum F. Sp. lycopersici. This work has been achieved in two main parts: the first is interested on the in vitro antagonistic activities; the second was interested to study the soil receptiveness of fusarium wilt tomato. The use of strain of fluorescent Pseudomonas and a non-pathogenic strain of F. oxysporum in the different antagonism tests, has allowed assuring a certain bio-protection from the plants of tomatoes opposite to F. oxysporum F. Sp. lycopersici, agent of a wilt of tomato. These antagonistic have shown a substantial in vitro antagonistic activity on the three mediums (KB, PDA, KB+PDA) against F. oxysporum F. Sp. lycopersici, by inhibiting its growth mycelium with rate of inhibition going until 80 % with non-pathogen of Fusarium oxysporum and 60 % with strain of fluorescens Pseudomonas. Soil microbial balance, between the antagonistic population and that of pathogenic, can be modulated through microbiological variations or abiotic additives influencing directly or indirectly the metabolic behavior microbial. In this experiment, addition of glucose or EDTA, could increase or decrease the resistance of soil by activation of pathogenic or antagonists, as a result of modification and modulation in their metabolic activities.

Keywords: fluorescents, nonpathogenic, fusarium oxysporum, fusarium wilt, antagonism, biological control, soil receptivity

Procedia PDF Downloads 457
2499 Case Study: Geomat Installation against Slope Erosion

Authors: Serap Kaymakci, Dogan Gundogdu, M. Bugra Yagcioglu

Abstract:

Erosion (soil erosion) is a phenomenon in which the soil on the slope surface is exposed to natural influences such as wind, rainfall, etc. in open areas. The most natural solution to prevent erosion is to plant surfaces exposed to erosion. However, proper ground and natural conditions must be provided in order for planting to occur. Erosion is prevented in a fast and natural way and the loss of soil is reduced mostly. Lead to allowing plants to hold onto the soil with its three-dimensional and hollow structure are as follows: The types of geomat called MacMat that is used in a case study in Turkey in order to prevent water carry over due to rainfall. The geosynthetic combined with double twisted steel wire mesh. That consists of 95% Zn–5% Al alloy coated double twisted steel wire based that is a reinforced MacMat (geosynthetic three-dimensional erosion control mat) obtained by a polypropylene consisted (mesh type 8x10-Wire diam. 2.70 mm–95% Zn–5% Al alloy coated). That is developed by the progress of the technology. When using reinforced MacMat on top clay liners, fixing pins should not be used as they will rupture the mats. Mats are simply anchored (J Type) in the top trench and, if necessary, in intermediate berm trenches. If the slope angle greater than 20°, it is necessary to use additional rebar depending soil properties also. These applications may have specific technical and installation requirements. In that project, the main purpose is erosion control after that is greening. There is a slope area around the factory which is located in Gebze, İstanbul.

Keywords: erosion, GeoMat, geosynthetic, slope

Procedia PDF Downloads 174
2498 Effect of Bored Pile Diameter in Sand on Friction Resistance

Authors: Ashraf Mohammed M. Eid, Hossam El Badry

Abstract:

The bored pile friction resistance may be affected by many factors such as the method of construction, pile length and diameter, the soil properties, as well as the depth below ground level. These factors can be represented analytically to study the influence of diameter on the unit skin friction. In this research, the Egyptian Code of soil mechanics is used to assess the skin friction capacity for either the ordinary pile diameter as well as for the large pile diameter. The later is presented in the code and through the work of some researchers based on the results of investigations adopted for a sufficient number of field tests. The comparative results of these researchers with respect to the Egyptian Code are used to check the adequacy of both methods. Based on the results of this study, the traditional static formula adopted for piles of diameter less than 60 cm may be continually used for larger piles by correlating the analyzed formulae. Accordingly, the corresponding modified angle of internal friction is concluded demonstrating a reduction of shear strength due to soil disturbance along the pile shaft. Based on this research the difference between driven piles and bored piles constructed in same soil can be assessed and a better understanding can be evaluated for the effect of different factors on pile skin friction capacity.

Keywords: large piles, static formula, friction piles, sandy soils

Procedia PDF Downloads 499
2497 Scale Prototype to Estimate the Resistance to Lateral Displacement Buried Pipes and submerged in non-Cohesive Soils

Authors: Enrique Castañeda, Tomas Hernadez, Mario Ulloa

Abstract:

Recent studies related to submarine pipelines under high pressure, temperature and buried, forces us to make bibliographical and documentary research to make us of references applicable to our problem. This paper presents an experimental methodology to the implementation of results obtained in a scale model, bibliography soil mechanics and finite element simulation. The model consists of a tank of 0.60 x 0.90 x 0.60 basis equipped high side windows, tires and digital hardware devices for measuring different variables to be applied to the model, where the mechanical properties of the soil are determined, simulation of drag a pipeline buried in a non-cohesive seafloor of the Gulf of Mexico, estimate the failure surface and application of each of the variables for the determination of mechanical elements.

Keywords: static friction coefficient, maximum passive force resistant soil, normal, tangential stress

Procedia PDF Downloads 359
2496 Food Composition Tables Used as an Instrument to Estimate the Nutrient Ingest in Ecuador

Authors: Ortiz M. Rocío, Rocha G. Karina, Domenech A. Gloria

Abstract:

There are several tools to assess the nutritional status of the population. A main instrument commonly used to build those tools is the food composition tables (FCT). Despite the importance of FCT, there are many error sources and variability factors that can be presented on building those tables and can lead to an under or over estimation of ingest of nutrients of a population. This work identified different food composition tables used as an instrument to estimate the nutrient ingest in Ecuador.The collection of data for choosing FCT was made through key informants –self completed questionnaires-, supplemented with institutional web research. A questionnaire with general variables (origin, year of edition, etc) and methodological variables (method of elaboration, information of the table, etc) was passed to the identified FCT. Those variables were defined based on an extensive literature review. A descriptive analysis of content was performed. Ten printed tables and three databases were reported which were all indistinctly treated as food composition tables. We managed to get information from 69% of the references. Several informants referred to printed documents that were not accessible. In addition, searching the internet was not successful. Of the 9 final tables, n=8 are from Latin America, and, n= 5 of these were constructed by indirect method (collection of already published data) having as a main source of information a database from the United States department of agriculture USDA. One FCT was constructed by using direct method (bromatological analysis) and has its origin in Ecuador. The 100% of the tables made a clear distinction of the food and its method of cooking, 88% of FCT expressed values of nutrients per 100g of edible portion, 77% gave precise additional information about the use of the table, and 55% presented all the macro and micro nutrients on a detailed way. The more complete FCT were: INCAP (Central America), Composition of foods (Mexico). The more referred table was: Ecuadorian food composition table of 1965 (70%). The indirect method was used for most tables within this study. However, this method has the disadvantage that it generates less reliable food composition tables because foods show variations in composition. Therefore, a database cannot accurately predict the composition of any isolated sample of a food product.In conclusion, analyzing the pros and cons, and, despite being a FCT elaborated by using an indirect method, it is considered appropriate to work with the FCT of INCAP Central America, given the proximity to our country and a food items list that is very similar to ours. Also, it is imperative to have as a reference the table of composition for Ecuadorian food, which, although is not updated, was constructed using the direct method with Ecuadorian foods. Hence, both tables will be used to elaborate a questionnaire with the purpose of assessing the food consumption of the Ecuadorian population. In case of having disparate values, we will proceed by taking just the INCAP values because this is an updated table.

Keywords: Ecuadorian food composition tables, FCT elaborated by direct method, ingest of nutrients of Ecuadorians, Latin America food composition tables

Procedia PDF Downloads 430
2495 Comprehensive Critical Review for Static and Dynamic Soil-Structure Interaction Between Winkler, Pasternak and Three-Dimensional Method of Buried Pipelines

Authors: N. E.Sam, S. R.Singh

Abstract:

Pipeline infrastructure are a valuable asset to the country that help in transporting fluid and gas from one place to another and contribute in keeping the country functioning both physically and economically. During seismic activity, additional loads are acted on the buried pipelines becoming a salient parameter to be studied in soil pipe interaction. Winkler Beam Theory is a commonly used approach for design of underground buried structures however this theory does not take into account shear and dynamic loading parameters in consideration. Shear can be addressed in Pasternak Theory – an improved model of Winkler Theory. However dynamic loading condition and horizontal displacement is not considered in either method. A comprehensive critical review between Winkler Beam Method, Pasternak Method and Three-Dimensional Method in finite element analysis is to be done in this paper for seismic forces. Study of the influence of depth and displacement of soil in correspondence to stiffness value and influence of horizontal displacement for design of underground structures is considered.

Keywords: finite element, pasternak theory, seismic, soil-structure interaction, three-dimensional theory, winkler theory

Procedia PDF Downloads 72
2494 Studying on Pile Seismic Operation with Numerical Method by Using FLAC 3D Software

Authors: Hossein Motaghedi, Kaveh Arkani, Siavash Salamatpoor

Abstract:

Usually the piles are important tools for safety and economical design of high and heavy structures. For this aim the response of single pile under dynamic load is so effective. Also, the agents which have influence on single pile response are properties of pile geometrical, soil and subjected loads. In this study the finite difference numerical method and by using FLAC 3D software is used for evaluation of single pile behavior under peak ground acceleration (PGA) of El Centro earthquake record in California (1940). The results of this models compared by experimental results of other researchers and it will be seen that the results of this models are approximately coincide by experimental data's. For example the maximum moment and displacement in top of the pile is corresponding to the other experimental results of pervious researchers. Furthermore, in this paper is tried to evaluate the effective properties between soil and pile. The results is shown that by increasing the pile diagonal, the pile top displacement will be decreased. As well as, by increasing the length of pile, the top displacement will be increased. Also, by increasing the stiffness ratio of pile to soil, the produced moment in pile body will be increased and the taller piles have more interaction by soils and have high inertia. So, these results can help directly to optimization design of pile dimensions.

Keywords: pile seismic response, interaction between soil and pile, numerical analysis, FLAC 3D

Procedia PDF Downloads 386
2493 Compression Strength of Treated Fine-Grained Soils with Epoxy or Cement

Authors: M. Mlhem

Abstract:

Geotechnical engineers face many problematic soils upon construction and they have the choice for replacing these soils with more appropriate soils or attempting to improve the engineering properties of the soil through a suitable soil stabilization technique. Mostly, improving soils is environmental, easier and more economical than other solutions. Stabilization soils technique is applied by introducing a cementing agent or by injecting a substance to fill the pore volume. Chemical stabilizers are divided into two groups: traditional agents such as cement or lime and non-traditional agents such as polymers. This paper studies the effect of epoxy additives on the compression strength of four types of soil and then compares with the effect of cement on the compression strength for the same soils. Overall, the epoxy additives are more effective in increasing the strength for different types of soils regardless its classification. On the other hand, there was no clear relation between studied parameters liquid limit, passing No.200, unit weight and between the strength of samples for different types of soils.

Keywords: additives, clay, compression strength, epoxy, stabilization

Procedia PDF Downloads 125
2492 Experimental Study on Use of Crumb Rubber to Mitigate Expansive Soil Pressures on Basement Walls

Authors: Kwestan Salimi, Jenna Jacoby, Michelle Basham, Amy Cerato

Abstract:

The extreme annual weather patterns of the central United States have increased the need for underground shelters for protection from destructive tornadic activity. However, very few residential homes have basements due to the added construction expense and the prevalence of expansive soils covering the central portion of the United States. These expansive soils shrink and swell, increasing earth pressure on basement walls. To mitigate the effect of expansive soils on basement walls, this study performed bench-scale tests using a common natural expansive soil mitigated with a backfill layer of crumb rubber. The results revealed that at 80% soil compaction, a 1:6 backfill height to total height ratio produced a 66% reduction in swell pressure. However, this percent reduction decreased to 27% for 90% soil compaction. It was also found that there is a strong linear correlation between compaction percentage and reduction in swell pressure when using the same backfill height to total height ratio. Using this correlation and extrapolating to 95% compaction, the percent reduction in swell pressure was approximately 12%.

Keywords: expansive soils, swell/shrink, swell pressure, stabilization, crumb rubber

Procedia PDF Downloads 159
2491 Biochar and Food Security in Central Uganda

Authors: Nataliya Apanovich, Mark Wright

Abstract:

Uganda is among the poorest but fastest growing populations in the world. Its annual population growth of 3% puts additional stress through land fragmentation, agricultural intensification, and deforestation on already highly weathered tropical (Ferralsol) soils. All of these factors lead to decreased agricultural yields and consequently diminished food security. The central region of Uganda, Buganda Kingdom, is especially vulnerable in terms of food security as its high population density coupled with mismanagement of natural resources led to gradual loss of its soil and even changes in microclimate. These changes are negatively affecting livelihoods of smallholder farmers who comprise 80% of all population in Uganda. This research focuses on biochar for soil remediation in Masaka District, Uganda. If produced on a small scale from locally sourced materials, biochar can increase the quality of soil in a cost and time effective manner. To assess biochar potential, 151 smallholder farmers were interviewed on the types of crops grown, agricultural residues produced and their use, as well as on attitudes towards biochar use and its production on a small scale. The interviews were conducted in 7 sub-counties, 32 parishes, and 92 villages. The total farmland covered by the study was 606.2 kilometers. Additional information on the state of agricultural development and environmental degradation in the district was solicited from four local government officials via informal interviews. This project has been conducted in collaboration with the international agricultural research institution, Makerere University in Kampala, Uganda. The results of this research can have implications on the way farmers perceive the value of their agricultural residues and what they decide to do with them. The underlying objective is to help smallholders in degraded soils increase their agricultural yields through the use of biochar without diverting the already established uses of agricultural residues to a new soil management practice.

Keywords: agricultural residues, biochar, central Uganda, food security, soil erosion, soil remediation

Procedia PDF Downloads 282
2490 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning

Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene

Abstract:

This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.

Keywords: limit pressure of soil, xgboost, random forest, bearing capacity

Procedia PDF Downloads 20
2489 Machine That Provides Mineral Fertilizer Equal to the Soil on the Slopes

Authors: Huseyn Nuraddin Qurbanov

Abstract:

The reliable food supply of the population of the republic is one of the main directions of the state's economic policy. Grain growing, which is the basis of agriculture, is important in this area. In the cultivation of cereals on the slopes, the application of equal amounts of mineral fertilizers the under the soil before sowing is a very important technological process. The low level of technical equipment in this area prevents producers from providing the country with the necessary quality cereals. Experience in the operation of modern technical means has shown that, at present, there is a need to provide an equal amount of fertilizer on the slopes to under the soil, fully meeting the agro-technical requirements. No fundamental changes have been made to the industrial machines that fertilize the under the soil, and unequal application of fertilizers under the soil on the slopes has been applied. This technological process leads to the destruction of new seedlings and reduced productivity due to intolerance to frost during the winter for the plant planted in the fall. In special climatic conditions, there is an optimal fertilization rate for each agricultural product. The application of fertilizers to the soil is one of the conditions that increase their efficiency in the field. As can be seen, the development of a new technical proposal for fertilizing and plowing the slopes in equal amounts on the slopes, improving the technological and design parameters, and taking into account the physical and mechanical properties of fertilizers is very important. Taking into account the above-mentioned issues, a combined plough was developed in our laboratory. Combined plough carries out pre-sowing technological operation in the cultivation of cereals, providing a smooth equal amount of mineral fertilizers under the soil on the slopes. Mathematical models of a smooth spreader that evenly distributes fertilizers in the field have been developed. Thus, diagrams and graphs obtained without distribution on the 8 partitions of the smooth spreader are constructed under the inclined angles of the slopes. Percentage and productivity of equal distribution in the field were noted by practical and theoretical analysis.

Keywords: combined plough, mineral fertilizer, equal sowing, fertilizer norm, grain-crops, sowing fertilizer

Procedia PDF Downloads 137
2488 Blood Profile, Organs, and Carcass Analysis and Performance of Broilers Fed Cowpea Testa Based Diet

Authors: O. J. Osunkeye, P. O. Fakolade, B. E. Olorede

Abstract:

Broilers productions depend on the provision of adequate and goo quality feed containing all the nutrients, including proteins, carbohydrate, fats, vitamins, minerals and water. All these nutrients have to be provided at a required amount to support maximum productivity and normal physiological functions and demands. Among these nutrients proteins are particularly important, since they are essential for meat and muscle production, optimum growth and health status. Poultry production industry in the developing countries is been threatened because of the over dependency on Soybean meal as one of the key/major conventional protein stuff for feeding livestock. Even the competition between man and livestock for Soybean and other protein sources made the price of this feed stuff to be on the increase. Hence the needs to seek for an alternative feed stuff which is cheap and less competitive. This study showed the blood profile, organ and carcass characteristics and performance of broilers fed with Cowpea Testa Meal (CTM) based diets. Four diets were formulated with Cowpea Testa replacing Soybean at 0%, 15%, 30%, and 50% graded levels. One hundred and twenty day-old unsexed broiler birds were allotted to these four treatments with 3 replicates of 10 birds per replicate. The results showed no significant differences in all the haematological parameters measured (P>0.05), the serum metabolites analysis revealed significant different in Cholesterol (99.8 mg/dl, 112.84 mg/dl, 131.07 mg/dl and 97.66 mg/dl respectively) (P<0.05) among others. There were significant differences within the diets for average daily weight gain, average feed intake and feed to gain ratio. The birds on control (0%) and CTM gained more weight than those fed with 30% and 50% CTM diets. The organs and carcass primal cuts of the broilers expressed significant different for the spleen (0.12 g, 0.09 g, 0.11 g and 0.14 g respectively), lungs (0.97 g, 0.72 g, 0.77 g and 1.01g respectively) and proventriculus (0.96 g, 0.99 g, 0.81 g and 0.85 g respectively) (P<0.05). For the carcass, there were no significant differences (P<0.05) in the breast, thigh, drumstick, wing and neck except for the Back (21.27 g, 21.04 g, 17.71 g, and 17.89 g respectively). In conclusion, CTM inclusion in broiler’s diet could be used as an alternative feed stuff in replacement of Soybean meal up to 15% without any adverse effects as revealed by the blood profile and to increase the growth performance of the birds.

Keywords: physiological functions, cholesterol, blood profiles, CTM and carcass analysis

Procedia PDF Downloads 611
2487 Wetting Induced Collapse Behavior of Loosely Compacted Kaolin Soil: A Microstructural Study

Authors: Dhanesh Sing Das, Bharat Tadikonda Venkata

Abstract:

Collapsible soils undergo significant volume reduction upon wetting under the pre-existing mechanically applied normal stress (inundation pressure). These soils exhibit a very high strength in air-dried conditions and can carry up to a considerable magnitude of normal stress without undergoing significant volume change. The soil strength is, however, lost upon saturation and results in a sudden collapse of the soil structure under the existing mechanical stress condition. The intrusion of water into the dry deposits of such soil causes ground subsidence leading to damages in the overlying buildings/structures. A study on the wetting-induced volume change behavior of collapsible soils is essential in dealing with the ground subsidence problems in various geotechnical engineering practices. The collapse of loosely compacted Kaolin soil upon wetting under various inundation pressures has been reported in recent studies. The collapse in the Kaolin soil is attributed to the alteration in the soil particle-particle association (fabric) resulting due to the changes in the various inter-particle (microscale) forces induced by the water saturation. The inundation pressure plays a significant role in the fabric evolution during the wetting process, thus controls the collapse potential of the compacted soil. A microstructural study is useful to understand the collapse mechanisms at various pore-fabric levels under different inundation pressure. Kaolin soil compacted to a dry density of 1.25 g/cc was used in this work to study the wetting-induced volume change behavior under different inundation pressures in the range of 10-1600 kPa. The compacted specimen of Kaolin soil exhibited a consistent collapse under all the studied inundation pressure. The collapse potential was observed to be increasing with an increase in the inundation pressure up to a maximum value of 13.85% under 800 kPa and then decreased to 11.7% under 1600 kPa. Microstructural analysis was carried out based on the fabric images and the pore size distributions (PSDs) obtained from FESEM analysis and mercury intrusion porosimetry (MIP), respectively. The PSDs and the soil fabric images of ‘as-compacted’ specimen and post-collapse specimen under 400 kPa were analyzed to understand the changes in the soil fabric and pores due to wetting. The pore size density curve for the post-collapse specimen was found to be on the finer side with respect to the ‘as-compacted’ specimen, indicating the reduction of the larger pores during the collapse. The inter-aggregate pores in the range of 0.1-0.5μm were identified as the major contributing pore size classes to the macroscopic volume change. Wetting under an inundation pressure results in the reduction of these pore sizes and lead to an increase in the finer pore sizes. The magnitude of inundation pressure influences the amount of reduction of these pores during the wetting process. The collapse potential was directly related to the degree of reduction in the pore volume contributed by these pore sizes.

Keywords: collapse behavior, inundation pressure, kaolin, microstructure

Procedia PDF Downloads 136
2486 Projected Uncertainties in Herbaceous Production Result from Unpredictable Rainfall Pattern and Livestock Grazing in a Humid Tropical Savanna Ecosystem

Authors: Daniel Osieko Okach, Joseph Otieno Ondier, Gerhard Rambold, John Tenhunen, Bernd Huwe, Dennis Otieno

Abstract:

Increased human activities such as grazing, logging, and agriculture alongside unpredictable rainfall patterns have been detrimental to the ecosystem service delivery, therefore compromising its productivity potential. This study aimed at simulating the impact of drought (50%) and enhanced rainfall (150%) on the future herbaceous CO2 uptake, biomass production and soil C:N dynamics in a humid savanna ecosystem influenced by livestock grazing. Rainfall pattern was predicted using manipulation experiments set up to reduce (50%) and increase (150%) ambient (100%) rainfall amounts in grazed and non-grazed plots. The impact of manipulated rainfall regime on herbaceous CO2 fluxes, biomass production and soil C:N dynamics was measured against volumetric soil water content (VWC) logged every 30 minutes using the 5TE (Decagon Devices Inc., Washington, USA) soil moisture sensors installed (at 20 cm soil depth) in every plots. Herbaceous biomass was estimated using destructive method augmented by standardized photographic imaging. CO2 fluxes were measured using the ecosystem chamber method and the gas analysed using LI-820 gas analyzer (USA). C:N ratio was calculated from the soil carbon and Nitrogen contents (analyzed using EA2400CHNS/O and EA2410 N elemental analyzers respectively) of different plots under study. The patterning of VWC was directly influenced by the rainfall amount with lower VWC observed in the grazed compared to the non-grazed plots. Rainfall variability, grazing and their interaction significantly affected changes in VWC (p < 0.05) and subsequently total biomass and CO2 fluxes. VWC had a strong influence on CO2 fluxes under 50% rainfall reduction in the grazed (r2 = 0.91; p < 0.05) and ambient rainfall in the ungrazed (r2 = 0.77; p < 0.05). The dependence of biomass on VWC across plots was enhanced under grazed (r2 = 0.78 - 0.87; p < 0.05) condition as compared to ungrazed (r2 = 0.44 - 0.85; p < 0.05). The C:N ratio was however not correlated to VWC across plots. This study provides insight on how the predicted trends in humid savanna will respond to changes influenced by rainfall variability and livestock grazing and consequently the sustainable management of such ecosystems.

Keywords: CO2 fluxes, rainfall manipulation, soil properties, sustainability

Procedia PDF Downloads 131
2485 Load Transfer of Steel Pipe Piles in Warming Permafrost

Authors: S. Amirhossein Tabatabaei, Abdulghader A. Aldaeef, Mohammad T. Rayhani

Abstract:

As the permafrost continues to melt in the northern regions due to global warming, a soil-water mixture is left behind with drastically lower strength; a phenomenon that directly impacts the resilience of existing structures and infrastructure systems. The frozen soil-structure interaction, which in ice-poor soils is controlled by both interface shear and ice-bonding, changes its nature into a sole frictional state. Adfreeze, the controlling mechanism in frozen soil-structure interaction, diminishes as the ground temperature approaches zero. The main purpose of this paper is to capture the altered behaviour of frozen interface with respect to rising temperature, especially near melting states. A series of pull-out tests are conducted on model piles inside a cold room to study how the strength parameters are influenced by the phase change in ice-poor soils. Steel model piles, embedded in artificially frozen cohesionless soil, are subjected to both sustained pull-out forces and constant rates of displacement to observe the creep behaviour and acquire load-deformation curves, respectively. Temperature, as the main variable of interest, is increased from a lower limit of -10°C up to the point of melting. During different stages of the temperature rise, both skin deformations and temperatures are recorded at various depths along the pile shaft. Significant reduction of pullout capacity and accelerated creep behaviour is found to be the primary consequences of rising temperature. By investigating the different pull-out capacities and deformations measured during step-wise temperature change, characteristics of the transition from frozen to unfrozen soil-structure interaction are studied.

Keywords: Adfreeze, frozen soil-structure interface, ice-poor soils, pull-out capacity, warming permafrost

Procedia PDF Downloads 110