Search results for: scenarios
491 Analysis of the Vibration Behavior of a Small-Scale Wind Turbine Blade under Johannesburg Wind Speed
Authors: Tolulope Babawarun, Harry Ngwangwa
Abstract:
The wind turbine blade may sustain structural damage from external loads such as high winds or collisions, which could compromise its aerodynamic efficiency. The wind turbine blade vibrates at significant intensities and amplitudes under these conditions. The effect of these vibrations on the dynamic flow field surrounding the blade changes the forces operating on it. The structural dynamic analysis of a small wind turbine blade is considered in this study. It entails creating a finite element model, validating the model, and doing structural analysis on the verified finite element model. The analysis is based on the structural reaction of a small-scale wind turbine blade to various loading sources. Although there are many small-scale off-shore wind turbine systems in use, only preliminary structural analysis is performed during design phases; these systems' performance under various loading conditions as they are encountered in real-world situations has not been properly researched. This will allow us to record the same Equivalent von Mises stress and deformation that the blade underwent. A higher stress contour was found to be more concentrated near the middle span of the blade under the various loading scenarios studied. The highest stress that the blade in this study underwent is within the range of the maximum stress that blade material can withstand. The maximum allowable stress of the blade material is 1,770 MPa. The deformation of the blade was highest at the blade tip. The critical speed of the blade was determined to be 4.3 Rpm with a rotor speed range of 0 to 608 Rpm. The blade's mode form under loading conditions indicates a bending mode, the most prevalent of which is flapwise bending.Keywords: ANSYS, finite element analysis, static loading, dynamic analysis
Procedia PDF Downloads 87490 A Sharp Interface Model for Simulating Seawater Intrusion in the Coastal Aquifer of Wadi Nador (Algeria)
Authors: Abdelkader Hachemi, Boualem Remini
Abstract:
Seawater intrusion is a significant challenge faced by coastal aquifers in the Mediterranean basin. This study aims to determine the position of the sharp interface between seawater and freshwater in the aquifer of Wadi Nador, located in the Wilaya of Tipaza, Algeria. A numerical areal sharp interface model using the finite element method is developed to investigate the spatial and temporal behavior of seawater intrusion. The aquifer is assumed to be homogeneous and isotropic. The simulation results are compared with geophysical prospection data obtained through electrical methods in 2011 to validate the model. The simulation results demonstrate a good agreement with the geophysical prospection data, confirming the accuracy of the sharp interface model. The position of the sharp interface in the aquifer is found to be approximately 1617 meters from the sea. Two scenarios are proposed to predict the interface position for the year 2024: one without pumping and the other with pumping. The results indicate a noticeable retreat of the sharp interface position in the first scenario, while a slight decline is observed in the second scenario. The findings of this study provide valuable insights into the dynamics of seawater intrusion in the Wadi Nador aquifer. The predicted changes in the sharp interface position highlight the potential impact of pumping activities on the aquifer's vulnerability to seawater intrusion. This study emphasizes the importance of implementing measures to manage and mitigate seawater intrusion in coastal aquifers. The sharp interface model developed in this research can serve as a valuable tool for assessing and monitoring the vulnerability of aquifers to seawater intrusion.Keywords: seawater intrusion, sharp interface, coastal aquifer, algeria
Procedia PDF Downloads 119489 Maximizing Profit Using Optimal Control by Exploiting the Flexibility in Thermal Power Plants
Authors: Daud Mustafa Minhas, Raja Rehan Khalid, Georg Frey
Abstract:
The next generation power systems are equipped with abundantly available free renewable energy resources (RES). During their low-cost operations, the price of electricity significantly reduces to a lower value, and sometimes it becomes negative. Therefore, it is recommended not to operate the traditional power plants (e.g. coal power plants) and to reduce the losses. In fact, it is not a cost-effective solution, because these power plants exhibit some shutdown and startup costs. Moreover, they require certain time for shutdown and also need enough pause before starting up again, increasing inefficiency in the whole power network. Hence, there is always a trade-off between avoiding negative electricity prices, and the startup costs of power plants. To exploit this trade-off and to increase the profit of a power plant, two main contributions are made: 1) introducing retrofit technology for state of art coal power plant; 2) proposing optimal control strategy for a power plant by exploiting different flexibility features. These flexibility features include: improving ramp rate of power plant, reducing startup time and lowering minimum load. While, the control strategy is solved as mixed integer linear programming (MILP), ensuring optimal solution for the profit maximization problem. Extensive comparisons are made considering pre and post-retrofit coal power plant having the same efficiencies under different electricity price scenarios. It concludes that if the power plant must remain in the market (providing services), more flexibility reflects direct economic advantage to the plant operator.Keywords: discrete optimization, power plant flexibility, profit maximization, unit commitment model
Procedia PDF Downloads 143488 Distributed Generation Connection to the Network: Obtaining Stability Using Transient Behavior
Authors: A. Hadadi, M. Abdollahi, A. Dustmohammadi
Abstract:
The growing use of DGs in distribution networks provide many advantages and also cause new problems which should be anticipated and be solved with appropriate solutions. One of the problems is transient voltage drop and short circuit in the electrical network, in the presence of distributed generation - which can lead to instability. The appearance of the short circuit will cause loss of generator synchronism, even though if it would be able to recover synchronizing mode after removing faulty generator, it will be stable. In order to increase system reliability and generator lifetime, some strategies should be planned to apply even in some situations which a fault prevent generators from separation. In this paper, one fault current limiter is installed due to prevent DGs separation from the grid when fault occurs. Furthermore, an innovative objective function is applied to determine the impedance optimal amount of fault current limiter in order to improve transient stability of distributed generation. Fault current limiter can prevent generator rotor's sudden acceleration after fault occurrence and thereby improve the network transient stability by reducing the current flow in a fast and effective manner. In fact, by applying created impedance by fault current limiter when a short circuit happens on the path of current injection DG to the fault location, the critical fault clearing time improve remarkably. Therefore, protective relay has more time to clear fault and isolate the fault zone without any instability. Finally, different transient scenarios of connection plan sustainability of small scale synchronous generators to the distribution network are presented.Keywords: critical clearing time, fault current limiter, synchronous generator, transient stability, transient states
Procedia PDF Downloads 196487 A Multi Objective Reliable Location-Inventory Capacitated Disruption Facility Problem with Penalty Cost Solve with Efficient Meta Historic Algorithms
Authors: Elham Taghizadeh, Mostafa Abedzadeh, Mostafa Setak
Abstract:
Logistics network is expected that opened facilities work continuously for a long time horizon without any failure; but in real world problems, facilities may face disruptions. This paper studies a reliable joint inventory location problem to optimize cost of facility locations, customers’ assignment, and inventory management decisions when facilities face failure risks and doesn’t work. In our model we assume when a facility is out of work, its customers may be reassigned to other operational facilities otherwise they must endure high penalty costs associated with losing service. For defining the model closer to real world problems, the model is proposed based on p-median problem and the facilities are considered to have limited capacities. We define a new binary variable (Z_is) for showing that customers are not assigned to any facilities. Our problem involve a bi-objective model; the first one minimizes the sum of facility construction costs and expected inventory holding costs, the second one function that mention for the first one is minimizes maximum expected customer costs under normal and failure scenarios. For solving this model we use NSGAII and MOSS algorithms have been applied to find the pareto- archive solution. Also Response Surface Methodology (RSM) is applied for optimizing the NSGAII Algorithm Parameters. We compare performance of two algorithms with three metrics and the results show NSGAII is more suitable for our model.Keywords: joint inventory-location problem, facility location, NSGAII, MOSS
Procedia PDF Downloads 525486 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models
Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur
Abstract:
In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity
Procedia PDF Downloads 68485 Preliminary Studies of Transient Stability for the 380 kV Connection West-Central of Saudi Electricity Company
Authors: S. Raja Mohamed, M. H Shwehdi, D. Devaraj
Abstract:
This paper is to present and discuss the new planned 380 kV transmission line performance under steady and transient states. Dynamic modeling and analysis of such inter-tie, which is, proposed to transfer energy from west to south and vice versa will be demonstrated and discussed. The west-central-south inter-tie links Al-Aula-Zaba-Tabuk-Tubajal-Jawf-Hail. It is essential to investigate the transient over-voltage to assure steady and stable transmission over such inter-tie. Saudi Electricity Company (SEC) has been improving its grid to make the whole country as an interconnected system. Already east, central and west were interconnected, yet mostly each is fed with its local generation. The SEC is planning to establish many inter-ties to strengthen the transient stability of its grid. The paper studies one of the important links of 380 kV, 220 km between Tabouk and Tubarjal, which is a step towards connecting the West with the South region. Modeling and analysis using some softwares will be utilized under different scenarios. Adoption of methods to stabilize and increase its power transmission are also discussed. Improvement of power system transients has been controlled by FACTS elements such the Static Var Compensators (SVC) receiving a wide interest since many technical studies have proven their effects on damping system oscillations and stability enhancement. Illustrations of the transient at each main generating or load bus will be checked in all inter-tie links. A brief review of possible means to solve the transient over-voltage problem using different FACTS element modeling will be discussed.Keywords: transient stability, static var compensator, central-west interconnected system, damping controller, Saudi Electricity Company
Procedia PDF Downloads 609484 A U-Net Based Architecture for Fast and Accurate Diagram Extraction
Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal
Abstract:
In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO
Procedia PDF Downloads 137483 Trading off Accuracy for Speed in Powerdrill
Authors: Filip Buruiana, Alexander Hall, Reimar Hofmann, Thomas Hofmann, Silviu Ganceanu, Alexandru Tudorica
Abstract:
In-memory column-stores make interactive analysis feasible for many big data scenarios. PowerDrill is a system used internally at Google for exploration in logs data. Even though it is a highly parallelized column-store and uses in memory caching, interactive response times cannot be achieved for all datasets (note that it is common to analyze data with 50 billion records in PowerDrill). In this paper, we investigate two orthogonal approaches to optimize performance at the expense of an acceptable loss of accuracy. Both approaches can be implemented as outer wrappers around existing database engines and so they should be easily applicable to other systems. For the first optimization we show that memory is the limiting factor in executing queries at speed and therefore explore possibilities to improve memory efficiency. We adapt some of the theory behind data sketches to reduce the size of particularly expensive fields in our largest tables by a factor of 4.5 when compared to a standard compression algorithm. This saves 37% of the overall memory in PowerDrill and introduces a 0.4% relative error in the 90th percentile for results of queries with the expensive fields. We additionally evaluate the effects of using sampling on accuracy and propose a simple heuristic for annotating individual result-values as accurate (or not). Based on measurements of user behavior in our real production system, we show that these estimates are essential for interpreting intermediate results before final results are available. For a large set of queries this effectively brings down the 95th latency percentile from 30 to 4 seconds.Keywords: big data, in-memory column-store, high-performance SQL queries, approximate SQL queries
Procedia PDF Downloads 259482 Predicting the Human Impact of Natural Onset Disasters Using Pattern Recognition Techniques and Rule Based Clustering
Authors: Sara Hasani
Abstract:
This research focuses on natural sudden onset disasters characterised as ‘occurring with little or no warning and often cause excessive injuries far surpassing the national response capacities’. Based on the panel analysis of the historic record of 4,252 natural onset disasters between 1980 to 2015, a predictive method was developed to predict the human impact of the disaster (fatality, injured, homeless) with less than 3% of errors. The geographical dispersion of the disasters includes every country where the data were available and cross-examined from various humanitarian sources. The records were then filtered into 4252 records of the disasters where the five predictive variables (disaster type, HDI, DRI, population, and population density) were clearly stated. The procedure was designed based on a combination of pattern recognition techniques and rule-based clustering for prediction and discrimination analysis to validate the results further. The result indicates that there is a relationship between the disaster human impact and the five socio-economic characteristics of the affected country mentioned above. As a result, a framework was put forward, which could predict the disaster’s human impact based on their severity rank in the early hours of disaster strike. The predictions in this model were outlined in two worst and best-case scenarios, which respectively inform the lower range and higher range of the prediction. A necessity to develop the predictive framework can be highlighted by noticing that despite the existing research in literature, a framework for predicting the human impact and estimating the needs at the time of the disaster is yet to be developed. This can further be used to allocate the resources at the response phase of the disaster where the data is scarce.Keywords: disaster management, natural disaster, pattern recognition, prediction
Procedia PDF Downloads 153481 Analysis of Earthquake Potential and Shock Level Scenarios in South Sulawesi
Authors: Takhul Bakhtiar
Abstract:
In South Sulawesi Province, there is an active Walanae Fault causing this area to frequently experience earthquakes. This study aims to determine the level of seismicity of the earthquake in order to obtain the potential for earthquakes in the future. The estimation of the potential for earthquakes is then made a scenario model determine the estimated level of shocks as an effort to mitigate earthquake disasters in the region. The method used in this study is the Gutenberg Richter Method through the statistical likelihood approach. This study used earthquake data in the South Sulawesi region in 1972 - 2022. The research location is located at the coordinates of 3.5° – 5.5° South Latitude and 119.5° – 120.5° East Longitude and divided into two segments, namely the northern segment at the coordinates of 3.5° – 4.5° South Latitude and 119,5° – 120,5° East Longitude then the southern segment with coordinates of 4.5° – 5.5° South Latitude and 119,5° – 120.5° East Longitude. This study uses earthquake parameters with a magnitude > 1 and a depth < 50 km. The results of the analysis show that the potential for earthquakes in the next ten years with a magnitude of M = 7 in the northern segment is estimated at 98.81% with an estimated shock level of VI-VII MMI around the cities of Pare-Pare, Barru, Pinrang and Soppeng then IV - V MMI in the cities of Bulukumba, Selayar, Makassar and Gowa. In the southern segment, the potential for earthquakes in the next ten years with a magnitude of M = 7 is estimated at 32.89% with an estimated VI-VII MMI shock level in the cities of Bulukumba, Selayar, Makassar and Gowa, then III-IV MMI around the cities of Pare-Pare, Barru, Pinrang and Soppeng.Keywords: Gutenberg Richter, likelihood method, seismicity, shakemap and MMI scale
Procedia PDF Downloads 120480 Educational Sustainability: Teaching the Next Generation of Educators in Medical Simulation
Authors: Thomas Trouton, Sebastian Tanner, Manvir Sandher
Abstract:
The use of simulation in undergraduate and postgraduate medical curricula is ever-growing, is a useful addition to the traditional apprenticeship model of learning within medical education, and better prepares graduates for the team-based approach to healthcare seen in real-life clinical practice. As a learning tool, however, undergraduate medical students often have little understanding of the theory behind the use of medical simulation and have little experience in planning and delivering their own simulated teaching sessions. We designed and implemented a student-selected component (SSC) as part of the undergraduate medical curriculum at the University of Buckingham Medical School to introduce students to the concepts behind the use of medical simulation in education and allow them to plan and deliver their own simulated medical scenario to their peers. The SSC took place over a 2-week period in the 3rd year of the undergraduate course. There was a mix of lectures, seminars and interactive group work sessions, as well as hands-on experience in the simulation suite, to introduce key concepts related to medical simulation, including technical considerations in simulation, human factors, debriefing and troubleshooting scenarios. We evaluated the success of our SSC using “Net Promotor Scores” (NPS) to assess students’ confidence in planning and facilitating a simulation-based teaching session, as well as leading a debrief session. In all three domains, we showed an increase in the confidence of the students. We also showed an increase in confidence in the management of common medical emergencies as a result of the SSC. Overall, the students who chose our SSC had the opportunity to learn new skills in medical education, with a particular focus on the use of simulation-based teaching, and feedback highlighted that a number of students would take these skills forward in their own practice. We demonstrated an increase in confidence in several domains related to the use of medical simulation in education and have hopefully inspired a new generation of medical educators.Keywords: simulation, SSC, teaching, medical students
Procedia PDF Downloads 122479 Physics-Informed Convolutional Neural Networks for Reservoir Simulation
Authors: Jiangxia Han, Liang Xue, Keda Chen
Abstract:
Despite the significant progress over the last decades in reservoir simulation using numerical discretization, meshing is complex. Moreover, the high degree of freedom of the space-time flow field makes the solution process very time-consuming. Therefore, we present Physics-Informed Convolutional Neural Networks(PICNN) as a hybrid scientific theory and data method for reservoir modeling. Besides labeled data, the model is driven by the scientific theories of the underlying problem, such as governing equations, boundary conditions, and initial conditions. PICNN integrates governing equations and boundary conditions into the network architecture in the form of a customized convolution kernel. The loss function is composed of data matching, initial conditions, and other measurable prior knowledge. By customizing the convolution kernel and minimizing the loss function, the neural network parameters not only fit the data but also honor the governing equation. The PICNN provides a methodology to model and history-match flow and transport problems in porous media. Numerical results demonstrate that the proposed PICNN can provide an accurate physical solution from a limited dataset. We show how this method can be applied in the context of a forward simulation for continuous problems. Furthermore, several complex scenarios are tested, including the existence of data noise, different work schedules, and different good patterns.Keywords: convolutional neural networks, deep learning, flow and transport in porous media, physics-informed neural networks, reservoir simulation
Procedia PDF Downloads 143478 Comprehensive Framework for Pandemic-Resilient Cities to Avert Future Migrant Crisis: A Case of Mumbai
Authors: Vasudha Thapa, Kiran Chappa
Abstract:
There is a pressing need to prepare cities in the developing countries of the global south such as India against the chaos created by COVID 19 pandemic and future disaster risks. This pandemic posed the nation with an unprecedented challenge of dealing with a wave of stranded migrant workers. These workers comprise the most vulnerable section of the society in case of any pandemic or disaster risks. The COVID 19 pandemic exposed the vulnerability of migrant workers in the urban form and the need for capacity-building strategies against future pandemics. This paper highlights the challenges of these migrant workers in the case of Mumbai city in lockdown, post lockdown, and the current uncertain scenarios. The paper deals with a thorough investigation of the existing and the recent policies and strategies taken by the Urban Local Bodies (ULBs), state, and central government to assist these migrants in the city during this mayhem of uncertainties. The paper looks further deep into the challenges and opportunities presented in the current scenario through the assessment of existing data and response to policy measures taken by the government organizations. The ULBs are at the forefront in the response to any disaster risk, hence the paper assesses the capacity gaps of the Urban local bodies in mitigating the risks posed by any pandemic-like situation. The study further recommends capacity-building strategies at various levels of governance and uniform policy measures to assist the migrant population of the city.Keywords: urban resilience, covid 19, migrant population, India, capacity building, governance
Procedia PDF Downloads 186477 Media Representation of Romanian Migrants in the Italian Media: A Comparative Study
Authors: Paula-Catalina Meirosu
Abstract:
The economic migration (intra-EU) is a topic of debate in the public space in both countries of origin and countries of destination. Since the 1990s, after the collapse of communist regimes and then the accession of some former communist countries to the EU, the migratory flows of migrants (including Romanian migrants) to EU countries has been increased constantly. Italy is one of the main countries of destination among Romanians since at the moment Italy hosts more than one million Romanian migrants. Based on an interdisciplinary analytical framework focused on the theories in the field of transnationalism, media and migration studies and critical media analysis, this paper investigates the media construction of intra-EU economic migration in the Italian press from two main perspectives. The first point of view is the media representation of Romanian migrants in the Italian press in a specific context: the EU elections in 2014. The second one explores the way in which Romanian journalists use the media in the destinations countries (such as Italy) as a source to address the issue of migration. In this context, the paper focuses on online articles related to the Romanian migrants’ representation in the media before and during the EU elections in two newspapers (La Repubblica from Italy and Adevarul from Romania), published during January-May 2014. The methodology is based on a social-constructivist approach, predominantly discursive and includes elements of critical discourse analysis (CDA) to identify the patterns of Romanian migrants in the Italian press as well as strategies for building categories, identities, and roles of migrants. The aim of such an approach is to find out the dynamic of the media discourse on migration from a destination country in the light of a European electoral context (EU elections) and based on the results, to propose scenarios for the elections to be held this year.Keywords: migration, media discourse, Romanian migrants, transnationalism
Procedia PDF Downloads 134476 A Network Optimization Study of Logistics for Enhancing Emergency Preparedness in Asia-Pacific
Authors: Giuseppe Timperio, Robert De Souza
Abstract:
The combination of factors such as temperamental climate change, rampant urbanization of risk exposed areas, political and social instabilities, is posing an alarming base for the further growth of number and magnitude of humanitarian crises worldwide. Given the unique features of humanitarian supply chain such as unpredictability of demand in space, time, and geography, spike in the number of requests for relief items in the first days after the calamity, uncertain state of logistics infrastructures, large volumes of unsolicited low-priority items, a proactive approach towards design of disaster response operations is needed to achieve high agility in mobilization of emergency supplies in the immediate aftermath of the event. This paper is an attempt in that direction, and it provides decision makers with crucial strategic insights for a more effective network design for disaster response. Decision sciences and ICT are integrated to analyse the robustness and resilience of a prepositioned network of emergency strategic stockpiles for a real-life case about Indonesia, one of the most vulnerable countries in Asia-Pacific, with the model being built upon a rich set of quantitative data. At this aim, a network optimization approach was implemented, with several what-if scenarios being accurately developed and tested. Findings of this study are able to support decision makers facing challenges related with disaster relief chains resilience, particularly about optimal configuration of supply chain facilities and optimal flows across the nodes, while considering the network structure from an end-to-end in-country distribution perspective.Keywords: disaster preparedness, humanitarian logistics, network optimization, resilience
Procedia PDF Downloads 175475 Assessing the Impact of Autonomous Vehicles on Supply Chain Performance – A Case Study of Agri-Food Supply Chain
Authors: Nitish Suvarna, Anjali Awasthi
Abstract:
In an era marked by rapid technological advancements, the integration of Autonomous Vehicles into supply chain networks represents a transformative shift, promising to redefine the paradigms of logistics and transportation. This thesis delves into a comprehensive assessment of the impact of autonomous vehicles on supply chain performance, with a particular focus on network design, operational efficiency, and environmental sustainability. Employing the advanced simulation capabilities of anyLogistix (ALX), the study constructs a digital twin of a conventional supply chain network, encompassing suppliers, production facilities, distribution centers, and customer endpoints. The research methodically integrates Autonomous Vehicles into this intricate network, aiming to unravel the multifaceted effects on transportation logistics including transit times, cost-efficiency, and sustainability. Through simulations and scenarios analysis, the study scrutinizes the operational resilience and adaptability of supply chains in the face of dynamic market conditions and disruptive technologies like Autonomous Vehicles. Furthermore, the thesis undertakes carbon footprint analysis, quantifying the environmental benefits and challenges associated with the adoption of Autonomous Vehicles in supply chain operations. The insights from this research are anticipated to offer a strategic framework for industry stakeholders, guiding the adoption of Autonomous Vehicles to foster a more efficient, responsive, and sustainable supply chain ecosystem. The findings aim to serve as a cornerstone for future research and practical implementations in the realm of intelligent transportation and supply chain management.Keywords: autonomous vehicle, agri-food supply chain, ALX simulation, anyLogistix
Procedia PDF Downloads 75474 Peril´s Environment of Energetic Infrastructure Complex System, Modelling by the Crisis Situation Algorithms
Authors: Jiří F. Urbánek, Alena Oulehlová, Hana Malachová, Jiří J. Urbánek Jr.
Abstract:
Crisis situations investigation and modelling are introduced and made within the complex system of energetic critical infrastructure, operating on peril´s environments. Every crisis situations and perils has an origin in the emergency/ crisis event occurrence and they need critical/ crisis interfaces assessment. Here, the emergency events can be expected - then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping; or it may be unexpected - without pre-prepared scenario of event. But the both need operational coping by means of crisis management as well. The operation, forms, characteristics, behaviour and utilization of crisis management have various qualities, depending on real critical infrastructure organization perils, and prevention training processes. An aim is always - better security and continuity of the organization, which successful obtainment needs to find and investigate critical/ crisis zones and functions in critical infrastructure organization models, operating in pertinent perils environment. Our DYVELOP (Dynamic Vector Logistics of Processes) method is disposables for it. Here, it is necessary to derive and create identification algorithm of critical/ crisis interfaces. The locations of critical/ crisis interfaces are the flags of crisis situation in organization of critical infrastructure models. Then, the model of crisis situation will be displayed at real organization of Czech energetic crisis infrastructure subject in real peril environment. These efficient measures are necessary for the infrastructure protection. They will be derived for peril mitigation, crisis situation coping and for environmentally friendly organization survival, continuity and its sustainable development advanced possibilities.Keywords: algorithms, energetic infrastructure complex system, modelling, peril´s environment
Procedia PDF Downloads 402473 Comparison of Various Policies under Different Maintenance Strategies on a Multi-Component System
Authors: Demet Ozgur-Unluakin, Busenur Turkali, Ayse Karacaorenli
Abstract:
Maintenance strategies can be classified into two types, which are reactive and proactive, with respect to the time of the failure and maintenance. If the maintenance activity is done after a breakdown, it is called reactive maintenance. On the other hand, proactive maintenance, which is further divided as preventive and predictive, focuses on maintaining components before a failure occurs to prevent expensive halts. Recently, the number of interacting components in a system has increased rapidly and therefore, the structure of the systems have become more complex. This situation has made it difficult to provide the right maintenance decisions. Herewith, determining effective decisions has played a significant role. In multi-component systems, many methodologies and strategies can be applied when a component or a system has already broken down or when it is desired to identify and avoid proactively defects that could lead to future failure. This study focuses on the comparison of various maintenance strategies on a multi-component dynamic system. Components in the system are hidden, although there exists partial observability to the decision maker and they deteriorate in time. Several predefined policies under corrective, preventive and predictive maintenance strategies are considered to minimize the total maintenance cost in a planning horizon. The policies are simulated via Dynamic Bayesian Networks on a multi-component system with different policy parameters and cost scenarios, and their performances are evaluated. Results show that when the difference between the corrective and proactive maintenance cost is low, none of the proactive maintenance policies is significantly better than the corrective maintenance. However, when the difference is increased, at least one policy parameter for each proactive maintenance strategy gives significantly lower cost than the corrective maintenance.Keywords: decision making, dynamic Bayesian networks, maintenance, multi-component systems, reliability
Procedia PDF Downloads 129472 Adaptive Strategies of European Sea Bass (Dicentrarchus labrax) to Ocean Acidification and Salinity Stress
Authors: Nitin Pipralia, Amit Kmar Sinha, Gudrun de Boeck
Abstract:
Atmospheric carbon dioxide (CO2) concentrations have been increasing since the beginning of the industrial revolution due to combustion of fossils fuel and many anthropogenic means. As the number of scenarios assembled by the International Panel on Climate Change (IPCC) predict a rise of pCO2 from today’s 380 μatm to approximately 900 μatm until the year 2100 and a further rise of up to 1900 μatm by the year 2300. A rise in pCO2 results in more dissolution in ocean surface water which lead to cange in water pH, This phenomena of decrease in ocean pH due to increase on pCO2 is ocean acidification is considered a potential threat to the marine ecosystems and expected to affect fish as well as calcerious organisms. The situation may get worste when the stress of salinity adds on, due to migratory movement of fishes, where fish moves to different salinity region for various specific activities likes spawning and other. Therefore, to understand the interactive impact of these whole range of two important environmental abiotic stresses (viz. pCO2 ranging from 380 μatm, 900 μatm and 1900 μatm, along with salinity gradients of 32ppt, 10 ppt and 2.5ppt) on the ecophysiologal performance of fish, we investigated various biological adaptive response in European sea bass (Dicentrarchus labrax), a model estuarine teleost. Overall, we hypothesize that effect of ocean acidification would be exacerbate with shift in ambient salinity. Oxygen consumption, ammonia metabolism, iono-osmoregulation, energy budget, ion-regulatory enzymes, hormones and pH amendments in plasma were assayed as the potential indices of compensatory responses.Keywords: ocean acidification, sea bass, pH climate change, salinity
Procedia PDF Downloads 226471 Review of Downscaling Methods in Climate Change and Their Role in Hydrological Studies
Authors: Nishi Bhuvandas, P. V. Timbadiya, P. L. Patel, P. D. Porey
Abstract:
Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. According to the sixth Intergovernmental Panel on Climate Change (IPCC) Technical Paper on Climate Change and water, changes in the large-scale hydrological cycle have been related to an increase in the observed temperature over several decades. Although many previous research carried on effect of change in climate on hydrology provides a general picture of possible hydrological global change, new tools and frameworks for modelling hydrological series with nonstationary characteristics at finer scales, are required for assessing climate change impacts. Of the downscaling techniques, dynamic downscaling is usually based on the use of Regional Climate Models (RCMs), which generate finer resolution output based on atmospheric physics over a region using General Circulation Model (GCM) fields as boundary conditions. However, RCMs are not expected to capture the observed spatial precipitation extremes at a fine cell scale or at a basin scale. Statistical downscaling derives a statistical or empirical relationship between the variables simulated by the GCMs, called predictors, and station-scale hydrologic variables, called predictands. The main focus of the paper is on the need for using statistical downscaling techniques for projection of local hydrometeorological variables under climate change scenarios. The projections can be then served as a means of input source to various hydrologic models to obtain streamflow, evapotranspiration, soil moisture and other hydrological variables of interest.Keywords: climate change, downscaling, GCM, RCM
Procedia PDF Downloads 406470 Temporal Transformation of Built-up Area and its Impact on Urban Flooding in Hyderabad, India
Authors: Subbarao Pichuka, Amar Balakrishna Tej, Vikas Vemula
Abstract:
In recent years, the frequency and intensity of urban floods have increased due to climate change all over the world provoking a significant loss in terms of human lives and property. This study investigates the effect of Land Use and Land Cover (LULC) changes and population growth on the urban environmental conditions in the Indian metropolitan city namely Hyderabad. The centennial built-up area data have been downloaded from the Global Human Settlement Layer (GHSL) web portal for various periods (1975 to 2014). The ArcGIS version 10.8 software is employed to convert the GHSL data into shape files and also to calculate the amount of built-up area in the study locations. The decadal population data are obtained from the Census from 1971 to 2011 and forecasted for the required years (1975 and 2014) utilizing the Geometric Increase Method. Next, the analysis has been carried out with respect to the increase in population and the corresponding rise in the built-up area. Further the effects of extreme rainfall events, which exacerbate urban flooding have also been reviewed. Results demonstrate that the population growth was the primary cause of the increase in impervious surfaces in the urban regions. It in turn leads to the intensification of surface runoff and thereby leads to Urban flooding. The built-up area has been doubled from 1975 to 2014 and the population growth has been observed between 109.24% to 400% for the past four decades (1971 to 2014) in the study area (Hyderabad). Overall, this study provides the hindsight on the current urban flooding scenarios, and the findings of this study can be used in the future planning of cities.Keywords: urban LULC change, urban flooding, GHSL built-up data, climate change, ArcGIS
Procedia PDF Downloads 81469 Enhancing Disaster Resilience: Advanced Natural Hazard Assessment and Monitoring
Authors: Mariza Kaskara, Stella Girtsou, Maria Prodromou, Alexia Tsouni, Christodoulos Mettas, Stavroula Alatza, Kyriaki Fotiou, Marios Tzouvaras, Charalampos Kontoes, Diofantos Hadjimitsis
Abstract:
Natural hazard assessment and monitoring are crucial in managing the risks associated with fires, floods, and geohazards, particularly in regions prone to these natural disasters, such as Greece and Cyprus. Recent advancements in technology, developed by the BEYOND Center of Excellence of the National Observatory of Athens, have been successfully applied in Greece and are now set to be transferred to Cyprus. The implementation of these advanced technologies in Greece has significantly improved the country's ability to respond to these natural hazards. For wildfire risk assessment, a scalar wildfire occurrence risk index is created based on the predictions of machine learning models. Predicting fire danger is crucial for the sustainable management of forest fires as it provides essential information for designing effective prevention measures and facilitating response planning for potential fire incidents. A reliable forecast of fire danger is a key component of integrated forest fire management and is heavily influenced by various factors that affect fire ignition and spread. The fire risk model is validated by the sensitivity and specificity metric. For flood risk assessment, a multi-faceted approach is employed, including the application of remote sensing techniques, the collection and processing of data from the most recent population and building census, technical studies and field visits, as well as hydrological and hydraulic simulations. All input data are used to create precise flood hazard maps according to various flooding scenarios, detailed flood vulnerability and flood exposure maps, which will finally produce the flood risk map. Critical points are identified, and mitigation measures are proposed for the worst-case scenario, namely, refuge areas are defined, and escape routes are designed. Flood risk maps can assist in raising awareness and save lives. Validation is carried out through historical flood events using remote sensing data and records from the civil protection authorities. For geohazards monitoring (e.g., landslides, subsidence), Synthetic Aperture Radar (SAR) and optical satellite imagery are combined with geomorphological and meteorological data and other landslide/ground deformation contributing factors. To monitor critical infrastructures, including dams, advanced InSAR methodologies are used for identifying surface movements through time. Monitoring these hazards provides valuable information for understanding processes and could lead to early warning systems to protect people and infrastructure. Validation is carried out through both geotechnical expert evaluations and visual inspections. The success of these systems in Greece has paved the way for their transfer to Cyprus to enhance Cyprus's capabilities in natural hazard assessment and monitoring. This transfer is being made through capacity building activities, fostering continuous collaboration between Greek and Cypriot experts. Apart from the knowledge transfer, small demonstration actions are implemented to showcase the effectiveness of these technologies in real-world scenarios. In conclusion, the transfer of advanced natural hazard assessment technologies from Greece to Cyprus represents a significant step forward in enhancing the region's resilience to disasters. EXCELSIOR project funds knowledge exchange, demonstration actions and capacity-building activities and is committed to empower Cyprus with the tools and expertise to effectively manage and mitigate the risks associated with these natural hazards. Acknowledgement:Authors acknowledge the 'EXCELSIOR': ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment H2020 Widespread Teaming project.Keywords: earth observation, monitoring, natural hazards, remote sensing
Procedia PDF Downloads 38468 Research on Construction of Subject Knowledge Base Based on Literature Knowledge Extraction
Authors: Yumeng Ma, Fang Wang, Jinxia Huang
Abstract:
Researchers put forward higher requirements for efficient acquisition and utilization of domain knowledge in the big data era. As literature is an effective way for researchers to quickly and accurately understand the research situation in their field, the knowledge discovery based on literature has become a new research method. As a tool to organize and manage knowledge in a specific domain, the subject knowledge base can be used to mine and present the knowledge behind the literature to meet the users' personalized needs. This study designs the construction route of the subject knowledge base for specific research problems. Information extraction method based on knowledge engineering is adopted. Firstly, the subject knowledge model is built through the abstraction of the research elements. Then under the guidance of the knowledge model, extraction rules of knowledge points are compiled to analyze, extract and correlate entities, relations, and attributes in literature. Finally, a database platform based on this structured knowledge is developed that can provide a variety of services such as knowledge retrieval, knowledge browsing, knowledge q&a, and visualization correlation. Taking the construction practices in the field of activating blood circulation and removing stasis as an example, this study analyzes how to construct subject knowledge base based on literature knowledge extraction. As the system functional test shows, this subject knowledge base can realize the expected service scenarios such as a quick query of knowledge, related discovery of knowledge and literature, knowledge organization. As this study enables subject knowledge base to help researchers locate and acquire deep domain knowledge quickly and accurately, it provides a transformation mode of knowledge resource construction and personalized precision knowledge services in the data-intensive research environment.Keywords: knowledge model, literature knowledge extraction, precision knowledge services, subject knowledge base
Procedia PDF Downloads 163467 Impacts of Hydrologic and Topographic Changes on Water Regime Evolution of Poyang Lake, China
Authors: Feng Huang, Carlos G. Ochoa, Haitao Zhao
Abstract:
Poyang Lake, the largest freshwater lake in China, is located at the middle-lower reaches of the Yangtze River basin. It has great value in socioeconomic development and is internationally recognized as an important lacustrine and wetland ecosystem with abundant biodiversity. Impacted by ongoing climate change and anthropogenic activities, especially the regulation of the Three Gorges Reservoir since 2003, Poyang Lake has experienced significant water regime evolution, resulting in challenges for the management of water resources and the environment. Quantifying the contribution of hydrologic and topographic changes to water regime alteration is necessary for policymakers to design effective adaption strategies. Long term hydrologic data were collected and the back-propagation neural networks were constructed to simulate the lake water level. The impacts of hydrologic and topographic changes were differentiated through scenario analysis that considered pre-impact and post-impact hydrologic and topographic scenarios. The lake water regime was characterized by hydrologic indicators that describe monthly water level fluctuations, hydrologic features during flood and drought seasons, and frequency and rate of hydrologic variations. The results revealed different contributions of hydrologic and topographic changes to different features of the lake water regime.Noticeable changes were that the water level declined dramatically during the period of reservoir impoundment, and the drought was enhanced during the dry season. The hydrologic and topographic changes exerted a synergistic effect or antagonistic effect on different lake water regime features. The findings provide scientific reference for lacustrine and wetland ecological protection associated with water regime alterations.Keywords: back-propagation neural network, scenario analysis, water regime, Poyang Lake
Procedia PDF Downloads 139466 Performance Analysis of Search Medical Imaging Service on Cloud Storage Using Decision Trees
Authors: González A. Julio, Ramírez L. Leonardo, Puerta A. Gabriel
Abstract:
Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.Keywords: cloud storage, decision trees, diagnostic image, search, telemedicine
Procedia PDF Downloads 204465 Stereo Motion Tracking
Authors: Yudhajit Datta, Hamsi Iyer, Jonathan Bandi, Ankit Sethia
Abstract:
Motion Tracking and Stereo Vision are complicated, albeit well-understood problems in computer vision. Existing softwares that combine the two approaches to perform stereo motion tracking typically employ complicated and computationally expensive procedures. The purpose of this study is to create a simple and effective solution capable of combining the two approaches. The study aims to explore a strategy to combine the two techniques of two-dimensional motion tracking using Kalman Filter; and depth detection of object using Stereo Vision. In conventional approaches objects in the scene of interest are observed using a single camera. However for Stereo Motion Tracking; the scene of interest is observed using video feeds from two calibrated cameras. Using two simultaneous measurements from the two cameras a calculation for the depth of the object from the plane containing the cameras is made. The approach attempts to capture the entire three-dimensional spatial information of each object at the scene and represent it through a software estimator object. In discrete intervals, the estimator tracks object motion in the plane parallel to plane containing cameras and updates the perpendicular distance value of the object from the plane containing the cameras as depth. The ability to efficiently track the motion of objects in three-dimensional space using a simplified approach could prove to be an indispensable tool in a variety of surveillance scenarios. The approach may find application from high security surveillance scenes such as premises of bank vaults, prisons or other detention facilities; to low cost applications in supermarkets and car parking lots.Keywords: kalman filter, stereo vision, motion tracking, matlab, object tracking, camera calibration, computer vision system toolbox
Procedia PDF Downloads 327464 Using Visualization Techniques to Support Common Clinical Tasks in Clinical Documentation
Authors: Jonah Kenei, Elisha Opiyo
Abstract:
Electronic health records, as a repository of patient information, is nowadays the most commonly used technology to record, store and review patient clinical records and perform other clinical tasks. However, the accurate identification and retrieval of relevant information from clinical records is a difficult task due to the unstructured nature of clinical documents, characterized in particular by a lack of clear structure. Therefore, medical practice is facing a challenge thanks to the rapid growth of health information in electronic health records (EHRs), mostly in narrative text form. As a result, it's becoming important to effectively manage the growing amount of data for a single patient. As a result, there is currently a requirement to visualize electronic health records (EHRs) in a way that aids physicians in clinical tasks and medical decision-making. Leveraging text visualization techniques to unstructured clinical narrative texts is a new area of research that aims to provide better information extraction and retrieval to support clinical decision support in scenarios where data generated continues to grow. Clinical datasets in electronic health records (EHR) offer a lot of potential for training accurate statistical models to classify facets of information which can then be used to improve patient care and outcomes. However, in many clinical note datasets, the unstructured nature of clinical texts is a common problem. This paper examines the very issue of getting raw clinical texts and mapping them into meaningful structures that can support healthcare professionals utilizing narrative texts. Our work is the result of a collaborative design process that was aided by empirical data collected through formal usability testing.Keywords: classification, electronic health records, narrative texts, visualization
Procedia PDF Downloads 118463 Risk Issues for Controlling Floods through Unsafe, Dual Purpose, Gated Dams
Authors: Gregory Michael McMahon
Abstract:
Risk management for the purposes of minimizing the damages from the operations of dams has met with opposition emerging from organisations and authorities, and their practitioners. It appears that the cause may be a misunderstanding of risk management arising from exchanges that mix deterministic thinking with risk-centric thinking and that do not separate uncertainty from reliability and accuracy from probability. This paper sets out those misunderstandings that arose from dam operations at Wivenhoe in 2011, using a comparison of outcomes that have been based on the methodology and its rules and those that have been operated by applying misunderstandings of the rules. The paper addresses the performance of one risk-centric Flood Manual for Wivenhoe Dam in achieving a risk management outcome. A mixture of engineering, administrative, and legal factors appear to have combined to reduce the outcomes from the risk approach. These are described. The findings are that a risk-centric Manual may need to assist administrations in the conduct of scenario training regimes, in responding to healthy audit reporting, and in the development of decision-support systems. The principal assistance needed from the Manual, however, is to assist engineering and the law to a good understanding of how risks are managed – do not assume that risk management is understood. The wider findings are that the critical profession for decision-making downstream of the meteorologist is not dam engineering or hydrology, or hydraulics; it is risk management. Risk management will provide the minimum flood damage outcome where actual rainfalls match or exceed forecasts of rainfalls, that therefore risk management will provide the best approach for the likely history of flooding in the life of a dam, and provisions made for worst cases may be state of the art in risk management. The principal conclusion is the need for training in both risk management as a discipline and also in the application of risk management rules to particular dam operational scenarios.Keywords: risk management, flood control, dam operations, deterministic thinking
Procedia PDF Downloads 87462 Proactive Competence Management for Employees: A Bottom-up Process Model for Developing Target Competence Profiles Based on the Employee's Tasks
Authors: Maximilian Cedzich, Ingo Dietz Von Bayer, Roland Jochem
Abstract:
In order for industrial companies to continue to succeed in dynamic, globalized markets, they must be able to train their employees in an agile manner and at short notice in line with the exogenous conditions that arise. For this purpose, it is indispensable to operate a proactive competence management system for employees that recognizes qualification needs timely in order to be able to address them promptly through qualification measures. However, there are hardly any approaches to be found in the literature that includes systematic, proactive competence management. In order to help close this gap, this publication presents a process model that systematically develops bottom-up, future-oriented target competence profiles based on the tasks of the employees. Concretely, in the first step, the tasks of the individual employees are examined for assumed future conditions. In other words, qualitative scenarios are considered for the individual tasks to determine how they are likely to change. In a second step, these scenario-based future tasks are translated into individual future-related target competencies of the employee using a matrix of generic task properties. The final step pursues the goal of validating the target competence profiles formed in this way within the framework of a management workshop. This process model provides industrial companies with a tool that they can use to determine the competencies required by their own employees in the future and compare them with the actual prevailing competencies. If gaps are identified between the target and the actual, these qualification requirements can be closed in the short term by means of qualification measures.Keywords: dynamic globalized markets, employee competence management, industrial companies, knowledge management
Procedia PDF Downloads 189