Search results for: piecewise linear inputs
3081 Hybrid Lateral-Directional Robust Flight Control with Propulsive Systems
Authors: Alexandra Monteiro, K. Bousson, Fernando J. O. Moreira, Ricardo Reis
Abstract:
Fixed-wing flying vehicles are usually controlled by means of control surfaces such as elevators, ailerons, and rudders. The failure of these systems may lead to severe or even fatal crashes. These failures resulted in increased popularity for research activities on propulsion control in the last decades. The present work deals with a hybrid control architecture in which the propulsion-controlled vehicle maintains its traditional control surfaces, addressing the issue of robust lateral-directional dynamics control. The challenges stem from the parameter uncertainties in the stability and control derivatives and some unknown terms in the flight dynamics model. Two approaches are implemented and tested: linear quadratic regulation with robustness characteristics and H∞ control. The problem is centered on roll-yaw controller design with full state-feedback, which is able to deal with a standalone propulsion control mode as well as a hybrid mode combining both propulsion control and conventional control surface concepts while maintaining the original flight maneuverability characteristics. The results for both controllers emphasized very good control performances; however, the H∞ controller showed higher stabilization rates and robustness albeit with a slightly higher control magnitude than using the linear quadratic regulator.Keywords: robust propulsion control, h-infinity control, lateral-directional flight dynamics, parameter uncertainties
Procedia PDF Downloads 1563080 Crowdalert: An Android Application for Increasing the Awareness and Response Initiatives of the Citizens through Crowdsourcing
Authors: John Benedict Bernardo
Abstract:
Crowdsourcing is a way of collecting information provided by the volunteers. This crowdsourced information has the capacity to increase the people’s situational awareness in times of disasters. The research reflected in this paper strives to demonstrate the benefits of crowdsourcing during natural disasters and the ways of utilizing it for disaster response. Shared information regarding natural disasters from social media is often scattered as the inputs from these media are uncategorized. For this reason, the study aims to equip the citizens a medium that is solely intended for sharing and/or obtaining natural disaster-related information. Ergo, an android application was developed to gather and publicize this volunteered information. The capability of crowdsourcing and the effectiveness of the application were evaluated and the result shows overwhelming agreement that this study is indeed efficient in increasing the awareness and response initiatives of the citizens during natural disasters.Keywords: crowdsourcing, natural disasters, mobile application, social media
Procedia PDF Downloads 3203079 Numerical Simulations on the Torsional Behavior of Multistory Concrete Masonry Buildings
Authors: Alvaro Jose Cordova, Hsuan Teh Hu
Abstract:
The use of concrete masonry constructions in developing countries has become very frequent, especially for domestic purpose. Most of them with asymmetric wall configurations in plan resulting in significant torsional actions when subjected to seismic loads. The study consisted on the finding of a material model for hollow unreinforced concrete masonry and a validation with experimental data found in literature. Numerical simulations were performed to 20 buildings with variations in wall distributions and heights. Results were analyzed by inspection and with a non-linear static method. The findings revealed that eccentricities as well as structure rigidities have a strong influence on the overall response of concrete masonry buildings. In addition, slab rotations depicted more accurate information about the torsional behavior than maximum versus average displacement ratios. The failure modes in low buildings were characterized by high tensile strains in the first floor. Whereas in tall buildings these strains were lowered significantly by higher compression stresses due to a higher self-weight. These tall buildings developed multiple plastic hinges along the height. Finally, the non-linear static analysis exposed a brittle response for all masonry assemblies. This type of behavior is undesired in any construction and the need for a material model for reinforced masonry is pointed out.Keywords: concrete damaged plasticity, concrete masonry, macro-modeling, nonlinear static analysis, torsional capacity
Procedia PDF Downloads 2943078 A Comparison of Design and Off-Design Performances of a Centrifugal Compressor
Authors: Zeynep Aytaç, Nuri Yücel
Abstract:
Today, as the need for high efficiency and fuel-efficient engines have increased, centrifugal compressor designs are expected to be high-efficient and have high-pressure ratios than ever. The present study represents a design methodology of centrifugal compressor placed in a mini jet engine for the design and off-design points with the utilization of computational fluid dynamics (CFD) and compares the performance characteristics at the mentioned two points. Although the compressor is expected to provide the required specifications at the design point, it is known that it is important for the design to deliver the required parameters at the off-design point also as it will not operate at the design point always. It was observed that the obtained mass flow rate, pressure ratio, and efficiency values are within the limits of the design specifications for the design and off-design points. Despite having different design inputs for the mentioned two points, they reveal similar flow characteristics in the general frame.Keywords: centrifugal compressor, computational fluid dynamics, design point, off-design point
Procedia PDF Downloads 1453077 Fault Diagnosis of Squirrel-Cage Induction Motor by a Neural Network Multi-Models
Authors: Yahia. Kourd, N. Guersi D. Lefebvre
Abstract:
In this paper we propose to study the faults diagnosis in squirrel-cage induction motor using MLP neural networks. We use neural healthy and faulty models of the behavior in order to detect and isolate some faults in machine. In the first part of this work, we have created a neural model for the healthy state using Matlab and a motor located in LGEB by acquirins data inputs and outputs of this engine. Then we detected the faults in the machine by residual generation. These residuals are not sufficient to isolate the existing faults. For this reason, we proposed additive neural networks to represent the faulty behaviors. From the analysis of these residuals and the choice of a threshold we propose a method capable of performing the detection and diagnosis of some faults in asynchronous machines with squirrel cage rotor.Keywords: faults diagnosis, neural networks, multi-models, squirrel-cage induction motor
Procedia PDF Downloads 6413076 The Impact of Distributed Epistemologies on Software Engineering
Authors: Thomas Smith
Abstract:
Many hackers worldwide would agree that, had it not been for linear-time theory, the refinement of Byzantine fault tolerance might never have occurred. After years of significant research into extreme programming, we validate the refinement of simulated annealing. Maw, our new framework for unstable theory, is the solution to all of these issues.Keywords: distributed, software engineering, DNS, DHCP
Procedia PDF Downloads 3573075 Two-Phase Sampling for Estimating a Finite Population Total in Presence of Missing Values
Authors: Daniel Fundi Murithi
Abstract:
Missing data is a real bane in many surveys. To overcome the problems caused by missing data, partial deletion, and single imputation methods, among others, have been proposed. However, problems such as discarding usable data and inaccuracy in reproducing known population parameters and standard errors are associated with them. For regression and stochastic imputation, it is assumed that there is a variable with complete cases to be used as a predictor in estimating missing values in the other variable, and the relationship between the two variables is linear, which might not be realistic in practice. In this project, we estimate population total in presence of missing values in two-phase sampling. Instead of regression or stochastic models, non-parametric model based regression model is used in imputing missing values. Empirical study showed that nonparametric model-based regression imputation is better in reproducing variance of population total estimate obtained when there were no missing values compared to mean, median, regression, and stochastic imputation methods. Although regression and stochastic imputation were better than nonparametric model-based imputation in reproducing population total estimates obtained when there were no missing values in one of the sample sizes considered, nonparametric model-based imputation may be used when the relationship between outcome and predictor variables is not linear.Keywords: finite population total, missing data, model-based imputation, two-phase sampling
Procedia PDF Downloads 1323074 Experiments on Weakly-Supervised Learning on Imperfect Data
Authors: Yan Cheng, Yijun Shao, James Rudolph, Charlene R. Weir, Beth Sahlmann, Qing Zeng-Treitler
Abstract:
Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning.Keywords: weakly-supervised learning, support vector machine, prediction, delirium, simulation
Procedia PDF Downloads 2003073 An Overbooking Model for Car Rental Service with Different Types of Cars
Authors: Naragain Phumchusri, Kittitach Pongpairoj
Abstract:
Overbooking is a very useful revenue management technique that could help reduce costs caused by either undersales or oversales. In this paper, we propose an overbooking model for two types of cars that can minimize the total cost for car rental service. With two types of cars, there is an upgrade possibility for lower type to upper type. This makes the model more complex than one type of cars scenario. We have found that convexity can be proved in this case. Sensitivity analysis of the parameters is conducted to observe the effects of relevant parameters on the optimal solution. Model simplification is proposed using multiple linear regression analysis, which can help estimate the optimal overbooking level using appropriate independent variables. The results show that the overbooking level from multiple linear regression model is relatively close to the optimal solution (with the adjusted R-squared value of at least 72.8%). To evaluate the performance of the proposed model, the total cost was compared with the case where the decision maker uses a naïve method for the overbooking level. It was found that the total cost from optimal solution is only 0.5 to 1 percent (on average) lower than the cost from regression model, while it is approximately 67% lower than the cost obtained by the naïve method. It indicates that our proposed simplification method using regression analysis can effectively perform in estimating the overbooking level.Keywords: overbooking, car rental industry, revenue management, stochastic model
Procedia PDF Downloads 1733072 FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures
Authors: A. Zaidi, F. Khelifi, R. Masmoudi, M. Bouhicha
Abstract:
5 In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.Keywords: concrete beam, FRP bars, spacing effect, thermal deformation
Procedia PDF Downloads 2033071 Inclined Convective Instability in a Porous Layer Saturated with Non-Newtonian Fluid
Authors: Rashmi Dubey
Abstract:
The study aims at investigating the onset of thermal convection in an inclined porous layer saturated with a non-Newtonian fluid. The layer is infinitely extended and has a finite width confined between two boundaries with constant pressure conditions, where the lower one is maintained at a higher temperature. Over the years, this area of research has attracted many scientists and researchers, for it has a plethora of applications in the fields of sciences and engineering, such as in civil engineering, geothermal sites, petroleum industries, etc.Considering the possibilities in a practical scenario, an inclined porous layer is considered, which can be used to develop a generalized model applicable to any inclination. Using the isobaric boundaries, the hydrodynamic boundary conditions are derived for the power-law model and are used to obtain the basic state flow. The convection in the basic state flow is driven by the thermal buoyancy in the flow system and is carried away further due to hydrodynamic boundaries. A linear stability analysis followed by a normal-mode analysis is done to investigate the onset of convection in the buoyancy-driven flow. The analysis shows that the convective instability is always initiated by the non-traveling modes for the Newtonian fluid, but prevails in the form of oscillatory modes, for up to a certain inclination of the porous layer. However, different behavior is observed for the dilatant and pseudoplastic fluids.Keywords: thermal convection, linear stability, porous media flow, Inclined porous layer
Procedia PDF Downloads 1243070 Patient Reported Outcome Measures Post Implant Based Reconstruction Basildon Hospital
Authors: Danny Fraser, James Zhang
Abstract:
Aim of the study: Our study aims to identify any statistically significant evidence as it relates to PROMs for mastectomy and implant-based reconstruction to guide future surgical management. Method: The demographic, pre and post-operative treatment and implant characteristics were collected of all patients at Basildon hospital who underwent breast reconstruction from 2017-2023. We used the Breast-Q psychosocial well-being, physical well-being, and satisfaction with breasts scales. An Independent t-test was conducted for each group, and linear regression of age and implant size. Results: 69 patients were contacted, and 39 PROMs returned. The mean age of patients was 57.6. 40% had smoked before, and 40.8% had BMI>30. 29 had pre-pectoral placement, and 40 had subpectoral placement. 17 had smooth implants, and 52 textured. Sub pectoral placement was associated with higher (75.7 vs. 61.9 p=0.046) psychosocial scores than pre pectoral, and textured implants were associated with a lower physical score than the smooth surface (34.7 VS 50.2 P=0.046). On linear regression, age was positively associated (p=0.007) with psychosocial score. Conclusion: We present a large cohort of patients who underwent breast reconstruction. Understanding the PROMs of these procedures can guide clinicians, patients and policy makers to be more informed of the course of rehabilitation of these operations. Significance: We have found that from a patient perspective subpectoral implant placement was associated with a statistically significant improvement in psychosocial scores.Keywords: breast surgery, mastectomy, breast implants, oncology
Procedia PDF Downloads 613069 Deconstructing Local Area Networks Using MaatPeace
Authors: Gerald Todd
Abstract:
Recent advances in random epistemologies and ubiquitous theory have paved the way for web services. Given the current status of linear-time communication, cyberinformaticians compellingly desire the exploration of link-level acknowledgements. In order to realize this purpose, we concentrate our efforts on disconfirming that DHTs and model checking are mostly incompatible.Keywords: LAN, cyberinformatics, model checking, communication
Procedia PDF Downloads 4033068 Austenite Transformation in Duplex Stainless Steels under Fast Cooling Rates
Authors: L. O. Luengas, E. V. Morales, L. F. G. De Souza, I. S. Bott
Abstract:
Duplex Stainless Steels are well known for its good mechanical properties, and corrosion resistance. However, when submitted to heating, these features can be lost since the good properties are strongly dependent on the austenite-ferrite phase ratio which has to be approximately 1:1 to keep the phase balance. In a welded joint, the transformation kinetics at the heat affected zone (HAZ) is a function of the cooling rates applied which in turn are dependent on the heat input. The HAZ is usually ferritized at these temperatures, and it has been argued that small variations of the chemical composition can play a role in the solid state transformation sequence of ferrite to austenite during cooling. The δ → γ transformation has been reported to be massive and diffusionless due to the fast cooling rate, but it is also considered a diffusion controlled transformation. The aim of this work is to evaluate the effect of different heat inputs on the HAZ of two duplex stainless steels UNS S32304 and S32750, obtained by physical simulation.Keywords: duplex stainless steels, HAZ, microstructural characterization, physical simulation
Procedia PDF Downloads 2793067 Simplified Linear Regression Model to Quantify the Thermal Resilience of Office Buildings in Three Different Power Outage Day Times
Authors: Nagham Ismail, Djamel Ouahrani
Abstract:
Thermal resilience in the built environment reflects the building's capacity to adapt to extreme climate changes. In hot climates, power outages in office buildings pose risks to the health and productivity of workers. Therefore, it is of interest to quantify the thermal resilience of office buildings by developing a user-friendly simplified model. This simplified model begins with creating an assessment metric of thermal resilience that measures the duration between the power outage and the point at which the thermal habitability condition is compromised, considering different power interruption times (morning, noon, and afternoon). In this context, energy simulations of an office building are conducted for Qatar's summer weather by changing different parameters that are related to the (i) wall characteristics, (ii) glazing characteristics, (iii) load, (iv) orientation and (v) air leakage. The simulation results are processed using SPSS to derive linear regression equations, aiding stakeholders in evaluating the performance of commercial buildings during different power interruption times. The findings reveal the significant influence of glazing characteristics on thermal resilience, with the morning power outage scenario posing the most detrimental impact in terms of the shortest duration before compromising thermal resilience.Keywords: thermal resilience, thermal envelope, energy modeling, building simulation, thermal comfort, power disruption, extreme weather
Procedia PDF Downloads 783066 Adaptive Dehazing Using Fusion Strategy
Authors: M. Ramesh Kanthan, S. Naga Nandini Sujatha
Abstract:
The goal of haze removal algorithms is to enhance and recover details of scene from foggy image. In enhancement the proposed method focus into two main categories: (i) image enhancement based on Adaptive contrast Histogram equalization, and (ii) image edge strengthened Gradient model. Many circumstances accurate haze removal algorithms are needed. The de-fog feature works through a complex algorithm which first determines the fog destiny of the scene, then analyses the obscured image before applying contrast and sharpness adjustments to the video in real-time to produce image the fusion strategy is driven by the intrinsic properties of the original image and is highly dependent on the choice of the inputs and the weights. Then the output haze free image has reconstructed using fusion methodology. In order to increase the accuracy, interpolation method has used in the output reconstruction. A promising retrieval performance is achieved especially in particular examples.Keywords: single image, fusion, dehazing, multi-scale fusion, per-pixel, weight map
Procedia PDF Downloads 4653065 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition
Authors: J. K. Adedeji, S. T. Ijatuyi
Abstract:
The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=
Keywords: gravitational resistance, neural network, non-linear, pattern recognition
Procedia PDF Downloads 2133064 Seasonal Variability of Picoeukaryotes Community Structure Under Coastal Environmental Disturbances
Authors: Benjamin Glasner, Carlos Henriquez, Fernando Alfaro, Nicole Trefault, Santiago Andrade, Rodrigo De La Iglesia
Abstract:
A central question in ecology refers to the relative importance that local-scale variables have over community composition, when compared with regional-scale variables. In coastal environments, strong seasonal abiotic influence dominates these systems, weakening the impact of other parameters like micronutrients. After the industrial revolution, micronutrients like trace metals have increased in ocean as pollutants, with strong effects upon biotic entities and biological processes in coastal regions. Coastal picoplankton communities had been characterized as a cyanobacterial dominated fraction, but in recent years the eukaryotic component of this size fraction has gained relevance due to their high influence in carbon cycle, although, diversity patterns and responses to disturbances are poorly understood. South Pacific upwelling coastal environments represent an excellent model to study seasonal changes due to a strong influence in the availability of macro- and micronutrients between seasons. In addition, some well constrained coastal bays of this region have been subjected to strong disturbances due to trace metal inputs. In this study, we aim to compare the influence of seasonality and trace metals concentrations, on the community structure of planktonic picoeukaryotes. To describe seasonal patterns in the study area, satellite data in a 6 years time series and in-situ measurements with a traditional oceanographic approach such as CTDO equipment were performed. In addition, trace metal concentrations were analyzed trough ICP-MS analysis, for the same region. For biological data collection, field campaigns were performed in 2011-2012 and the picoplankton community was described by flow cytometry and taxonomical characterization with next-generation sequencing of ribosomal genes. The relation between the abiotic and biotic components was finally determined by multivariate statistical analysis. Our data show strong seasonal fluctuations in abiotic parameters such as photosynthetic active radiation and superficial sea temperature, with a clear differentiation of seasons. However, trace metal analysis allows identifying strong differentiation within the study area, dividing it into two zones based on trace metals concentration. Biological data indicate that there are no major changes in diversity but a significant fluctuation in evenness and community structure. These changes are related mainly with regional parameters, like temperature, but by analyzing the metal influence in picoplankton community structure, we identify a differential response of some plankton taxa to metal pollution. We propose that some picoeukaryotic plankton groups respond differentially to metal inputs, by changing their nutritional status and/or requirements under disturbances as a derived outcome of toxic effects and tolerance.Keywords: Picoeukaryotes, plankton communities, trace metals, seasonal patterns
Procedia PDF Downloads 1743063 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding
Authors: Emad A. Mohammed
Abstract:
Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.Keywords: MMP, gas flooding, artificial intelligence, correlation
Procedia PDF Downloads 1473062 The Effects of Plantation Size and Internal Transport on Energy Efficiency of Biofuel Production
Authors: Olga Orynycz, Andrzej Wasiak
Abstract:
Mathematical model describing energetic efficiency (defined as a ratio of energy obtained in the form of biofuel to the sum of energy inputs necessary to facilitate production) of agricultural subsystem as a function of technological parameters was developed. Production technology is characterized by parameters of machinery, topological characteristics of the plantation as well as transportation routes inside and outside of plantation. The relationship between the energetic efficiency of agricultural and industrial subsystems is also derived. Due to the assumed large area of the individual field, the operations last for several days increasing inter-fields routes because of several returns. The total distance driven outside of the fields is, however, small as compared to the distance driven inside of the fields. This results in small energy consumption during inter-fields transport that, however, causes a substantial decrease of the energetic effectiveness of the whole system.Keywords: biofuel, energetic efficiency, EROEI, mathematical modelling, production system
Procedia PDF Downloads 3463061 Optimizing Availability of Marine Knowledge Repository with Cloud-Based Framework
Authors: Ahmad S. Mohd Noor, Emma A. Sirajudin, Nur F. Mat Zain
Abstract:
Reliability is an important property for knowledge repository system. National Marine Bioinformatics System or NABTICS is a marine knowledge repository portal aimed to provide a baseline for marine biodiversity and a tool for researchers and developers. It is intended to be a large and growing online database and also a metadata system for inputs of research analysis. The trends of present large distributed systems such as Cloud computing are the delivery of computing as a service rather than a product. The goal of this research is to make NABTICS a system of greater availability by integrating it with Cloud based Neighbor Replication and Failure Recovery (NRFR). This can be achieved by implementation of NABTICS into distributed environment. As a result, the user can experience minimum downtime while using the system should the server is having a failure. Consequently the online database application is said to be highly available.Keywords: cloud, availability, distributed system, marine repository, database replication
Procedia PDF Downloads 4723060 Production Planning for Animal Food Industry under Demand Uncertainty
Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut
Abstract:
This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.Keywords: animal food, stochastic linear programming, aggregate planning, production planning, demand uncertainty
Procedia PDF Downloads 3803059 Home Garden: A Food-Based Strategy to Achieve Sustainable Impact on Household Nutrition of Resource-Poor Families in Nepal
Authors: Purushottam P. Khatiwada, Bikash Paudel, Ram B. Rana, Parshuram Biswakarma, Roshan Pudasaini
Abstract:
Nepal has been putting its efforts into securing food and nutrition security for its citizens adopting different models and approaches. Home Garden approach, that integrates vegetables, fruits, small livestock, poultry along with other components like fish, honeybee, mushroom, spices for the promotion of nutritional security of resource-poor and disadvantaged groups was implemented during March 2009 to July 2013 spreading over 16 districts of Nepal covering 115 farmers groups, directly working with 3500 households. Sustained long-term impact of development interventions targeted to the resource-poor and disadvantaged groups has been a recurrent issue for donors, policymakers and practitioners alike. Considering the issue, a post-project evaluation was carried out in a selected project group (Dangibari of Jhapa) after four years of project completion in 2017 in order to evaluate the impact and understand the factors associated with its success. Qualitative information was collected through focus group discussion with group members and associated local institutions. For quantitative information, a quick survey was carried out to the same group members only selecting few indicators. The results are compared with the data obtained from the baseline study conducted by the project in March 2009. The impact of project intervention was evident as compared to the benchmarks established during the baseline, even after four years of project completion. The area under home garden is increased to 729 m² from 386 m² and average food self-sufficiency months increased to 10.22 from 8.11. Seven to eleven fruit species are maintained in the home gardens. An average number of vegetable species grown increased to 15.85 from 9.86. It has resulted in an increase in vegetables self-sufficient month to 8.74 from 4.74 and a huge increase in cash income NPR 6142.8 (USD 59.6) from NPR 385.7 (USD 3.9) from the sale of surplus vegetables. Coaching and mentoring including nutrition sensitization by the project staff at the beginning, inputs and technical support during the project implementation phase and projects effort on the institutional building of disadvantaged farmers were the key drivers of home garden sustainability and expansion. Specifically, package of home garden management trainings provided by the project staff, availability of group funds for buying inputs even after the project, uniting home garden group members in a cooperative, resource leveraging by local institutions through group lobbying, farmers innovations for maintaining home garden diversity and continuous backstopping support by few active members as local resource persons to other members are some additional factors contributing to sustain and/or improve the home garden status by the resource-poor and disadvantaged group.Keywords: food-based nutrition, home garden, resource-poor and disadvantaged group, sustained impact
Procedia PDF Downloads 1463058 The Dynamics of a 3D Vibrating and Rotating Disc Gyroscope
Authors: Getachew T. Sedebo, Stephan V. Joubert, Michael Y. Shatalov
Abstract:
Conventional configuration of the vibratory disc gyroscope is based on in-plane non-axisymmetric vibrations of the disc with a prescribed circumferential wave number. Due to the Bryan's effect, the vibrating pattern of the disc becomes sensitive to the axial component of inertial rotation of the disc. Rotation of the vibrating pattern relative to the disc is proportional to the inertial angular rate and is measured by sensors. In the present paper, the authors investigate a possibility of making a 3D sensor on the basis of both in-plane and bending vibrations of the disc resonator. We derive equations of motion for the disc vibratory gyroscope, where both in-plane and bending vibrations are considered. Hamiltonian variational principle is used in setting up equations of motion and the corresponding boundary conditions. The theory of thin shells with the linear elasticity principles is used in formulating the problem and also the disc is assumed to be isotropic and obeys Hooke's Law. The governing equation for a specific mode is converted to an ODE to determine the eigenfunction. The resulting ODE has exact solution as a linear combination of Bessel and Neumann functions. We demonstrate how to obtain an explicit solution and hence the eigenvalues and corresponding eigenfunctions for annular disc with fixed inner boundary and free outer boundary. Finally, the characteristics equations are obtained and the corresponding eigenvalues are calculated. The eigenvalues are used for the calculation of tuning conditions of the 3D disc vibratory gyroscope.Keywords: Bryan’s effect, bending vibrations, disc gyroscope, eigenfunctions, eigenvalues, tuning conditions
Procedia PDF Downloads 3263057 The Use of Geographic Information System and Spatial Statistic for Analyzing Leukemia in Kuwait for the Period of 2006-2012
Authors: Muhammad G. Almatar, Mohammad A. Alnasrallah
Abstract:
This research focuses on the study of three main issues: 1) The temporal analysis of leukemia for a period of six years (2006-2012), 2) spatial analysis by investigating this phenomenon in the Kuwaiti society spatially in the residential areas within the six governorates, 3) the use of Geographic Information System technology in investigating the hypothesis of the research and its variables using the linear regression, to show the pattern of linear relationship. The study depends on utilizing the map to understand the distribution of blood cancer in Kuwait. Several geodatabases were created for the number of patients and air pollution. Spatial interpolation models were used to generate layers of air pollution in the study area. These geodatabases were tested over the past six years to reach the conclusion: Is there a relationship with significant significance between the two main variables of the study: blood cancer and air pollution? This study is the first to our best knowledge. As far as the researchers know, the distribution of this disease has not been studied geographically at the level of regions in Kuwait within six years and in specific areas as described above. This study investigates the concentration of this type of disease. The study found that there is no relationship of significant value between the two variables studied, and this may be due to the nature of the disease, which are often hereditary. On the other hand, this study has reached a number of suggestions and recommendations that may be useful to decision-makers and interested in the study of leukemia in Kuwait by focusing on the study of genetic diseases, which may be a cause of leukemia rather than air pollution.Keywords: Kuwait, GIS, cancer, geography
Procedia PDF Downloads 1153056 Process of Production of an Artisanal Brewery in a City in the North of the State of Mato Grosso, Brazil
Authors: Ana Paula S. Horodenski, Priscila Pelegrini, Salli Baggenstoss
Abstract:
The brewing industry with artisanal concepts seeks to serve a specific market, with diversified production that has been gaining ground in the national environment, also in the Amazon region. This growth is due to the more demanding consumer, with a diversified taste that wants to try new types of beer, enjoying products with new aromas, flavors, as a differential of what is so widely spread through the big industrial brands. Thus, through qualitative research methods, the study aimed to investigate how is the process of managing the production of a craft brewery in a city in the northern State of Mato Grosso (BRAZIL), providing knowledge of production processes and strategies in the industry. With the efficient use of resources, it is possible to obtain the necessary quality and provide better performance and differentiation of the company, besides analyzing the best management model. The research is descriptive with a qualitative approach through a case study. For the data collection, a semi-structured interview was elaborated, composed of the areas: microbrewery characterization, artisan beer production process, and the company supply chain management. Also, production processes were observed during technical visits. With the study, it was verified that the artisan brewery researched develops preventive maintenance strategies with the inputs, machines, and equipment, so that the quality of the product and the production process are achieved. It was observed that the distance from the supplying centers makes the management of processes and the supply chain be carried out with a longer planning time so that the delivery of the final product is satisfactory. The production process of the brewery is composed of machines and equipment that allows the control and quality of the product, which the manager states that for the productive capacity of the industry and its consumer market, the available equipment meets the demand. This study also contributes to highlight one of the challenges for the development of small breweries in front of the market giants, that is, the legislation, which fits the microbreweries as producers of alcoholic beverages. This makes the micro and small business segment to be taxed as a major, who has advantages in purchasing large batches of raw materials and tax incentives because they are large employers and tax pickers. It was possible to observe that the supply chain management system relies on spreadsheets and notes that are done manually, which could be simplified with a computer program to streamline procedures and reduce risks and failures of the manual process. In relation to the control of waste and effluents affected by the industry is outsourced and meets the needs. Finally, the results showed that the industry uses preventive maintenance as a productive strategy, which allows better conditions for the production and quality of artisanal beer. The quality is directly related to the satisfaction of the final consumer, being prized and performed throughout the production process, with the selection of better inputs, the effectiveness of the production processes and the relationship with the commercial partners.Keywords: artisanal brewery, production management, production processes, supply chain
Procedia PDF Downloads 1213055 Improvement of Transient Voltage Response Using PSS-SVC Coordination Based on ANFIS-Algorithm in a Three-Bus Power System
Authors: I Made Ginarsa, Agung Budi Muljono, I Made Ari Nrartha
Abstract:
Transient voltage response appears in power system operation when an additional loading is forced to load bus of power systems. In this research, improvement of transient voltage response is done by using power system stabilizer-static var compensator (PSS-SVC) based on adaptive neuro-fuzzy inference system (ANFIS)-algorithm. The main function of the PSS is to add damping component to damp rotor oscillation through automatic voltage regulator (AVR) and excitation system. Learning process of the ANFIS is done by using off-line method where data learning that is used to train the ANFIS model are obtained by simulating the PSS-SVC conventional. The ANFIS model uses 7 Gaussian membership functions at two inputs and 49 rules at an output. Then, the ANFIS-PSS and ANFIS-SVC models are applied to power systems. Simulation result shows that the response of transient voltage is improved with settling time at the time of 4.25 s.Keywords: improvement, transient voltage, PSS-SVC, ANFIS, settling time
Procedia PDF Downloads 5803054 Understanding Hydrodynamic in Lake Victoria Basin in a Catchment Scale: A Literature Review
Authors: Seema Paul, John Mango Magero, Prosun Bhattacharya, Zahra Kalantari, Steve W. Lyon
Abstract:
The purpose of this review paper is to develop an understanding of lake hydrodynamics and the potential climate impact on the Lake Victoria (LV) catchment scale. This paper briefly discusses the main problems of lake hydrodynamics and its’ solutions that are related to quality assessment and climate effect. An empirical methodology in modeling and mapping have considered for understanding lake hydrodynamic and visualizing the long-term observational daily, monthly, and yearly mean dataset results by using geographical information system (GIS) and Comsol techniques. Data were obtained for the whole lake and five different meteorological stations, and several geoprocessing tools with spatial analysis are considered to produce results. The linear regression analyses were developed to build climate scenarios and a linear trend on lake rainfall data for a long period. A potential evapotranspiration rate has been described by the MODIS and the Thornthwaite method. The rainfall effect on lake water level observed by Partial Differential Equations (PDE), and water quality has manifested by a few nutrients parameters. The study revealed monthly and yearly rainfall varies with monthly and yearly maximum and minimum temperatures, and the rainfall is high during cool years and the temperature is high associated with below and average rainfall patterns. Rising temperatures are likely to accelerate evapotranspiration rates and more evapotranspiration is likely to lead to more rainfall, drought is more correlated with temperature and cloud is more correlated with rainfall. There is a trend in lake rainfall and long-time rainfall on the lake water surface has affected the lake level. The onshore and offshore have been concentrated by initial literature nutrients data. The study recommended that further studies should consider fully lake bathymetry development with flow analysis and its’ water balance, hydro-meteorological processes, solute transport, wind hydrodynamics, pollution and eutrophication these are crucial for lake water quality, climate impact assessment, and water sustainability.Keywords: climograph, climate scenarios, evapotranspiration, linear trend flow, rainfall event on LV, concentration
Procedia PDF Downloads 993053 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining
Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser
Abstract:
Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract
Procedia PDF Downloads 6593052 Power Iteration Clustering Based on Deflation Technique on Large Scale Graphs
Authors: Taysir Soliman
Abstract:
One of the current popular clustering techniques is Spectral Clustering (SC) because of its advantages over conventional approaches such as hierarchical clustering, k-means, etc. and other techniques as well. However, one of the disadvantages of SC is the time consuming process because it requires computing the eigenvectors. In the past to overcome this disadvantage, a number of attempts have been proposed such as the Power Iteration Clustering (PIC) technique, which is one of versions from SC; some of PIC advantages are: 1) its scalability and efficiency, 2) finding one pseudo-eigenvectors instead of computing eigenvectors, and 3) linear combination of the eigenvectors in linear time. However, its worst disadvantage is an inter-class collision problem because it used only one pseudo-eigenvectors which is not enough. Previous researchers developed Deflation-based Power Iteration Clustering (DPIC) to overcome problems of PIC technique on inter-class collision with the same efficiency of PIC. In this paper, we developed Parallel DPIC (PDPIC) to improve the time and memory complexity which is run on apache spark framework using sparse matrix. To test the performance of PDPIC, we compared it to SC, ESCG, ESCALG algorithms on four small graph benchmark datasets and nine large graph benchmark datasets, where PDPIC proved higher accuracy and better time consuming than other compared algorithms.Keywords: spectral clustering, power iteration clustering, deflation-based power iteration clustering, Apache spark, large graph
Procedia PDF Downloads 190