Search results for: feature selection feature subset selection feature extraction/transformation
6229 Robust Noisy Speech Identification Using Frame Classifier Derived Features
Authors: Punnoose A. K.
Abstract:
This paper presents an approach for identifying noisy speech recording using a multi-layer perception (MLP) trained to predict phonemes from acoustic features. Characteristics of the MLP posteriors are explored for clean speech and noisy speech at the frame level. Appropriate density functions are used to fit the softmax probability of the clean and noisy speech. A function that takes into account the ratio of the softmax probability density of noisy speech to clean speech is formulated. These phoneme independent scoring is weighted using a phoneme-specific weightage to make the scoring more robust. Simple thresholding is used to identify the noisy speech recording from the clean speech recordings. The approach is benchmarked on standard databases, with a focus on precision.Keywords: noisy speech identification, speech pre-processing, noise robustness, feature engineering
Procedia PDF Downloads 1286228 A Comparative Analysis Approach Based on Fuzzy AHP, TOPSIS and PROMETHEE for the Selection Problem of GSCM Solutions
Authors: Omar Boutkhoum, Mohamed Hanine, Abdessadek Bendarag
Abstract:
Sustainable economic growth is nowadays driving firms to extend toward the adoption of many green supply chain management (GSCM) solutions. However, the evaluation and selection of these solutions is a matter of concern that needs very serious decisions, involving complexity owing to the presence of various associated factors. To resolve this problem, a comparative analysis approach based on multi-criteria decision-making methods is proposed for adequate evaluation of sustainable supply chain management solutions. In the present paper, we propose an integrated decision-making model based on FAHP (Fuzzy Analytic Hierarchy Process), TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) and PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) to contribute to a better understanding and development of new sustainable strategies for industrial organizations. Due to the varied importance of the selected criteria, FAHP is used to identify the evaluation criteria and assign the importance weights for each criterion, while TOPSIS and PROMETHEE methods employ these weighted criteria as inputs to evaluate and rank the alternatives. The main objective is to provide a comparative analysis based on TOPSIS and PROMETHEE processes to help make sound and reasoned decisions related to the selection problem of GSCM solution.Keywords: GSCM solutions, multi-criteria analysis, decision support system, TOPSIS, FAHP, PROMETHEE
Procedia PDF Downloads 1646227 Regional Variations in Spouse Selection Patterns of Women in India
Authors: Nivedita Paul
Abstract:
Marriages in India are part and parcel of kinship and cultural practices. Marriage practices differ in India because of cross-regional diversities in social relations which itself has evolved as a result of causal relationship between space and culture. As the place is important for the formation of culture and other social structures, therefore there is regional differentiation in cultural practices and marital customs. Based on the cultural practices some scholars have divided India into North and South kinship regions where women in the North get married early and have lesser autonomy compared to women in the South where marriages are mostly consanguineous. But, the emergence of new modes and alternative strategies such as matrimonial advertisements becoming popular, as well as the increase in women’s literacy and work force participation, matchmaking process in India has changed to some extent. The present study uses data from Indian Human Development Survey II (2011-12) which is a nationally representative multitopic survey that covers 41,554 households. Currently married women of age group 15-49 in their first marriage; whose year of marriage is from the 1970s to 2000s have been taken for the study. Based on spouse selection experiences, the sample of women has been divided into three marriage categories-self, semi and family arranged. Women in self-arranged or love marriage is the sole decision maker in choosing the partner, in semi-arranged marriage or arranged marriage with consent both parents and women together take the decision, whereas in family arranged or arranged marriage without consent only parents take the decision. The main aim of the study is to show the spatial and regional variations in spouse selection decision making. The basis for regionalization has been taken from Irawati Karve’s pioneering work on kinship studies in India called Kinship Organization in India. India is divided into four kinship regions-North, Central, South and East. Since this work was formulated in 1953, some of the states have experienced changes due to modernization; hence these have been regrouped. After mapping spouse selection patterns using GIS software, it is found that the northern region has mostly family arranged marriages (around 64.6%), the central zone shows a mixed pattern since family arranged marriages are less than north but more than south and semi-arranged marriages are more than north but less than south. The southern zone has the dominance of semi-arranged marriages (around 55%) whereas the eastern zone has more of semi-arranged marriage (around 53%) but there is also a high percentage of self-arranged marriage (around 42%). Thus, arranged marriage is the dominant form of marriage in all four regions, but with a difference in the degree of the involvement of the female and her parents and relatives.Keywords: spouse selection, consent, kinship, regional pattern
Procedia PDF Downloads 1696226 ZVZCT PWM Boost DC-DC Converter
Authors: Ismail Aksoy, Haci Bodur, Nihan Altintaş
Abstract:
This paper introduces a boost converter with a new active snubber cell. In this circuit, all of the semiconductor components in the converter softly turns on and turns off with the help of the active snubber cell. Compared to the other converters, the proposed converter has advantages of size, number of components and cost. The main feature of proposed converter is that the extra voltage stresses do not occur on the main switches and main diodes. Also, the current stress on the main switch is acceptable level. Moreover, the proposed converter can operates under light load conditions and wide input line voltage. In this study, the operating principle of the proposed converter is presented and its operation is verified with the Proteus simulation software for a 1 kW and 100 kHz model.Keywords: active snubber cell, boost converter, zero current switching, zero voltage switching
Procedia PDF Downloads 10276225 What Nigeria Education Needs
Authors: Babatunde Joel Todowede
Abstract:
The challenges of nation building and sustainable development have continued to feature prominently in the general reckoning of problems of underdevelopment in the developing countries of the world. Thus, since the attainment of political independence from the British colonial administration in 1960, one of the critical thrusts of central governance in Nigeria has been the particular policy attention of the educational sector. Of course, education is perceived as the logical bridge between the two contrasting worlds of underdevelopment and development, hence, its fundamental importance. The various public policies and practices associated with the Nigerian educational sector are specifically elaborated and critically assessed in this paper. In the final analysis, it is concluded that the educational sector should be better configured and managed in ways that the wider challenges of nation-building and sustainable development are effectively tractable.Keywords: Nigeria education, educational need, educational plans and policies, educational challenges, corrective measures, emerging economy
Procedia PDF Downloads 3776224 A ZVT-ZCT-PWM DC-DC Boost Converter with Direct Power Transfer
Authors: Naim Suleyman Ting, Yakup Sahin, Ismail Aksoy
Abstract:
This paper presents a zero voltage transition-zero current transition (ZVT-ZCT)-PWM DC-DC boost converter with direct power transfer. In this converter, the main switch turns on with ZVT and turns off with ZCT. The auxiliary switch turns on and off with zero current switching (ZCS). The main diode turns on with ZVS and turns off with ZCS. Besides, the additional current or voltage stress does not occur on the main device. The converter has features as simple structure, fast dynamic response and easy control. Also, the proposed converter has direct power transfer feature as well as excellent soft switching techniques. In this study, the operating principle of the converter is presented and its operation is verified for 1 kW and 100 kHz model.Keywords: direct power transfer, boost converter, zero-voltage transition, zero-current transition
Procedia PDF Downloads 8236223 A Self-Adaptive Stimulus Artifacts Removal Approach for Electrical Stimulation Based Muscle Rehabilitation
Authors: Yinjun Tu, Qiang Fang, Glenn I. Matthews, Shuenn-Yuh Lee
Abstract:
This paper reports an efficient and rigorous self-adaptive stimulus artifacts removal approach for a mixed surface EMG (Electromyography) and stimulus signal during muscle stimulation. The recording of EMG and the stimulation of muscles were performing simultaneously. It is difficult to generate muscle fatigue feature from the mixed signal, which can be further used in closed loop system. A self-adaptive method is proposed in this paper, the stimulation frequency was calculated and verified firstly. Then, a mask was created based on this stimulation frequency to remove the undesired stimulus. 20 EMG signal recordings were analyzed, and the ANOVA (analysis of variance) approach illustrated that the decreasing trend of median power frequencies was successfully generated from the 'cleaned' EMG signal.Keywords: EMG, FES, stimulus artefacts, self-adaptive
Procedia PDF Downloads 4006222 Implementation of Correlation-Based Data Analysis as a Preliminary Stage for the Prediction of Geometric Dimensions Using Machine Learning in the Forming of Car Seat Rails
Authors: Housein Deli, Loui Al-Shrouf, Hammoud Al Joumaa, Mohieddine Jelali
Abstract:
When forming metallic materials, fluctuations in material properties, process conditions, and wear lead to deviations in the component geometry. Several hundred features sometimes need to be measured, especially in the case of functional and safety-relevant components. These can only be measured offline due to the large number of features and the accuracy requirements. The risk of producing components outside the tolerances is minimized but not eliminated by the statistical evaluation of process capability and control measurements. The inspection intervals are based on the acceptable risk and are at the expense of productivity but remain reactive and, in some cases, considerably delayed. Due to the considerable progress made in the field of condition monitoring and measurement technology, permanently installed sensor systems in combination with machine learning and artificial intelligence, in particular, offer the potential to independently derive forecasts for component geometry and thus eliminate the risk of defective products - actively and preventively. The reliability of forecasts depends on the quality, completeness, and timeliness of the data. Measuring all geometric characteristics is neither sensible nor technically possible. This paper, therefore, uses the example of car seat rail production to discuss the necessary first step of feature selection and reduction by correlation analysis, as otherwise, it would not be possible to forecast components in real-time and inline. Four different car seat rails with an average of 130 features were selected and measured using a coordinate measuring machine (CMM). The run of such measuring programs alone takes up to 20 minutes. In practice, this results in the risk of faulty production of at least 2000 components that have to be sorted or scrapped if the measurement results are negative. Over a period of 2 months, all measurement data (> 200 measurements/ variant) was collected and evaluated using correlation analysis. As part of this study, the number of characteristics to be measured for all 6 car seat rail variants was reduced by over 80%. Specifically, direct correlations for almost 100 characteristics were proven for an average of 125 characteristics for 4 different products. A further 10 features correlate via indirect relationships so that the number of features required for a prediction could be reduced to less than 20. A correlation factor >0.8 was assumed for all correlations.Keywords: long-term SHM, condition monitoring, machine learning, correlation analysis, component prediction, wear prediction, regressions analysis
Procedia PDF Downloads 506221 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System
Authors: Y. Kourd, D. Lefebvre
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis
Procedia PDF Downloads 6286220 Extraction of Essential Oil From Orange Peels
Authors: Aayush Bhisikar, Neha Rajas, Aditya Bhingare, Samarth Bhandare, Amruta Amrurkar
Abstract:
Orange peels are currently thrown away as garbage in India after orange fruits' edible components are consumed. However, the nation depends on important essential oils for usage in companies that produce goods, including food, beverages, cosmetics, and medicines. This study was conducted to show how to effectively use it. By using various extraction techniques, orange peel is used in the creation of essential oils. Stream distillation, water distillation, and solvent extraction were the techniques taken into consideration in this paper. Due to its relative prevalence among the extraction techniques, Design Expert 7.0 was used to plan an experimental run for solvent extraction. Oil was examined to ascertain its physical and chemical characteristics after extraction. It was determined from the outcomes that the orange peels.Keywords: orange peels, extraction, essential oil, distillation
Procedia PDF Downloads 886219 Extraction of Essential Oil from Orange Peels
Authors: Neha Rajas, Aayush Bhisikar, Samarth Bhandare, Aditya Bhingare, Amruta Amrutkar
Abstract:
Orange peels are currently thrown away as garbage in India after orange fruits' edible components are consumed. However, the nation depends on important essential oils for usage in companies that produce goods, including food, beverages, cosmetics, and medicines. This study was conducted to show how to effectively use it. By using various extraction techniques, orange peel is used in the creation of essential oils. Stream distillation, water distillation, and solvent extraction were the techniques taken into consideration in this paper. Due to its relative prevalence among the extraction techniques, Design Expert 7.0 was used to plan an experimental run for solvent extraction. Oil was examined to ascertain its physical and chemical characteristics after extraction. It was determined from the outcomes that the orange peels.Keywords: orange peels, extraction, distillation, essential oil
Procedia PDF Downloads 816218 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method
Authors: Mohamad R. Moshtagh, Ahmad Bagheri
Abstract:
Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.Keywords: fault detection, gearbox, machine learning, wiener method
Procedia PDF Downloads 816217 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data
Authors: Huinan Zhang, Wenjie Jiang
Abstract:
Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.Keywords: Artificial intelligence, deep learning, data mining, remote sensing
Procedia PDF Downloads 636216 Human Action Recognition Using Wavelets of Derived Beta Distributions
Authors: Neziha Jaouedi, Noureddine Boujnah, Mohamed Salim Bouhlel
Abstract:
In the framework of human machine interaction systems enhancement, we focus throw this paper on human behavior analysis and action recognition. Human behavior is characterized by actions and reactions duality (movements, psychological modification, verbal and emotional expression). It’s worth noting that many information is hidden behind gesture, sudden motion points trajectories and speeds, many research works reconstructed an information retrieval issues. In our work we will focus on motion extraction, tracking and action recognition using wavelet network approaches. Our contribution uses an analysis of human subtraction by Gaussian Mixture Model (GMM) and body movement through trajectory models of motion constructed from kalman filter. These models allow to remove the noise using the extraction of the main motion features and constitute a stable base to identify the evolutions of human activity. Each modality is used to recognize a human action using wavelets of derived beta distributions approach. The proposed approach has been validated successfully on a subset of KTH and UCF sports database.Keywords: feautures extraction, human action classifier, wavelet neural network, beta wavelet
Procedia PDF Downloads 4116215 Image Processing-Based Maize Disease Detection Using Mobile Application
Authors: Nathenal Thomas
Abstract:
In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot
Procedia PDF Downloads 756214 Personalized Infectious Disease Risk Prediction System: A Knowledge Model
Authors: Retno A. Vinarti, Lucy M. Hederman
Abstract:
This research describes a knowledge model for a system which give personalized alert to users about infectious disease risks in the context of weather, location and time. The knowledge model is based on established epidemiological concepts augmented by information gleaned from infection-related data repositories. The existing disease risk prediction research has more focuses on utilizing raw historical data and yield seasonal patterns of infectious disease risk emergence. This research incorporates both data and epidemiological concepts gathered from Atlas of Human Infectious Disease (AHID) and Centre of Disease Control (CDC) as basic reasoning of infectious disease risk prediction. Using CommonKADS methodology, the disease risk prediction task is an assignment synthetic task, starting from knowledge identification through specification, refinement to implementation. First, knowledge is gathered from AHID primarily from the epidemiology and risk group chapters for each infectious disease. The result of this stage is five major elements (Person, Infectious Disease, Weather, Location and Time) and their properties. At the knowledge specification stage, the initial tree model of each element and detailed relationships are produced. This research also includes a validation step as part of knowledge refinement: on the basis that the best model is formed using the most common features, Frequency-based Selection (FBS) is applied. The portion of the Infectious Disease risk model relating to Person comes out strongest, with Location next, and Weather weaker. For Person attribute, Age is the strongest, Activity and Habits are moderate, and Blood type is weakest. At the Location attribute, General category (e.g. continents, region, country, and island) results much stronger than Specific category (i.e. terrain feature). For Weather attribute, Less Precise category (i.e. season) comes out stronger than Precise category (i.e. exact temperature or humidity interval). However, given that some infectious diseases are significantly more serious than others, a frequency based metric may not be appropriate. Future work will incorporate epidemiological measurements of disease seriousness (e.g. odds ratio, hazard ratio and fatality rate) into the validation metrics. This research is limited to modelling existing knowledge about epidemiology and chain of infection concepts. Further step, verification in knowledge refinement stage, might cause some minor changes on the shape of tree.Keywords: epidemiology, knowledge modelling, infectious disease, prediction, risk
Procedia PDF Downloads 2426213 Regression-Based Approach for Development of a Cuff-Less Non-Intrusive Cardiovascular Health Monitor
Authors: Pranav Gulati, Isha Sharma
Abstract:
Hypertension and hypotension are known to have repercussions on the health of an individual, with hypertension contributing to an increased probability of risk to cardiovascular diseases and hypotension resulting in syncope. This prompts the development of a non-invasive, non-intrusive, continuous and cuff-less blood pressure monitoring system to detect blood pressure variations and to identify individuals with acute and chronic heart ailments, but due to the unavailability of such devices for practical daily use, it becomes difficult to screen and subsequently regulate blood pressure. The complexities which hamper the steady monitoring of blood pressure comprises of the variations in physical characteristics from individual to individual and the postural differences at the site of monitoring. We propose to develop a continuous, comprehensive cardio-analysis tool, based on reflective photoplethysmography (PPG). The proposed device, in the form of an eyewear captures the PPG signal and estimates the systolic and diastolic blood pressure using a sensor positioned near the temporal artery. This system relies on regression models which are based on extraction of key points from a pair of PPG wavelets. The proposed system provides an edge over the existing wearables considering that it allows for uniform contact and pressure with the temporal site, in addition to minimal disturbance by movement. Additionally, the feature extraction algorithms enhance the integrity and quality of the extracted features by reducing unreliable data sets. We tested the system with 12 subjects of which 6 served as the training dataset. For this, we measured the blood pressure using a cuff based BP monitor (Omron HEM-8712) and at the same time recorded the PPG signal from our cardio-analysis tool. The complete test was conducted by using the cuff based blood pressure monitor on the left arm while the PPG signal was acquired from the temporal site on the left side of the head. This acquisition served as the training input for the regression model on the selected features. The other 6 subjects were used to validate the model by conducting the same test on them. Results show that the developed prototype can robustly acquire the PPG signal and can therefore be used to reliably predict blood pressure levels.Keywords: blood pressure, photoplethysmograph, eyewear, physiological monitoring
Procedia PDF Downloads 2796212 Mastering Digitization: A Quality-Adapted Digital Transformation Model
Authors: Franziska Schaefer, Marlene Kuhn, Heiner Otten
Abstract:
In the very near future, digitization will be the main challenge a company has to master to survive in a highly competitive market. Developing the right transformation strategy by considering all relevant aspects determines the success or failure of a company. Especially the digital focus on the customer plays a key role in creating sustainable competitive advantages, also leading to new tasks within the quality management. Therefore, quality management needs to be particularly addressed to support the upcoming digital change. In this paper, we present an analysis of existing digital transformation approaches and derive a transformation strategy from a quality management perspective. We identify and classify different transformation dimensions and assess their relevance to quality management tasks, resulting in a quality-adapted digital transformation model. Furthermore, we introduce applicable and customized quality management methods to support the presented digital transformation tasks. With our developed model we provide a digital transformation guideline from a quality perspective to master future disruptive changes.Keywords: digital transformation, digitization, quality management, strategy
Procedia PDF Downloads 4826211 Performance Evaluation and Comparison between the Empirical Mode Decomposition, Wavelet Analysis, and Singular Spectrum Analysis Applied to the Time Series Analysis in Atmospheric Science
Authors: Olivier Delage, Hassan Bencherif, Alain Bourdier
Abstract:
Signal decomposition approaches represent an important step in time series analysis, providing useful knowledge and insight into the data and underlying dynamics characteristics while also facilitating tasks such as noise removal and feature extraction. As most of observational time series are nonlinear and nonstationary, resulting of several physical processes interaction at different time scales, experimental time series have fluctuations at all time scales and requires the development of specific signal decomposition techniques. Most commonly used techniques are data driven, enabling to obtain well-behaved signal components without making any prior-assumptions on input data. Among the most popular time series decomposition techniques, most cited in the literature, are the empirical mode decomposition and its variants, the empirical wavelet transform and singular spectrum analysis. With increasing popularity and utility of these methods in wide ranging applications, it is imperative to gain a good understanding and insight into the operation of these algorithms. In this work, we describe all of the techniques mentioned above as well as their ability to denoise signals, to capture trends, to identify components corresponding to the physical processes involved in the evolution of the observed system and deduce the dimensionality of the underlying dynamics. Results obtained with all of these methods on experimental total ozone columns and rainfall time series will be discussed and comparedKeywords: denoising, empirical mode decomposition, singular spectrum analysis, time series, underlying dynamics, wavelet analysis
Procedia PDF Downloads 1186210 On Copular Constructions in Yemeni Arabic and the Cartography of Subjects
Authors: Ameen Alahdal
Abstract:
This paper investigates copular constructions in Raimi Yemeni Arabic (RYA). The aim of the paper is actually twofold. First it explores the types of copular constructions in Raimi Yemeni Arabic, a variety of Arabic that has not attracted a lot of attention. In this connection, the paper shows that RYA manifests ‘bare’, verbal and pronominal/PRON copular constructions, just like other varieties of Arabic and indeed other Semitic languages like Hebrew. The sentences below from RYA represent the three constructions, respectively. (1) a. nada Hilwah Nada pretty.3sf ‘Nada is pretty’ b. kan al-banat hina was the-girls here ‘The girls were here c. ali hu-l mudiir Ali he-the manager ‘Ali is the manager’ Interestingly, in addition to these common types of copular constructions, RYA seems to exhibit dual copula sentences, a construction that features both a pronominal copula and a verbal copula. Such a construction is attested neither in Standard Arabic nor in other modern varieties of Arabic such as Lebanese, Moroccan, Egyptian, Jordanian. Remarkably, dual copular sentences do not appear even in other dialects of Yemeni Arabic such as Sanaani, Adeni and Tehami. (2) is an example. (2) maha kan-ih mudarrisah maha was-she teacher.3sf ‘Maha was a teacehr’ Second, the paper considers the cartography of subject positions in copular constructions proposed by Shlonsky and Rizzi (2018). Different copular constructions seem to involve different subject positions (which might eventually correlate with different interpretations – not our concern in this paper). Here, it is argued that in a bare copular sentence, as in (1a), RYA might exploit two criterial subject positions (in Rizzi’s sense), in addition to the canonical Spec,TP position. Under mainstream minimalist assumption, a copular sentence is analyzed as a PredP. Thus, in addition to the PredP-related thematic subject position, a criterial subject position is posited outside of PredP. (3) below represents the cartography of subject positions in a bare copular construction. (3) [……..DP subj PredP DP Pred DP/AP/PP ] In PRON sentences, as exemplified in (1c), another two subject positions are postulated high in the clause, particularly above PolP. (4) illustrates the hierarchy of the subject positions in a PRON copular construction. The subject resides in Spec,SUBJ2P. (4) …DP SUBJ2 …DP SUBJ1 … Pol … DP subj PredP Another related phenomenon in RYA which sets it apart from other languages like Hebrew is that of negative bare copular construction. This construction involves a PRON, which is not found in its affirmative counterpart. PRON, however, is hosted neither by SUBJ20 nor by SUBJ10. Rather, PRON occurs below Neg0 (Pol0 in the hierarchy). This situation raises interesting issues for the hierarchy of subjects in copular constructions as well as to the syntax of the left periphery in general. With regard to what causes the subject to move, there are different potential triggers. For instance, movement of the subject at the base, i.e., out of PredP is triggered by a labeling failure. Other movements of the subject can be driven by a formal feature like EPP, or a criterial feature like [subj].Keywords: Yemeni Arabic, copular constructions, cartography of subjects, labeling, criterial positions
Procedia PDF Downloads 1136209 Towards Logical Inference for the Arabic Question-Answering
Authors: Wided Bakari, Patrice Bellot, Omar Trigui, Mahmoud Neji
Abstract:
This article constitutes an opening to think of the modeling and analysis of Arabic texts in the context of a question-answer system. It is a question of exceeding the traditional approaches focused on morphosyntactic approaches. Furthermore, we present a new approach that analyze a text in order to extract correct answers then transform it to logical predicates. In addition, we would like to represent different levels of information within a text to answer a question and choose an answer among several proposed. To do so, we transform both the question and the text into logical forms. Then, we try to recognize all entailment between them. The results of recognizing the entailment are a set of text sentences that can implicate the user’s question. Our work is now concentrated on an implementation step in order to develop a system of question-answering in Arabic using techniques to recognize textual implications. In this context, the extraction of text features (keywords, named entities, and relationships that link them) is actually considered the first step in our process of text modeling. The second one is the use of techniques of textual implication that relies on the notion of inference and logic representation to extract candidate answers. The last step is the extraction and selection of the desired answer.Keywords: NLP, Arabic language, question-answering, recognition text entailment, logic forms
Procedia PDF Downloads 3436208 Exploring the Importance of Different Product Cues on the Selection for Chocolate from the Consumer Perspective
Authors: Ezeni Brzovska, Durdana Ozretic-Dosen
Abstract:
The purpose of this paper is to deepen the understanding of the product cues that influence purchase decision for a specific product category – chocolate, and to identify demographic differences in the buying behavior. ANOVA was employed for analyzing the significance level for nine product cues, and the survey showed statistically significant differences among different age and gender groups, and between respondents with different levels of education. From the theoretical perspective, the study adds to the existing knowledge by contributing with the research results from the new environment (Southeast Europe, Macedonia), which has been neglected so far. Establishing the level of significance for the product cues that affect buying behavior in the chocolate consumption context might help managers to improve marketing decision-making, and better meet consumer needs through identifying opportunities for packaging innovations and/or personalization toward different target groups.Keywords: chocolate consumption context, chocolate selection, demographic characteristics, product cues
Procedia PDF Downloads 2536207 Supply Chain Risk Management (SCRM): A Simplified Alternative for Implementing SCRM for Small and Medium Enterprises
Authors: Paul W. Murray, Marco Barajas
Abstract:
Recent changes in supply chains, especially globalization and collaboration, have created new risks for enterprises of all sizes. A variety of complex frameworks, often based on enterprise risk management strategies have been presented under the heading of Supply Chain Risk Management (SCRM). The literature on promotes the benefits of a robust SCRM strategy; however, implementing SCRM is difficult and resource demanding for Large Enterprises (LEs), and essentially out of reach for Small and Medium Enterprises (SMEs). This research debunks the idea that SCRM is necessary for all enterprises and instead proposes a simple and effective Vendor Selection Template (VST). Empirical testing and a survey of supply chain practitioners provide a measure of validation to the VST. The resulting VSTis a valuable contribution because is easy to use, provides practical results, and is sufficiently flexible to be universally applied to SMEs.Keywords: multiple regression analysis, supply chain management, risk assessment, vendor selection
Procedia PDF Downloads 4666206 Agents and Causers in the Experiencer-Verb Lexicon
Authors: Margaret Ryan, Linda Cupples, Lyndsey Nickels, Paul Sowman
Abstract:
The current investigation explored the thematic roles of the nouns specified in the lexical entries of experiencer verbs. While prior experimental research assumes experiencer and theme roles for both subject-experiencer (SE) and object-experiencer (OE) verbs, syntactic theorists have posited additional agent and causer roles. Experiment 1 provided evidence for an agent as participants assigned a high degree of intentionality to the logical subject of a subset of SE and OE actives and passives. Experiment 2 provided evidence for a causer as participants assigned high levels of causality to the logical subjects of experiencer sentences generally. However, the presence of an agent, but not a causer, coincided with processing ease. Causality may be an aspect rather than a thematic role. The varying thematic roles amongst experiencer-verb sentences have important implications for stimulus selection because we cannot presume processing is similar across differing sentence subtypes.Keywords: sentence comprehension, lexicon, canonicity, processing, thematic roles, syntax
Procedia PDF Downloads 1246205 Optical Variability of Faint Quasars
Authors: Kassa Endalamaw Rewnu
Abstract:
The variability properties of a quasar sample, spectroscopically complete to magnitude J = 22.0, are investigated on a time baseline of 2 years using three different photometric bands (U, J and F). The original sample was obtained using a combination of different selection criteria: colors, slitless spectroscopy and variability, based on a time baseline of 1 yr. The main goals of this work are two-fold: first, to derive the percentage of variable quasars on a relatively short time baseline; secondly, to search for new quasar candidates missed by the other selection criteria; and, thus, to estimate the completeness of the spectroscopic sample. In order to achieve these goals, we have extracted all the candidate variable objects from a sample of about 1800 stellar or quasi-stellar objects with limiting magnitude J = 22.50 over an area of about 0.50 deg2. We find that > 65% of all the objects selected as possible variables are either confirmed quasars or quasar candidates on the basis of their colors. This percentage increases even further if we exclude from our lists of variable candidates a number of objects equal to that expected on the basis of `contamination' induced by our photometric errors. The percentage of variable quasars in the spectroscopic sample is also high, reaching about 50%. On the basis of these results, we can estimate that the incompleteness of the original spectroscopic sample is < 12%. We conclude that variability analysis of data with small photometric errors can be successfully used as an efficient and independent (or at least auxiliary) selection method in quasar surveys, even when the time baseline is relatively short. Finally, when corrected for the different intrinsic time lags corresponding to a fixed observed time baseline, our data do not show a statistically significant correlation between variability and either absolute luminosity or redshift.Keywords: nuclear activity, galaxies, active quasars, variability
Procedia PDF Downloads 836204 Implementation and Validation of Therapeutic Tourism Products for Families With Children With Autism Spectrum Disorder in Azores Islands: “Azores All in Blue” Project
Authors: Ana Rita Conde, Pilar Mota, Tânia Botelho, Suzana Caldeira, Isabel Rego, Jessica Pacheco, Osvaldo Silva, Áurea Sousa
Abstract:
Tourism promotes well-being and health to children with ASD and their families. Literature indicates the need to provide tourist activities that integrate the therapeutic component, to promote the development and well-being of children with ASD. The study aims to implement tourist offers in Azores that integrate the therapeutic feature, assess their suitability and impact on the well-being and health of the child and caregivers. Using a mixed methodology, the study integrates families that experience and evaluate the impact of tourism products developed specifically for them.Keywords: austism spectrum disorder, children, therapeutic tourism activities, well-being, health, inclusive tourism
Procedia PDF Downloads 1476203 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: microRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM
Procedia PDF Downloads 4026202 Manufacturing Process and Cost Estimation through Process Detection by Applying Image Processing Technique
Authors: Chalakorn Chitsaart, Suchada Rianmora, Noppawat Vongpiyasatit
Abstract:
In order to reduce the transportation time and cost for direct interface between customer and manufacturer, the image processing technique has been introduced in this research where designing part and defining manufacturing process can be performed quickly. A3D virtual model is directly generated from a series of multi-view images of an object, and it can be modified, analyzed, and improved the structure, or function for the further implementations, such as computer-aided manufacturing (CAM). To estimate and quote the production cost, the user-friendly platform has been developed in this research where the appropriate manufacturing parameters and process detections have been identified and planned by CAM simulation.Keywords: image processing technique, feature detections, surface registrations, capturing multi-view images, Production costs and Manufacturing processes
Procedia PDF Downloads 2516201 An Adaptive Oversampling Technique for Imbalanced Datasets
Authors: Shaukat Ali Shahee, Usha Ananthakumar
Abstract:
A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling
Procedia PDF Downloads 4186200 A Framework for Evaluating the QoS and Cost of Web Services Based on Its Functional Performance
Authors: M. Mohemmed Sha, T. Manesh, A. Ahmed Mohamed Mustaq
Abstract:
In this corporate world, the technology of Web services has grown rapidly and its significance for the development of web based applications gradually rises over time. The success of Business to Business integration rely on finding novel partners and their services in a global business environment. But the selection of the most suitable Web service from the list of services with the identical functionality is more vital. The satisfaction level of the customer and the provider’s reputation of the Web service are primarily depending on the range it reaches the customer’s requirements. In most cases the customer of the Web service feels that he is spending for the service which is undelivered. This is because the customer always thinks that the real functionality of the web service is not reached. This will lead to change of the service frequently. In this paper, a framework is proposed to evaluate the Quality of Service (QoS) and its cost that makes the optimal correlation between each other. Also this research work proposes some management decision against the functional deviancy of the web service that are guaranteed at time of selection.Keywords: web service, service level agreement, quality of a service, cost of a service, QoS, CoS, SOA, WSLA, WsRF
Procedia PDF Downloads 420