Search results for: corporate credit rating prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3961

Search results for: corporate credit rating prediction

3061 Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco

Authors: S. Benchelha, H. C. Aoudjehane, M. Hakdaoui, R. El Hamdouni, H. Mansouri, T. Benchelha, M. Layelmam, M. Alaoui

Abstract:

The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).

Keywords: landslide susceptibility mapping, regression logistic, multivariate adaptive regression spline, Oudka, Taounate

Procedia PDF Downloads 188
3060 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 218
3059 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: crime prediction, machine learning, public safety, smart city

Procedia PDF Downloads 111
3058 An Appraisal of Mining Sector Corporate Social Responsibility Processes in Mhondoro-Ngezi, Zimbabwe

Authors: A. T. Muruviwa

Abstract:

To-date, the discourse on corporate social responsibility (CSR) has primarily centred on the actions and inactions of corporations; hence, the dominant focus on CSR has been on impacts and outcomes. The obscuring effect of this approach has, arguably, resulted in the emergence of what may be termed a ‘Northern’ agenda on CSR theory and practice, in contrast to an emergency ‘Southern’ discourse, which appears to highlight the crucial issues of poverty reduction, infrastructure development and the broader questions of social provisioning and community empowerment. Some scholars have explicitly called for a CSR research agenda that focuses on the 'reciprocal duties' of the stakeholders in the CSR process rather than fixate on the actions and inactions of business. It is against the backdrop of these contestations that this study assesses the reciprocal relationships amongst CSR stakeholders in a Zimbabwean platinum mining town, with a view to demonstrating how such relationships – and the expectations and obligations embedded in them – impact on the success or failure of CSR initiatives. The existence of mutual relations between the corporation and its stakeholders signifies the successes of CSR processes and hence the outcomes. The company is Zimplats Mining Company; the community is Mhondoro-Ngezi, and the stakeholders are clearly identified in the study. The study utilised a triangulated design, with data collected using a mini survey, focus groups, in-depth interview and observation. The key findings are that the CSR process in the study community is dominated by the mining company. Despite the existence of a CSR framework that recognises government, local leaders and community members as legitimate stakeholders, there is little evidence of concrete contributions made by these stakeholders towards the realisation of CSR objectives. As a result, the community development process – in so far as CSR is concerned – fails to address the developmental concerns of the various stakeholders. On the basis of these findings, the study concludes that there is a crisis of reciprocity in the CSR process in Mhondoro-Ngezi, and that a situation where the conceptualisation of local development needs and the deployment of specific development tools seems to be driven by one stakeholder almost to the exclusion of all others, can only present contradictory development outcomes. The significance of this study is that it allows for the development of a more nuanced and robust CSR discourse. Rather than focusing on the corporate and stakeholder perspectives and outcomes of CSR initiatives, this study examines the CSR- development nexus by interrogating the idea of reciprocal responsibility as a sin qua non to CSR success. This analytical strategy and focus allow the researcher to gain a clear understanding of how stakeholder relationships and duties influence CSR processes and also the overall outcome. At a more practical level, the findings of the study should help to shape the policy on corporate community relationships with a view to enhancing the role of mining in development.

Keywords: community development, processes, reciprocity, stakeholders

Procedia PDF Downloads 354
3057 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms

Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,

Abstract:

Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.

Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model

Procedia PDF Downloads 282
3056 Rainfall-Runoff Forecasting Utilizing Genetic Programming Technique

Authors: Ahmed Najah Ahmed Al-Mahfoodh, Ali Najah Ahmed Al-Mahfoodh, Ahmed Al-Shafie

Abstract:

In this study, genetic programming (GP) technique has been investigated in prediction of set of rainfall-runoff data. To assess the effect of input parameters on the model, the sensitivity analysis was adopted. To evaluate the performance of the proposed model, three statistical indexes were used, namely; Correlation Coefficient (CC), Mean Square Error (MSE) and Correlation of Efficiency (CE). The principle aim of this study is to develop a computationally efficient and robust approach for predict of rainfall-runoff which could reduce the cost and labour for measuring these parameters. This research concentrates on the Johor River in Johor State, Malaysia.

Keywords: genetic programming, prediction, rainfall-runoff, Malaysia

Procedia PDF Downloads 482
3055 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor

Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes

Abstract:

In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.

Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data

Procedia PDF Downloads 147
3054 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome

Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder

Abstract:

Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.

Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps

Procedia PDF Downloads 226
3053 Corporate Social Responsibility (CSR) and Energy Efficiency: Empirical Evidence from the Manufacturing Sector of India

Authors: Baikunthanath Sahoo, Santosh Kumar Sahu, Krishna Malakar

Abstract:

With the essence of global environmental sustainability and green business management, the wind of business research moved towards Corporate Social Responsibility. In addition to international and national treaties, businesses have also started realising environmental protection and energy efficiency through CSR as part of business strategy in response to climate change. Considering the ambitious emission reduction target and rapid economic development of India, this study is an attempt to explore the effect of CSR on the energy efficiency management of manufacturing firms in India. By using firm-level data, the panel fixed effect model shows that the CSR dummy variable is negatively influencing the energy intensity or technically, they are energy efficient. The result demonstrates that in the presence of CSR, all the production economic variables are significant. The result also shows that doing environmental expenditure does not improve energy efficiency might be because very few firms are motivated to do such expenditure and also not common to all sectors. The interactive effect model result conforms that without considering CSR dummy as an intervening variable only Manufacturers of Chemical and Chemical products, Manufacturers of Pharmaceutical, medical chemical, and botanical products firms energy intensity low but after considering CSR in their business practices all six sub-sector firms become energy efficient. The empirical result also validate that firms are continuously engaged in CSR activities they are highly energy efficient. It is an important motivational factor for firms to become economically and environmentally sustainable in the corporate world. This analysis would help business practitioners to know how to manage today’s profitability and tomorrow’s sustainability to achieve a comparative advantage in the emerging market economy. The paper concludes that reducing energy consumption as part of their social responsibility to care for the environment, will need collaborative efforts of business society and policy bodies.

Keywords: CSR, Energy Efficiency, Indian manufacturing Sector, Business strategy

Procedia PDF Downloads 82
3052 The Effects of Music Therapy on Positive Negative Syndrome Scale, Cognitive Function, and Quality of Life in Female Schizophrenic Patients

Authors: Elmeida Effendy, Mustafa M. Amin, Nauli Aulia Lubis, P. J. Sirait

Abstract:

Music therapy may have an effect on mental illnesses. This is a comparative, quasi-experimental study to examine the effect of music therapy added to standard care on Positive Negative Syndrome Scale, Cognitive Function and Quality of Life in female schizophrenic patients. 50 schizophrenic participants who were diagnosed with semistructured MINI ICD-X, were assigned into two groups received pharmacotherapy. Participants were assigned into each group of therapy by using matched allocation method. Music therapy added on to the first group. They received music therapy, using Mozart Sonata four times a week, over a period of six week. Positive and negative symptoms were measured by using Positive and Negative Syndrome Scale (PANSS). Cognitive function were measured by using Mini Mental State Examination (MMSE) and Montreal Cognitive Assessment (MOCA). All rating scale were administrated by certified skill residents every week after music therapy session. The participants who were received pharmaco-and-music therapy significantly showed greater response than who received pharmacotherapy only. The mean difference of response were -6,6164 (p=0,001) for PANNS, 2,911 (p=0,004) for MMSE, 3,618 (p=0,001) for MOCA, 4,599 (p=0,001) for SF-36. Music therapy have beneficial effects on PANSS, Cognitive Function and Quality of Life in schizophrenic patients.

Keywords: music therapy, rating scale, schizophrenia, symptoms

Procedia PDF Downloads 347
3051 An International Comparison of Global Financial Centers: Major Competitive Strategies

Authors: I. Hakki Eraslan, Birol Ozturk, Istemi Comlekci

Abstract:

This paper begins by defining what is meant by “globalization” in finance and by identifying the sources of value-added in the internationally-competitive financial services sector origination, trading and distribution of debt and equity capital market instruments and their derivatives, foreign exchange trading and securities brokerage, management of market risk and credit risk, loan syndication and structured bank financings, corporate finance and advisory services, and asset management. These activities are considered in terms of a “value-chain” one that ultimately gives rise to the real economic gains attributable to financial-center operations. The research presents available evidence as to where the relevant value-added activities usually take place. It then examines the “centrifugal” and “centripetal” forces that determine the concentration or dispersal of value-added activity in financial intermediation, both interregionally and internationally. Next, the research assesses the factors, which appear to underlie the locational pattern of international financial centers that has evolved. In preparing this paper, also it is examined the current position and the main opportunities and challenges facing world major financial services sector, and attempted to lay out a potential vision and strategies. It is conducted extensive research, including many internal research materials and publications. It is also engaged closely with the academia, industry practitioners and regulators, and consulted market experts from major world financial centers. More than 60 in‐depth consultative sessions were conducted in the past two years which provided insightful suggestions and innovative ideas on how to further financial industry’s position as an international financial centre. The paper concludes with the outlook for the future pattern of financial centers in the global competitive environment. The ideas and advice gathered are condensed into this paper that recommends to the strategic decision leaders a vision and a strategy for financial services sector to move forward amid a highly competitive environment.

Keywords: financial centers, competitiveness, financial services industry, economics

Procedia PDF Downloads 403
3050 The Governance of Islamic Banks in Morocco: Meaning, Strategic Vision and Purposes Attributed to the Governance System

Authors: Lalla Nezha Lakmiti, Abdelkahar Zahid

Abstract:

Due to the setbacks on the international scene and the wave of cacophonic financial scandals affecting large international groups, the new Islamic finance industry is not immune despite its initial resistance. The purpose of this paper is to understand and analyze the meaning of the Corporate Governance (CG) concept in Moroccan Islamic banking systems with specific reference to their institutions. The research objective is to identify also the path taken and adopted by these banks recently set up in Morocco. The foundation is rooted in shari'a, in particular, no stakeholder (the shareholding approach) must be harmed, and the ethical value is reflected into these parties’ behavior. We chose a qualitative method, semi-structured interviews where six managers provided answers about their banking systems. Since these respondents held a senior position (directors) within their organizations, it is felt that they are well placed and have the necessary knowledge to provide us with information to answer the questions asked. The results identified the orientation of participating banks and assessing how governance works, while determining which party is fovoured: shareholders, stakeholders or both. This study discusses the favorable condition to the harmonization of the regulations and therefore a better integration between Islamic finance and conventional ones in the economic context of Morocco.

Keywords: corporate governance, Islamic Banks, stakeholders, shareholders

Procedia PDF Downloads 110
3049 The Combination of the Mel Frequency Cepstral Coefficients, Perceptual Linear Prediction, Jitter and Shimmer Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech

Authors: Brahim Fares Zaidi

Abstract:

Our work aims to improve our Automatic Recognition System for Dysarthria Speech based on the Hidden Models of Markov and the Hidden Markov Model Toolkit to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients and Perceptual Linear Prediction and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.

Keywords: ARSDS, HTK, HMM, MFCC, PLP

Procedia PDF Downloads 108
3048 Determinants of Rural Household Effective Demand for Biogas Technology in Southern Ethiopia

Authors: Mesfin Nigussie

Abstract:

The objectives of the study were to identify factors affecting rural households’ willingness to install biogas plant and amount willingness to pay in order to examine determinants of effective demand for biogas technology. A multistage sampling technique was employed to select 120 respondents for the study. The binary probit regression model was employed to identify factors affecting rural households’ decision to install biogas technology. The probit model result revealed that household size, total household income, access to extension services related to biogas, access to credit service, proximity to water sources, perception of households about the quality of biogas, perception index about attributes of biogas, perception of households about installation cost of biogas and availability of energy source were statistically significant in determining household’s decision to install biogas. Tobit model was employed to examine determinants of rural household’s amount of willingness to pay. Based on the model result, age of the household head, total annual income of the household, access to extension service and availability of other energy source were significant variables that influence willingness to pay. Providing due considerations for extension services, availability of credit or subsidy, improving the quality of biogas technology design and minimizing cost of installation by using locally available materials are the main suggestions of this research that help to create effective demand for biogas technology.

Keywords: biogas technology, effective demand, probit model, tobit model, willingnes to pay

Procedia PDF Downloads 140
3047 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 143
3046 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome

Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler

Abstract:

Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.

Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model

Procedia PDF Downloads 153
3045 Prediction of Rotating Machines with Rolling Element Bearings and Its Components Deterioration

Authors: Marimuthu Gurusamy

Abstract:

In vibration analysis (with accelerometers) of rotating machines with rolling element bearing, the customers are interested to know the failure of the machine well in advance to plan the spare inventory and maintenance. But in real world most of the machines fails before the prediction of vibration analyst or Expert analysis software. Presently the prediction of failure is based on ISO 10816 vibration limits only. But this is not enough to monitor the failure of machines well in advance. Because more than 50% of the machines will fail even the vibration readings are within acceptable zone as per ISO 10816.Hence it requires further detail analysis and different techniques to predict the failure well in advance. In vibration Analysis, the velocity spectrum is used to analyse the root cause of the mechanical problems like unbalance, misalignment and looseness etc. The envelope spectrum are used to analyse the bearing frequency components, hence the failure in inner race, outer race and rolling elements are identified. But so far there is no correlation made between these two concepts. The author used both velocity spectrum and Envelope spectrum to analyse the machine behaviour and bearing condition to correlated the changes in dynamic load (by unbalance, misalignment and looseness etc.) and effect of impact on the bearing. Hence we could able to predict the expected life of the machine and bearings in the rotating equipment (with rolling element bearings). Also we used process parameters like temperature, flow and pressure to correlate with flow induced vibration and load variations, when abnormal vibration occurs due to changes in process parameters. Hence by correlation of velocity spectrum, envelope spectrum and process data with 20 years of experience in vibration analysis, the author could able to predict the rotating Equipment and its component’s deterioration and expected duration for maintenance.

Keywords: vibration analysis, velocity spectrum, envelope spectrum, prediction of deterioration

Procedia PDF Downloads 451
3044 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model

Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David

Abstract:

The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.

Keywords: national development, granite, profitability assessment, ANN models

Procedia PDF Downloads 101
3043 The Role of Middle Managers SBU's in Context of Change: Sense-Making Approach

Authors: Hala Alioua, Alberic Tellier

Abstract:

This paper is designed to spotlight the research on corporate strategic planning, by emphasizing the role of middle manager of SBU’s and related issues such as the context of vision change. Previous research on strategic vision has been focused principally at the SME, with relatively limited consideration given to the role of middle managers SBU’s in the context of change. This project of research has been done by using a single case study. We formulated through our immersion for 2.5 years on the ground and by a qualitative method and abduction approach. This entity that we analyze is a subsidiary of multinational companies headquartered in Germany, specialized in manufacturing automotive equipment. The "Delta Company" is a French manufacturing plant that has undergone numerous changes over the past three years. The two major strategic changes that have a significant impact on the Delta plant are the strengths of its core business through « lead plant strategy» in 2011 and the implementation of a new strategic vision in 2014. These consecutive changes impact the purpose of the mission of the middle managers. The plant managers ask the following questions: How the middle managers make sense of the corporate strategic planning imposed by the parent company? How they appropriate the new vision and decline it into actions on the ground? We chose the individual interview technique through open-ended questions as the source of data collection. We first of all carried out an exploratory approach by interviewing 8 members of the Management committee’s decision and 19 heads of services. The first findings and results show that exist a divergence of opinion and interpretations of the corporate strategic planning among organization members and there are difficulties to make sense and interpretations of the signals of the environment. The lead plant strategy enables new projects which insure the workload of Delta Company. Nevertheless, it creates a tension and stress among the middle managers because its provoke lack of resources to the detriment of their main jobs as manufacturer plant. The middle managers does not have a clear vision and they are wondering if the new strategic vision means more autonomy and less support from the group.

Keywords: change, middle managers, vision, sensemaking

Procedia PDF Downloads 401
3042 The Impact of Environmental Corporate Social Responsibility (ECSR) and the Perceived Moral Intensity on the Intention of Ethical Investment

Authors: Chiung-Yao Huang, Yu-Cheng Lin, Chiung-Hui Chen

Abstract:

This study seeks to examine perceived environmental corporate social responsibility (ECSR) with a focus on negative environmental questions, related to intention of ethical investment intention after a environmental failure recovery. An empirical test was employed to test the hypotheses. We manipulated the information on negative ECSR activities of a hypothetical firm in a experimental design with a failure recovery treatment. The company’s negative ECSR recovery was depicted in a positive perspective (depicting a follow-up strong social action), whereas in the negative ECSR treatment it was described in a negative perspective (depicting a follow-up non social action). In both treatments, information about other key characteristics of the focal company were kept constant. Investors’ intentions to invest in the company’s stock were evaluated by multi-item scales. Results indicate that positive ECSR recovery information about a firm enhances investors’ intentions to invest in the company’s stock. In addition, perceived moral intensity has a significant impact on the intention of ethical investment and that perceived moral intensity also serves as a key moderating variable in the relationship between negative ECSR and the intention of ethical investment. Finally, theoretical and managerial implications of the findings are discussed. Practical implications: The results suggest that managers may need to be aware of perceived moral intensity as a key variable in restoring the intention of ethical investment. The results further suggest that perceived moral intensity has a direct, and it also has an moderating influence between ECSR and the intention of ethical investment. Originality/value: In an attempt to deepen the understanding of how investors perceptions of firm environmental CSR are connected with other investor‐related outcomes through ECSR recovery, the present research proposes a comprehensive model which encompasses ECSR and other key relationship constructs after a ECSR failure and recovery.

Keywords: ethical investment, Environmental Corporate Social Responsibility(ECSR), ECSR recovery, moral intensity

Procedia PDF Downloads 350
3041 Oral Grammatical Errors of Arabic as Second Language (ASL) Learners: An Applied Linguistic Approach

Authors: Sadeq Al Yaari, Fayza Al Hammadi, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari, Salah Al Yami

Abstract:

Background: When we further take Arabic grammatical issues into account in accordance with applied linguistic investigations on Arabic as Second Language (ASL) learners, a fundamental issue arises at this point as to the production of speech in Arabic: Oral grammatical errors committed by ASL learners. Aims: Using manual rating as well as computational analytic methodology to test a corpus of recorded speech by Second Language (ASL) learners of Arabic, this study aims to find the areas of difficulties in learning Arabic grammar. More specifically, it examines how and why ASL learners make grammatical errors in their oral speech. Methods: Tape recordings of four (4) Arabic as Second Language (ASL) learners who ranged in age from 23 to 30 were naturally collected. All participants have completed an intensive Arabic program (two years) and 20 minute-speech was recorded for each participant. Having the collected corpus, the next procedure was to rate them against Arabic standard grammar. The rating includes four processes: Description, analysis and assessment. Conclusions: Outcomes made from the issues addressed in this paper can be summarized in the fact that ASL learners face many grammatical difficulties when studying Arabic word order, tenses and aspects, function words, subject-verb agreement, verb form, active-passive voice, global and local errors, processes-based errors including addition, omission, substitution or a combination of any of them.

Keywords: grammar, error, oral, Arabic, second language, learner, applied linguistics.

Procedia PDF Downloads 45
3040 Commercial Law Between Custom and Islamic Law

Authors: Mohamed Zakareia Ghazy Aly Belal

Abstract:

Commercial law is the set of legal rules that apply to business and regulates the trade of trade. The meaning of this is that the commercial law regulates certain relations only that arises as a result of carrying out certain businesses. which are business, as it regulates the activity of a specific sect, the sect of merchants, and the commercial law as other branches of the law has characteristics that distinguish it from other laws and various, and various sources from which its basis is derived from It is the objective or material source. the historical source, the official source and the interpretative source, and we are limited to official sources and explanatory sources. so what do you see what these sources are, and what is their degree and strength in taking it in commercial disputes. The first topic / characteristics of commercial law. Commercial law has become necessary for the world of trade and economics, which cannot be dispensed with, given the reasons that have been set as legal rules for commercial field. In fact, it is sufficient to refer to the stability and stability of the environment, and in exchange for the movement and the speed in which the commercial environment is in addition to confidence and credit. the characteristic of speed and the characteristic of trust, and credit are the ones that justify the existence of commercial law. Business is fast, while civil business is slow, stable and stability. The person concludes civil transactions in his life only a little. And before doing any civil action. he must have a period of thinking and scrutiny, and the investigation is the person who wants the husband, he must have a period of thinking and scrutiny. as if the person who wants to acquire a house to live with with his family, he must search and investigate Discuss the price before the conclusion of a purchase contract. In the commercial field, transactions take place very quickly because the time factor has an important role in concluding deals and achieving profits. This is because the merchant in contracting about a specific deal would cause a loss to the merchant due to the linkage of the commercial law with the fluctuations of the economy and the market. The merchant may also conclude more than one deal in one and short time. And that is due to the absence of commercial law from the formalities and procedures that hinder commercial transactions.

Keywords: law, commercial law, business, commercial field

Procedia PDF Downloads 70
3039 Prediction of Coronary Heart Disease Using Fuzzy Logic

Authors: Elda Maraj, Shkelqim Kuka

Abstract:

Coronary heart disease causes many deaths in the world. Unfortunately, this problem will continue to increase in the future. In this paper, a fuzzy logic model to predict coronary heart disease is presented. This model has been developed with seven input variables and one output variable that was implemented for 30 patients in Albania. Here fuzzy logic toolbox of MATLAB is used. Fuzzy model inputs are considered as cholesterol, blood pressure, physical activity, age, BMI, smoking, and diabetes, whereas the output is the disease classification. The fuzzy sets and membership functions are chosen in an appropriate manner. Centroid method is used for defuzzification. The database is taken from University Hospital Center "Mother Teresa" in Tirana, Albania.

Keywords: coronary heart disease, fuzzy logic toolbox, membership function, prediction model

Procedia PDF Downloads 161
3038 Prediction of Scour Profile Caused by Submerged Three-Dimensional Wall Jets

Authors: Abdullah Al Faruque, Ram Balachandar

Abstract:

Series of laboratory tests were carried out to study the extent of scour caused by a three-dimensional wall jets exiting from a square cross-section nozzle and into a non-cohesive sand beds. Previous observations have indicated that the effect of the tailwater depth was significant for densimetric Froude number greater than ten. However, the present results indicate that the cut off value could be lower depending on the value of grain size-to-nozzle width ratio. Numbers of equations are drawn out for a better scaling of numerous scour parameters. Also suggested the empirical prediction of scour to predict the scour centre line profile and plan view of scour profile at any particular time.

Keywords: densimetric froude number, jets, nozzle, sand, scour, tailwater, time

Procedia PDF Downloads 435
3037 The Effect of Corporate Governance to Islamic Banking Performance Using Maqasid Index Approach in Indonesia

Authors: Audia Syafa'atur Rahman, Rozali Haron

Abstract:

The practices of Islamic banking are more attuned to the goals of profit maximization rather than obtaining ethical profit. Ethical profit is obtained from interest-free earnings and to give an impact which benefits to the growth of society and economy. Good corporate governance practices are needed to assure the sustainability of Islamic banks in order to achieve Maqasid Shariah with the main purpose of boosting the well-being of people. The Maqasid Shariah performance measurement is used to measure the duties and responsibilities expected to be performed by Islamic banks. It covers not only unification dimension like financial measurement, but also many dimensions covered to reflect the main purpose of Islamic banks. The implementation of good corporate governance is essential because it covers the interests of the stakeholders and facilitates effective monitoring to encourage Islamic banks to utilize resources more efficiently in order to achieve the Maqasid Shariah. This study aims to provide the empirical evidence on the Maqasid performance of Islamic banks in relation to the Maqasid performance evaluation model, to examine the influence of SSB characteristics and board structures to Islamic Banks performance as measured by Maqasid performance evaluation model. By employing the simple additive weighting method, Maqasid index for all the Islamic Banks in Indonesia within 2012 to 2016 ranged from above 11% to 28%. The Maqasid Syariah performance index where results reached above 20% are obtained by Islamic Banks such as Bank Muamalat Indonesia, Bank Panin Syariah, and Bank BRI Syariah. The consistent achievement above 23% is achieved by BMI. Other Islamic Banks such as Bank Victoria Syariah, Bank Jabar Banten Syariah, Bank BNI Syariah, Bank Mega Syariah, BCA Syariah, and Maybank Syariah Indonesia shows a fluctuating value of the Maqasid performance index every year. The impact of SSB characteristics and board structures are tested using random-effects generalized least square. The findings indicate that SSB characteristics (Shariah Supervisory Board size, Shariah Supervisory Board cross membership, Shariah Supervisory Board Education, and Shariah Supervisory Board reputation) and board structures (Board size and Board independence) have an essential role in improving the performance of Islamic Banks. The findings denote Shariah Supervisory Board with smaller size, higher portion of Shariah Supervisory Board cross membership; lesser Shariah Supervisory Board holds doctorate degree, lesser reputable scholar, more members on board of directors, and less independence non-executive directors will enhance the performance of Islamic Banks.

Keywords: Maqasid Shariah, corporate governance, Islamic banks, Shariah supervisory board

Procedia PDF Downloads 240
3036 Impact of Working Capital Management Strategies on Firm's Value and Profitability

Authors: Jonghae Park, Daesung Kim

Abstract:

The impact of aggressive and conservative working capital‘s strategies on the value and profitability of the firms has been evaluated by applying the panel data regression analysis. The control variables used in the regression models are natural log of firm size, sales growth, and debt. We collected a panel of 13,988 companies listed on the Korea stock market covering the period 2000-2016. The major findings of this study are as follow: 1) We find a significant negative correlation between firm profitability and the number of days inventory (INV) and days accounts payable (AP). The firm’s profitability can also be improved by reducing the number of days of inventory and days accounts payable. 2) We also find a significant positive correlation between firm profitability and the number of days accounts receivable (AR) and cash ratios (CR). In other words, the cash is associated with high corporate profitability. 3) Tobin's analysis showed that only the number of days accounts receivable (AR) and cash ratios (CR) had a significant relationship. In conclusion, companies can increase profitability by reducing INV and increasing AP, but INV and AP did not affect corporate value. In particular, it is necessary to increase CA and decrease AR in order to increase Firm’s profitability and value.

Keywords: working capital, working capital management, firm value, profitability

Procedia PDF Downloads 189
3035 Sustainability of Telecom Operators Orange-CI, MTN-CI, and MOOV Africa in Cote D’Ivoire

Authors: Odile Amoncou, Djedje-Kossu Zahui

Abstract:

The increased demand for digital communications during the COVID-19 pandemic has seen an unprecedented surge in new telecom infrastructure around the world. The expansion has been more remarkable in countries with developing telecom infrastructures. Particularly, the three telecom operators in Cote d’Ivoire, Orange CI, MTN CI, and MOOV Africa, have considerably scaled up their exploitation technologies and capacities in terms of towers, fiber optic installation, and customer service hubs. The trend will likely continue upward while expanding the carbon footprint of the Ivorian telecom operators. Therefore, the corporate social and environmental responsibilities of these telecommunication companies can no longer be overlooked. This paper assesses the sustainability of the three Ivorian telecommunication network operators by applying a combination of commonly used sustainability management indexes. These tools are streamlined and adapted to the relatively young and developing digital network of Cote D’Ivoire. We trust that this article will push the respective CEOs to make sustainability a top strategic priority and understand the substantial potential returns in terms of saving, new products, and new clients while improving their corporate image. In addition, good sustainability management can increase their stakeholders.

Keywords: sustainability of telecom operators, sustainability management index, carbon footprint, digital communications

Procedia PDF Downloads 88
3034 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: data mining, data analysis, prediction, optimization, building operational performance

Procedia PDF Downloads 852
3033 Indigenous Nigeria's Oil Sector: Stages, Opportunities, and Obstacles regarding Corporate Social Responsibility

Authors: Laura Dumuje

Abstract:

The ongoing debate in terms of corporate social responsibility (CSR) initiative in Niger Delta originates from existing gap between stated objectives of organizations in the Nigerian oil sector and the activities that threaten the economy. CSR in developing countries is becoming popular, and to contribute to scientific knowledge, we need to research on CSR practices and discourse in indigenous Nigeria that is scarce. Despite governments mandate in terms of unofficial gas blazing, methane is being released into the atmosphere which contributes to global warming. Does this practice apply to indigenous companies? In this context, we need to investigate CSR policies in local Nigeria. To get a better understanding of CSR among indigenous oil companies in Nigeria, our study focuses on discourse and rhetoric in terms of CSR, as well as growth regarding CSR. This current study contribution is twofold: on the one hand, it aims to better understand practitioner’s rationale and fundamentals of CSR in Nigerian oil companies. On the other hand, it intends to identify the stages of CSR initiatives, advantages and difficulties of CSR implementation in indigenous Nigeria oil sector. This study will use the qualitative research as methodological strategy. Instrument for data collection is semi-structured interview. Besides interview, we will conduct some focus group discussions with relevant stakeholders. Participants for this study consist of employees, managers and top level executives of indigenous oil companies in Nigeria. Key informants such as government institutions, environmental organizations and community leaders will take part of our samples. It is important to note that despite significant findings in some studies, there are still some gaps. To help filling this existing gaps, we have formulated some research questions, as follows: ‘What are the stages, opportunities and obstacles of having corporate social responsibility practice in indigenous oil companies in Nigeria?’ This ongoing research sub-questions as follows: What are the CSR discourses and practices among indigenous companies in the Nigerian oil sector? What is the actual status regarding CSR development? What are the main perceptions of opportunities and obstacles with regard to CSR in indigenous Nigerian oil companies? Who are the main stakeholders of indigenous Nigerian oil companies and their different meanings and understandings of CSR practices? Important to note regarding the above questions, the following objectives have been determined: This research conducts a literature review with the aim of uncovering, understanding and identifying importance of CSR practices in western and developing countries; It aims to identify specific characteristics of the national context in respect to CSR engagement in Nigeria; Relevant to perform empirical research with employees, managers, executives, and key informants in indigenous Nigerian oil companies in order to identify different understandings of CSR initiatives and its relevance to the society; To conclude, provide managerial recommendations regarding the adoption of CSR in Nigeria.

Keywords: corporate social responsibility, indigenous, organization, Nigeria

Procedia PDF Downloads 185
3032 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults

Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed

Abstract:

Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.

Keywords: dissolved gas-in-oil analysis, fuzzy logic, power transformer, prediction

Procedia PDF Downloads 144