Search results for: cavity flows
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1197

Search results for: cavity flows

297 The Structure and Development of a Wing Tip Vortex under the Effect of Synthetic Jet Actuation

Authors: Marouen Dghim, Mohsen Ferchichi

Abstract:

The effect of synthetic jet actuation on the roll-up and the development of a wing tip vortex downstream a square-tipped rectangular wing was investigated experimentally using hotwire anemometry. The wing is equipped with a hallow cavity designed to generate a high aspect ratio synthetic jets blowing at an angles with respect to the spanwise direction. The structure of the wing tip vortex under the effect of fluidic actuation was examined at a chord Reynolds number Re_c=8×10^4. An extensive qualitative study on the effect of actuation on the spanwise pressure distribution at c⁄4 was achieved using pressure scanner measurements in order to determine the optimal actuation parameters namely, the blowing momentum coefficient, Cμ, and the non-dimensionalized actuation frequency, F^+. A qualitative study on the effect of actuation parameters on the spanwise pressure distribution showed that optimal actuation frequencies of the synthetic jet were found within the range amplified by both long and short wave instabilities where spanwise pressure coefficients exhibited a considerable decrease by up to 60%. The vortex appeared larger and more diffuse than that of the natural vortex case. Operating the synthetic jet seemed to introduce unsteadiness and turbulence into the vortex core. Based on the ‘a priori’ optimal selected parameters, results of the hotwire wake survey indicated that the actuation achieved a reduction and broadening of the axial velocity deficit. A decrease in the peak tangential velocity associated with an increase in the vortex core radius was reported as a result of the accelerated radial transport of angular momentum. Peak vorticity level near the core was also found to be largely diffused as a direct result of the increased turbulent mixing within the vortex. The wing tip vortex a exhibited a reduced strength and a diffused core as a direct result of increased turbulent mixing due to the presence of turbulent small scale vortices within its core. It is believed that the increased turbulence within the vortex due to the synthetic jet control was the main mechanism associated with the decreased strength and increased size of the wing tip vortex as it evolves downstream. A comparison with a ‘non-optimal’ case was included to demonstrate the effectiveness of selecting the appropriate control parameters. The Synthetic Jet will be operated at various actuation configurations and an extensive parametric study is projected to determine the optimal actuation parameters.

Keywords: flow control, hotwire anemometry, synthetic jet, wing tip vortex

Procedia PDF Downloads 417
296 Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation

Authors: Samuel Ahamefula Mba

Abstract:

Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns.

Keywords: turbulence, Navier-Stokes equation, Poisson pressure equation, numerical investigation, Chebyshev-finite difference, hybrid computational approach, large Eddy simulation with wall models, direct numerical simulation

Procedia PDF Downloads 64
295 Is Audit Quality Implied by Accruals Quality Associated with Audit Fees and Auditor Tenure? Evidence from China

Authors: Hassan Y. Kikhia, Jin P. Zhang, Khaldoon G. Albiatr

Abstract:

The Enron and Arthur Andersen scandal has raised concerns internationally about auditor independence and audit quality. Furthermore, the debate continues about the relationship between audit fees, auditor tenure and audit quality in spite of extensive empirical evidence examining audit failures and earnings management. Therefore, the purpose of current research is to determine the effect of audit fee and audit tenure both partially and simultaneously on the audit quality. Using a sample of Chinese firms, an environment where we believe it provides us with an opportunity to test whether the development of market and legal institutions affects the impact of audit fees and auditor tenure on audit quality. We employ the standard deviation of residuals from regressions relating current accruals to cash flows as proxy for audit quality. The paper documents statistically significant negative association between audit fees and audit quality. These findings are consistent with economic bonding being a determinant of auditor behavior rather than auditor reputational concerns. Further, the current paper shows a positive association between auditor tenure and audit quality in the earlier years of audit tenure. These results support the proposition that when the Learning Effect dominates the Bonding Effect in the earlier years of tenure, then audit quality is likely to be higher. Taken audit fees and audit tenure together, the results suggest that there is positive association between audit fees and audit quality in the earlier years of auditor tenure. Interestingly, the findings of our study have important implications for auditors, policymakers, multinational firms, and users of financial reports. As the rapid growth of China's economy gains global recognition, the Chinese stock market is capturing the attention of international investors. To a lesser extent, our paper also differs from the prior studies in methodology and findings in the investigation of audit quality.

Keywords: audit quality, accruals quality, audit fees, auditor tenure

Procedia PDF Downloads 261
294 The Toxicity of Doxorubicin Connected with Nanotransporters

Authors: Iva Blazkova, Amitava Moulick, Vedran Milosavljevic, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek

Abstract:

Doxorubicin is one of the most commonly used and the most effective chemotherapeutic drugs. This antracycline drug isolated from the bacteria Streptomyces peuceticus var. caesius is sold under the trade name Adriamycin (hydroxydaunomycin, hydroxydaunorubicin). Doxorubicin is used in single therapy to treat hematological malignancies (blood cancers, leukaemia, lymphoma), many types of carcinoma (solid tumors) and soft tissue sarcomas. It has many serious side effects like nausea and vomiting, hair lost, myelosupression, oral mucositis, skin reactions and redness, but the most serious one is the cardiotoxicity. Because of the risk of heart attack and congestive heart failure, the total dose administered to patients has to be accurately monitored. With the aim to lower the side effects and to targeted delivery of doxorubicin into the tumor tissue, the different nanoparticles are studied. The drug can be bound on a surface of nanoparticle, encapsulated in the inner cavity, or incorporated into the structure of nanoparticle. Among others, carbon nanoparticles (graphene, carbon nanotubes, fullerenes) are highly studied. Besides the number of inorganic nanoparticles, a great potential exhibit also organic ones mainly lipid-based and polymeric nanoparticle. The aim of this work was to perform a toxicity study of free doxorubicin compared to doxorubicin conjugated with various nanotransporters. The effect of liposomes, fullerenes, graphene, and carbon nanotubes on the toxicity was analyzed. As a first step, the binding efficacy of between doxorubicin and the nanotransporter was determined. The highest efficacy was detected in case of liposomes (85% of applied drug was encapsulated) followed by graphene, carbon nanotubes and fullerenes. For the toxicological studies, the chicken embryos incubated under controlled conditions (37.5 °C, 45% rH, rotation every 2 hours) were used. In 7th developmental day of chicken embryos doxorubicin or doxorubicin-nanotransporter complex was applied on the chorioallantoic membrane of the eggs and the viability was analyzed every day till the 17th developmental day. Then the embryos were extracted from the shell and the distribution of doxorubicin in the body was analyzed by measurement of organs extracts using laser induce fluorescence detection. The chicken embryo mortality caused by free doxorubicin (30%) was significantly lowered by using the conjugation with nanomaterials. The highest accumulation of doxorubicin and doxorubicin nanotransporter complexes was observed in the liver tissue

Keywords: doxorubicin, chicken embryos, nanotransporters, toxicity

Procedia PDF Downloads 429
293 Experimental Study of Hydrogen and Water Vapor Extraction from Helium with Zeolite Membranes for Tritium Processes

Authors: Rodrigo Antunes, Olga Borisevich, David Demange

Abstract:

The Tritium Laboratory Karlsruhe (TLK) has identified zeolite membranes as most promising for tritium processes in the future fusion reactors. Tritium diluted in purge gases or gaseous effluents, and present in both molecular and oxidized forms, can be pre-concentrated by a stage of zeolite membranes followed by a main downstream recovery stage (e.g., catalytic membrane reactor). Since 2011 several membrane zeolite samples have been tested to measure the membrane performances in the separation of hydrogen and water vapor from helium streams. These experiments were carried out in the ZIMT (Zeolite Inorganic Membranes for Tritium) facility where mass spectrometry and cold traps were used to measure the membranes’ performances. The membranes were tested at temperatures ranging from 25 °C up to 130 °C, at feed pressures between 1 and 3 bar, and typical feed flows of 2 l/min. During this experimental campaign, several zeolite-type membranes were studied: a hollow-fiber MFI nanocomposite membrane purchased from IRCELYON (France), and tubular MFI-ZSM5, NaA and H-SOD membranes purchased from Institute for Ceramic Technologies and Systems (IKTS, Germany). Among these membranes, only the MFI-based showed relevant performances for the H2/He separation, with rather high permeances (~0.5 – 0.7 μmol/sm2Pa for H2 at 25 °C for MFI-ZSM5), however with a limited ideal selectivity of around 2 for H2/He regardless of the feed concentration. Both MFI and NaA showed higher separation performances when water vapor was used instead; for example, at 30 °C, the separation factor for MFI-ZSM5 is approximately 10 and 38 for 0.2% and 10% H2O/He, respectively. The H-SOD evidenced to be considerably defective and therefore not considered for further experiments. In this contribution, a comprehensive analysis of the experimental methods and results obtained for the separation performance of different zeolite membranes during the past four years in inactive environment is given. These results are encouraging for the experimental campaign with molecular and oxidized tritium that will follow in 2017.

Keywords: gas separation, nuclear fusion, tritium processes, zeolite membranes

Procedia PDF Downloads 217
292 Dynamic and Thermal Characteristics of Three-Dimensional Turbulent Offset Jet

Authors: Ali Assoudi, Sabra Habli, Nejla Mahjoub Saïd, Philippe Bournot, Georges Le Palec

Abstract:

Studying the flow characteristics of a turbulent offset jet is an important topic among researchers across the world because of its various engineering applications. Some of the common examples include: injection and carburetor systems, entrainment and mixing process in gas turbine and boiler combustion chambers, Thrust-augmenting ejectors for V/STOL aircrafts and HVAC systems, environmental dischargers, film cooling and many others. An offset jet is formed when a jet discharges into a medium above a horizontal solid wall parallel to the axis of the jet exit but which is offset by a certain distance. The structure of a turbulent offset-jet can be described by three main regions. Close to the nozzle exit, an offset jet possesses characteristic features similar to those of free jets. Then, the entrainment of fluid between the jet, the offset wall and the bottom wall creates a low pressure zone, forcing the jet to deflect towards the wall and eventually attaches to it at the impingement point. This is referred to as the Coanda effect. Further downstream after the reattachment point, the offset jet has the characteristics of a wall jet flow. Therefore, the offset jet has characteristics of free, impingement and wall jets, and it is relatively more complex compared to these types of flows. The present study examines the dynamic and thermal evolution of a 3D turbulent offset jet with different offset height ratio (the ratio of the distance from the jet exit to the impingement bottom wall and the jet nozzle diameter). To achieve this purpose a numerical study was conducted to investigate a three-dimensional offset jet flow through the resolution of the different governing Navier–Stokes’ equations by means of the finite volume method and the RSM second-order turbulent closure model. A detailed discussion has been provided on the flow and thermal characteristics in the form of streamlines, mean velocity vector, pressure field and Reynolds stresses.

Keywords: offset jet, offset ratio, numerical simulation, RSM

Procedia PDF Downloads 281
291 Understanding and Explaining Urban Resilience and Vulnerability: A Framework for Analyzing the Complex Adaptive Nature of Cities

Authors: Richard Wolfel, Amy Richmond

Abstract:

Urban resilience and vulnerability are critical concepts in the modern city due to the increased sociocultural, political, economic, demographic, and environmental stressors that influence current urban dynamics. Urban scholars need help explaining urban resilience and vulnerability. First, cities are dominated by people, which is challenging to model, both from an explanatory and a predictive perspective. Second, urban regions are highly recursive in nature, meaning they not only influence human action, but the structures of cities are constantly changing due to human actions. As a result, explanatory frameworks must continuously evolve as humans influence and are influenced by the urban environment in which they operate. Finally, modern cities have populations, sociocultural characteristics, economic flows, and environmental impacts on order of magnitude well beyond the cities of the past. As a result, the frameworks that seek to explain the various functions of a city that influence urban resilience and vulnerability must address the complex adaptive nature of cities and the interaction of many distinct factors that influence resilience and vulnerability in the city. This project develops a taxonomy and framework for organizing and explaining urban vulnerability. The framework is built on a well-established political development model that includes six critical classes of urban dynamics: political presence, political legitimacy, political participation, identity, production, and allocation. In addition, the framework explores how environmental security and technology influence and are influenced by the six elements of political development. The framework aims to identify key tipping points in society that act as influential agents of urban vulnerability in a region. This will help analysts and scholars predict and explain the influence of both physical and human geographical stressors in a dense urban area.

Keywords: urban resilience, vulnerability, sociocultural stressors, political stressors

Procedia PDF Downloads 89
290 Life Cycle Assessment of Rare Earth Metals Production: Hotspot Analysis of Didymium Electrolysis Process

Authors: Sandra H. Fukurozaki, Andre L. N. Silva, Joao B. F. Neto, Fernando J. G. Landgraf

Abstract:

Nowadays, the rare earth (RE) metals play an important role in emerging technologies that are crucial for the decarbonisation of the energy sector. Their unique properties have led to increasing clean energy applications, such as wind turbine generators, and hybrid and electric vehicles. Despite the substantial media coverage that has recently surrounded the mining and processing of rare earth metals, very little quantitative information is available concerning their subsequent life stages, especially related to the metallic production of didymium (Nd-Pr) in fluoride molten salt system. Here we investigate a gate to gate scale life cycle assessment (LCA) of the didymium electrolysis based on three different scenarios of operational conditions. The product system is modeled with SimaPro Analyst 8.0.2 software, and IMPACT 2002+ was applied as an impact assessment tool. In order to develop a life cycle inventories built in software databases, patents, and other published sources together with energy/mass balance were utilized. Analysis indicates that from the 14 midpoint impact categories evaluated, the global warming potential (GWP) is the main contributors to the total environmental burden, ranging from 2.7E2 to 3.2E2 kg CO2eq/kg Nd-Pr. At the damage step assessment, the results suggest that slight changes in materials flows associated with enhancement of current efficiency (between 2.5% and 5%), could lead a reduction up to 12% and 15% of human health and climate change damage, respectively. Additionally, this paper highlights the knowledge gaps and future research efforts needing to understand the environmental impacts of Nd-Pr electrolysis process from the life cycle perspective.

Keywords: didymium electrolysis, environmental impacts, life cycle assessment, rare earth metals

Procedia PDF Downloads 148
289 Processes and Application of Casting Simulation and Its Software’s

Authors: Surinder Pal, Ajay Gupta, Johny Khajuria

Abstract:

Casting simulation helps visualize mold filling and casting solidification; predict related defects like cold shut, shrinkage porosity and hard spots; and optimize the casting design to achieve the desired quality with high yield. Flow and solidification of molten metals are, however, a very complex phenomenon that is difficult to simulate correctly by conventional computational techniques, especially when the part geometry is intricate and the required inputs (like thermo-physical properties and heat transfer coefficients) are not available. Simulation software is based on the process of modeling a real phenomenon with a set of mathematical formulas. It is, essentially, a program that allows the user to observe an operation through simulation without actually performing that operation. Simulation software is used widely to design equipment so that the final product will be as close to design specs as possible without expensive in process modification. Simulation software with real-time response is often used in gaming, but it also has important industrial applications. When the penalty for improper operation is costly, such as airplane pilots, nuclear power plant operators, or chemical plant operators, a mockup of the actual control panel is connected to a real-time simulation of the physical response, giving valuable training experience without fear of a disastrous outcome. The all casting simulation software has own requirements, like magma cast has only best for crack simulation. The latest generation software Auto CAST developed at IIT Bombay provides a host of functions to support method engineers, including part thickness visualization, core design, multi-cavity mold design with common gating and feeding, application of various feed aids (feeder sleeves, chills, padding, etc.), simulation of mold filling and casting solidification, automatic optimization of feeders and gating driven by the desired quality level, and what-if cost analysis. IIT Bombay has developed a set of applications for the foundry industry to improve casting yield and quality. Casting simulation is a fast and efficient solution for process for advanced tool which is the result of more than 20 years of collaboration with major industrial partners and academic institutions around the world. In this paper the process of casting simulation is studied.

Keywords: casting simulation software’s, simulation technique’s, casting simulation, processes

Procedia PDF Downloads 452
288 Computational Modelling of pH-Responsive Nanovalves in Controlled-Release System

Authors: Tomilola J. Ajayi

Abstract:

A category of nanovalves system containing the α-cyclodextrin (α-CD) ring on a stalk tethered to the pores of mesoporous silica nanoparticles (MSN) is theoretically and computationally modelled. This functions to control opening and blocking of the MSN pores for efficient targeted drug release system. Modeling of the nanovalves is based on the interaction between α-CD and the stalk (p-anisidine) in relation to pH variation. Conformational analysis was carried out prior to the formation of the inclusion complex, to find the global minimum of both neutral and protonated stalk. B3LYP/6-311G**(d, p) basis set was employed to attain all theoretically possible conformers of the stalk. Six conformers were taken into considerations, and the dihedral angle (θ) around the reference atom (N17) of the p-anisidine stalk was scanned from 0° to 360° at 5° intervals. The most stable conformer was obtained at a dihedral angle of 85.3° and was fully optimized at B3LYP/6-311G**(d, p) level of theory. The most stable conformer obtained from conformational analysis was used as the starting structure to create the inclusion complexes. 9 complexes were formed by moving the neutral guest into the α-CD cavity along the Z-axis in 1 Å stepwise while keeping the distance between dummy atom and OMe oxygen atom on the stalk restricted. The dummy atom and the carbon atoms on α-CD structure were equally restricted for orientation A (see Scheme 1). The generated structures at each step were optimized with B3LYP/6-311G**(d, p) methods to determine their energy minima. Protonation of the nitrogen atom on the stalk occurs at acidic pH, leading to unsatisfactory host-guest interaction in the nanogate; hence there is dethreading. High required interaction energy and conformational change are theoretically established to drive the release of α-CD at a certain pH. The release was found to occur between pH 5-7 which agreed with reported experimental results. In this study, we applied the theoretical model for the prediction of the experimentally observed pH-responsive nanovalves which enables blocking, and opening of mesoporous silica nanoparticles pores for targeted drug release system. Our results show that two major factors are responsible for the cargo release at acidic pH. The higher interaction energy needed for the complex/nanovalve formation to exist after protonation as well as conformational change upon protonation are driving the release due to slight pH change from 5 to 7.

Keywords: nanovalves, nanogate, mesoporous silica nanoparticles, cargo

Procedia PDF Downloads 98
287 Particle Gradient Generation in a Microchannel Using a Single IDT

Authors: Florian Kiebert, Hagen Schmidt

Abstract:

Standing surface acoustic waves (sSAWs) have already been used to manipulate particles in a microfluidic channel made of polydimethylsiloxan (PDMS). Usually two identical facing interdigital transducers (IDTs) are exploited to form an sSAW. Further, it has been reported that an sSAW can be generated by a single IDT using a superstrate resonating cavity or a PDMS post. Nevertheless, both setups utilising a traveling surface acoustic wave (tSAW) to create an sSAW for particle manipulation are costly. We present a simplified setup with a tSAW and a PDMS channel to form an sSAW. The incident tSAW is reflected at the rear PDMS channel wall and superimposed with the reflected tSAW. This superpositioned waves generates an sSAW but only at regions where the distance to the rear channel wall is smaller as the attenuation length of the tSAW minus the channel width. Therefore in a channel of 500µm width a tSAW with a wavelength λ = 120 µm causes a sSAW over the whole channel, whereas a tSAW with λ = 60 µm only forms an sSAW next to the rear wall of the channel, taken into account the attenuation length of a tSAW in water. Hence, it is possible to concentrate and trap particles in a defined region of the channel by adjusting the relation between the channel width and tSAW wavelength. Moreover, it is possible to generate a particle gradient over the channel width by picking the right ratio between channel wall and wavelength. The particles are moved towards the rear wall by the acoustic streaming force (ASF) and the acoustic radiation force (ARF) caused by the tSAW generated bulk acoustic wave (BAW). At regions in the channel were the sSAW is dominating the ARF focuses the particles in the pressure nodes formed by the sSAW caused BAW. On the one side the ARF generated by the sSAW traps the particle at the center of the tSAW beam, i. e. of the IDT aperture. On the other side, the ASF leads to two vortices, one on the left and on the right side of the focus region, deflecting the particles out of it. Through variation of the applied power it is possible to vary the number of particles trapped in the focus points, because near to the rear wall the amplitude of the reflected tSAW is higher and, therefore, the ARF of the sSAW is stronger. So in the vicinity of the rear wall the concentration of particles is higher but decreases with increasing distance to the wall, forming a gradient of particles. The particle gradient depends on the applied power as well as on the flow rate. Thus by variation of these two parameters it is possible to change the particle gradient. Furthermore, we show that the particle gradient can be modified by changing the relation between the channel width and tSAW wavelength. Concluding a single IDT generates an sSAW in a PDMS microchannel enables particle gradient generation in a well-defined microfluidic flow system utilising the ARF and ASF of a tSAW and an sSAW.

Keywords: ARF, ASF, particle manipulation, sSAW, tSAW

Procedia PDF Downloads 309
286 The Judiciary as Pacemaker? Considering the Role of Courts in an Expansion of Protection for War Refugees and People Fleeing Natural Disasters

Authors: Charlotte Lülf

Abstract:

Migration flows, resulting from war, climate change or economic crisis cannot be tackled by single states but need to be addressed as a transnational and international responsibility. The traditional architecture surrounding the work of the UNHCR and the 1951 Convention, however, is not equipped to deal with these challenges. Widely excluded from legal protection are people not individually persecuted for the statutory criteria, people that flee from the indiscriminate effects of an armed conflict as well as people fleeing natural disasters. With the lack of explicit legal protection and the political reluctance of nation states worldwide to extend their commitment in new asylum laws, the judiciary must be put in focus: it plays a unique role in interpreting and potentially expanding the application of existing regulations. This paper as part of an ongoing Ph.D. Project deals with the current and partly contradicting approaches to the protection of war- and climate refugees. Changing jurisprudential practice of national and regional courts will be assessed, as will be their dialogue to interpret the international obligations of human rights law, migration laws, and asylum laws in an interacting world. In recent judgments refoulment to an armed conflict as well as countries without adequate disaster relief or health care was argued as violating fundamental human and asylum law rights and therefore prohibited – even for applicants without refugee status: The first step towards access to subsidiary protection could herewith be established. Can one observe similar developments in other parts of the world? This paper will evaluate the role of the judiciary to define, redefine and potentially expand protection for people seeking refuge from armed conflicts and natural disasters.

Keywords: human rights law, asylum-seekers, displacement, migration

Procedia PDF Downloads 258
285 Isotope Effects on Inhibitors Binding to HIV Reverse Transcriptase

Authors: Agnieszka Krzemińska, Katarzyna Świderek, Vicente Molinier, Piotr Paneth

Abstract:

In order to understand in details the interactions between ligands and the enzyme isotope effects were studied between clinically used drugs that bind in the active site of Human Immunodeficiency Virus Reverse Transcriptase, HIV-1 RT, as well as triazole-based inhibitor that binds in the allosteric pocket of this enzyme. The magnitudes and origins of the resulting binding isotope effects were analyzed. Subsequently, binding isotope effect of the same triazole-based inhibitor bound in the active site were analyzed and compared. Together, these results show differences in binding origins in two sites of the enzyme and allow to analyze binding mode and place of newly synthesized inhibitors. Typical protocol is described below on the example of triazole ligand in the allosteric pocket. Triazole was docked into allosteric cavity of HIV-1 RT with Glide using extra-precision mode as implemented in Schroedinger software. The structure of HIV-1 RT was obtained from Protein Data Bank as structure of PDB ID 2RKI. The pKa for titratable amino acids was calculated using PROPKA software, and in order to neutralize the system 15 Cl- were added using tLEaP package implemented in AMBERTools ver.1.5. Also N-terminals and C-terminals were build using tLEaP. The system was placed in 144x160x144Å3 orthorhombic box of water molecules using NAMD program. Missing parameters for triazole were obtained at the AM1 level using Antechamber software implemented in AMBERTools. The energy minimizations were carried out by means of a conjugate gradient algorithm using NAMD. Then system was heated from 0 to 300 K with temperature increment 0.001 K. Subsequently 2 ns Langevin−Verlet (NVT) MM MD simulation with AMBER force field implemented in NAMD was carried out. Periodic Boundary Conditions and cut-offs for the nonbonding interactions, range radius from 14.5 to 16 Å, are used. After 2 ns relaxation 200 ps of QM/MM MD at 300 K were simulated. The triazole was treated quantum mechanically at the AM1 level, protein was described using AMBER and water molecules were described using TIP3P, as implemented in fDynamo library. Molecules 20 Å apart from the triazole were kept frozen, with cut-offs established on range radius from 14.5 to 16 Å. In order to describe interactions between triazole and RT free energy of binding using Free Energy Perturbation method was done. The change in frequencies from ligand in solution to ligand bounded in enzyme was used to calculate binding isotope effects.

Keywords: binding isotope effects, molecular dynamics, HIV, reverse transcriptase

Procedia PDF Downloads 407
284 Quantitative Evaluation of Mitral Regurgitation by Using Color Doppler Ultrasound

Authors: Shang-Yu Chiang, Yu-Shan Tsai, Shih-Hsien Sung, Chung-Ming Lo

Abstract:

Mitral regurgitation (MR) is a heart disorder which the mitral valve does not close properly when the heart pumps out blood. MR is the most common form of valvular heart disease in the adult population. The diagnostic echocardiographic finding of MR is straightforward due to the well-known clinical evidence. In the determination of MR severity, quantification of sonographic findings would be useful for clinical decision making. Clinically, the vena contracta is a standard for MR evaluation. Vena contracta is the point in a blood stream where the diameter of the stream is the least, and the velocity is the maximum. The quantification of vena contracta, i.e. the vena contracta width (VCW) at mitral valve, can be a numeric measurement for severity assessment. However, manually delineating the VCW may not accurate enough. The result highly depends on the operator experience. Therefore, this study proposed an automatic method to quantify VCW to evaluate MR severity. Based on color Doppler ultrasound, VCW can be observed from the blood flows to the probe as the appearance of red or yellow area. The corresponding brightness represents the value of the flow rate. In the experiment, colors were firstly transformed into HSV (hue, saturation and value) to be closely align with the way human vision perceives red and yellow. Using ellipse to fit the high flow rate area in left atrium, the angle between the mitral valve and the ultrasound probe was calculated to get the vertical shortest diameter as the VCW. Taking the manual measurement as the standard, the method achieved only 0.02 (0.38 vs. 0.36) to 0.03 (0.42 vs. 0.45) cm differences. The result showed that the proposed automatic VCW extraction can be efficient and accurate for clinical use. The process also has the potential to reduce intra- or inter-observer variability at measuring subtle distances.

Keywords: mitral regurgitation, vena contracta, color doppler, image processing

Procedia PDF Downloads 350
283 Study of the Hydrochemical Composition of Canal, Collector-Drainage and Ground Waters of Kura-Araz Plain and Modeling by GIS Method

Authors: Gurbanova Lamiya

Abstract:

The Republic of Azerbaijan is considered a region with limited water resources, as up to 70% of surface water is formed outside the country's borders, and most of its territory is an arid (dry) climate zone. It is located at the lower limit of transboundary flows, which is the weakest source of natural water resources in the South Caucasus. It is essential to correctly assess the quality of natural, collector-drainage and groundwater of the area and their suitability for irrigation in order to properly carry out land reclamation measures, provide the normal water-salt regime, and prevent repeated salinization. Through the 141-km-long main Mil-Mugan collector, groundwater, household waste, and floodwaters generated during floods and landslides are poured into the Caspian Sea. The hydrochemical composition of the samples taken from the Sabir irrigation canal passing through the center of the Kura-Araz plain, the Main Mil-Mugan Collector, and the groundwater of the region, which we chose as our research object, were studied and the obtained results were compared by periods. A model is proposed that allows for a complete visualization of the primary materials collected for the study area. The practical use of the established digital model provides all possibilities. The practical use of the established digital model provides all possibilities. An extensive database was created with the ArcGis 10.8 package, using publicly available LandSat satellite images as primary data in addition to ground surveys to build the model. The principles of the construction of the geographic information system of modern GIS technology were developed, the boundary and initial condition of the research area were evaluated, and forecasts and recommendations were given.

Keywords: irrigation channel, groundwater, collector, meliorative measures

Procedia PDF Downloads 48
282 A Machine Learning Approach for Detecting and Locating Hardware Trojans

Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He

Abstract:

The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.

Keywords: hardware trojans, physical properties, machine learning, hardware security

Procedia PDF Downloads 115
281 Argentine Immigrant Policy: A Qualitative Analysis of Changes and Trends from 2016 on

Authors: Romeu Bonk Mesquita

Abstract:

Argentina is the South American number 1 country of destiny to intraregional migration flows. This research aims to shed light on the main trends of the Argentine immigrant policy from 2016 on, when Mauricio Marci was elected President, taking the approval of the current and fairly protective of human rights Ley de Migraciones (2003) as an analytical starting point. Foreign Policy Analysis (FPA) serves as the theoretical background, highlighting decision-making processes and institutional designs that encourage or constraint political and social actors. The analysis goes through domestic and international levels, observing how immigration policy is formulated as a public policy and is simultaneously connected to Mercosur and other international organizations, such as the International Organization for Migration (IOM) and the United Nations High Commissioner for Refugees (UNHCR). Thus, the study revolves around the Direccion Nacional de Migraciones, which is the state agency in charge of executing the country’s immigrant policy, as to comprehend how its internal processes and the connections it has with both domestic and international institutions shape Argentina’s immigrant policy formulation and execution. Also, it aims to locate the migration agenda within the country’s contemporary social and political context. The methodology is qualitative, case-based and oriented by process-tracing techniques. Empirical evidence gathered includes official documents and data, media coverage and interviews to key-informants. Recent events, such as the Decreto de Necesidad y Urgencia 70/2017 issued by President Macri, and the return of discursive association between migration and criminality, indicate a trend of nationalization and securitization of the immigration policy in contemporary Argentina.

Keywords: Argentine foreign policy, human rights, immigrant policy, Mercosur

Procedia PDF Downloads 141
280 Studying the Evolution of Soot and Precursors in Turbulent Flames Using Laser Diagnostics

Authors: Muhammad A. Ashraf, Scott Steinmetz, Matthew J. Dunn, Assaad R. Masri

Abstract:

This study focuses on the evolution of soot and soot precursors in three different piloted diffusion turbulent flames. The fuel composition is as follow flame A (ethylene/nitrogen, 2:3 by volume), flame B (ethylene/air, 2:3 by volume), and flame C (pure methane). These flames are stabilized using a 4mm diameter jet surrounded by a pilot annulus with an outer diameter of 15 mm. The pilot issues combustion products from stoichiometric premixed flames of hydrogen, acetylene, and air. In all cases, the jet Reynolds number is 10,000, and air flows in the coflow stream at a velocity of 5 m/s. Time-resolved laser-induced fluorescence (LIF) is collected at two wavelength bands in the visible (445 nm) and UV regions (266 nm) along with laser-induced incandescence (LII). The combined results are employed to study concentration, size, and growth of soot and precursors. A set of four fast photo-multiplier tubes are used to record emission data in temporal domain. A 266nm laser pulse preferentially excites smaller nanoparticles which emit a fluorescence spectrum which is analysed to track the presence, evolution, and destruction of nanoparticles. A 1064nm laser pulse excites sufficiently large soot particles, and the resulting incandescence is collected at 1064nm. At downstream and outer radial locations, intermittency becomes a relevant factor. Therefore, data collected in turbulent flames is conditioned to account for intermittency so that the resulting mean profiles for scattering, fluorescence, and incandescence are shown for the events that contain traces of soot. It is found that in the upstream regions of the ethylene-air and ethylene-nitrogen flames, the presence of soot precursors is rather similar. However, further downstream, soot concentration grows larger in the ethylene-air flames.

Keywords: laser induced incandescence, laser induced fluorescence, soot, nanoparticles

Procedia PDF Downloads 119
279 Design of Low-Cost Water Purification System Using Activated Carbon

Authors: Nayan Kishore Giri, Ramakar Jha

Abstract:

Water is a major element for the life of all the mankind in the earth. India’s surface water flows through fourteen major streams. Indian rivers are the main source of potable water in India. In the eastern part of India many toxic hazardous metals discharged into the river from mining industries, which leads many deadly diseases to human being. So the potable water quality is very significant and vital concern at present as it is related with the present and future health perspective of the human race. Consciousness of health risks linked with unsafe water is still very low among the many rural and urban areas in India. Only about 7% of total Indian people using water purifier. This unhealthy situation of water is not only present in India but also present in many underdeveloped countries. The major reason behind this is the high cost of water purifier. This current study geared towards development of economical and efficient technology for the removal of maximum possible toxic metals and pathogen bacteria. The work involves the design of portable purification system and purifying material. In this design Coconut shell granular activated carbon(GAC) and polypropylene filter cloths were used in this system. The activated carbon is impregnated with Iron(Fe). Iron is used because it enhances the adsorption capacity of activated carbon. The thorough analysis of iron impregnated activated carbon(Fe-AC) is done by Scanning Electron Microscope (SEM), X-ray diffraction (XRD) , BET surface area test were done. Then 10 ppm of each toxic metal were infiltrated through the designed purification system and they were analysed in Atomic absorption spectrum (AAS). The results are very promising and it is low cost. This work will help many people who are in need of potable water. They can be benefited for its affordability. It could be helpful in industries and other domestic usage.

Keywords: potable water, coconut shell GAC, polypropylene filter cloths, SEM, XRD, BET, AAS

Procedia PDF Downloads 358
278 Quantification of Pollution Loads for the Rehabilitation of Pusu River

Authors: Abdullah Al-Mamun, Md. Nuruzzaman, Md. Noor Salleh, Muhammad Abu Eusuf, Ahmad Jalal Khan Chowdhury, Mohd. Zaki M. Amin, Norlida Mohd. Dom

Abstract:

Identification of pollution sources and determination of pollution loads from all areas are very important for sustainable rehabilitation of any contaminated river. Pusu is a small river which, flows through the main campus of International Islamic University Malaysia (IIUM) at Gombak. Poor aesthetics of the river, which is flowing through the entrance of the campus, gives negative impression to the local and international visitors. As such, this study is being conducted to find ways to rehabilitate the river in a sustainable manner. The point and non-point pollution sources of the river basin are identified. Upper part of the 12.6 km2 river basin is covered with secondary forest. However, it is the lower-middle reaches of the river basin which is being cleared for residential development and source of high sediment load. Flow and concentrations of the common pollutants, important for a healthy river, such as Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Suspended Solids (SS), Turbidity, pH, Ammoniacal Nitrogen (AN), Total Nitrogen (TN) and Total Phosphorus (TP) are determined. Annual pollution loading to the river was calculated based on the primary and secondary data. Concentrations of SS were high during the rainy day due to contribution from the non-point sources. There are 7 ponds along the river system within the campus, which are severely affected by high sediment load from the land clearing activities. On the other hand, concentrations of other pollutants were high during the non-rainy days. The main sources of point pollution are the hostels, cafeterias, sewage treatment plants located in the campus. Therefore, both pollution sources need to be controlled in order to rehabilitate the river in a sustainable manner.

Keywords: river pollution, rehabilitation, point pollution source, non-point pollution sources, pollution loading

Procedia PDF Downloads 331
277 Geomorphologic Evolution of the Southern Habble-Rud River Basin, North of Iran

Authors: Maryam Jaberi, Siavosh Shayan, Mojtaba Yamani

Abstract:

Habble-Rud River basin (HR), up to 100 km length, one of the largest watersheds which drain into deserts to the north of Central Iran (Dasht-e Kavir). This stream is oblique with the NE-SW trending, flow in the southern range of central Alborz Mountains and the northern border of Central Iran. The end of the ~17 km suddenly change direction and with the southern trending to have a morphology which meanders passes through the Alborz Mountain ridge and flows into the Garmsar plain where it forms one of the largest alluvial fans in Iran, i.e. the vast Garmsar alluvial fan with an area of 476 km2. This study was carried out through morphometric analyses, longitudinal river profiles, and study of geomorpholic evidence such as fluvial terraces, gypsum-salt domes, seismic data, and satellite images. This study aimed to investigate the changes in the pattern of rivers in the southern part of the HR river basin. The southern part of HR river basin located at the southern foothills of the Central Alborz is characterized the thrust faults (Sorkheh-Kalut and Garmsar faults), folds,diapirs and arid climate. The activity of more than 10 salt domes that belong to the Oligocene-Miocene period has considerably influenced the pattern of streams in this region. Dissolution of these domes has not only reduced the quality of water and soil resources, but also has led to the formation of badlands and gullies.Our results indicated that the pattern of rivers in the southern part of HR river basin was influenced by discharge of the HR river in Quaternary, geological structure, subsidence of Central Iran and vertical uplift of Alborz mountain. These agents caused the formation meanders in the southern part of the HR River and evaluation of the seasonal rivers like Shoor-Darre and Garmabsar.

Keywords: geomorphologic evaluation, rivers pattern, Habble-Rud River basin, seasonal rivers

Procedia PDF Downloads 484
276 Impact of Urbanization on Natural Drainage Pattern in District of Larkana, Sindh Pakistan

Authors: Sumaira Zafar, Arjumand Zaidi

Abstract:

During past few years, several floods have adversely affected the areas along lower Indus River. Besides other climate related anomalies, rapidly increasing urbanization and blockage of natural drains due to siltation or encroachments are two other critical causes that may be responsible for these disasters. Due to flat topography of river Indus plains and blockage of natural waterways, drainage of storm water takes time adversely affecting the crop health and soil properties of the area. Government of Sindh is taking a keen interest in revival of natural drainage network in the province and has initiated this work under Sindh Irrigation and Drainage Authority. In this paper, geospatial techniques are used to analyze landuse/land-cover changes of Larkana district over the past three decades (1980-present) and their impact on natural drainage system. Satellite derived Digital Elevation Model (DEM) and topographic sheets (recent and 1950) are used to delineate natural drainage pattern of the district. The urban landuse map developed in this study is further overlaid on drainage line layer to identify the critical areas where the natural floodwater flows are being inhibited by urbanization. Rainfall and flow data are utilized to identify areas of heavy flow, whereas, satellite data including Landsat 7 and Google Earth are used to map previous floods extent and landuse/cover of the study area. Alternatives to natural drainage systems are also suggested wherever possible. The output maps of natural drainage pattern can be used to develop a decision support system for urban planners, Sindh development authorities and flood mitigation and management agencies.

Keywords: geospatial techniques, satellite data, natural drainage, flood, urbanization

Procedia PDF Downloads 478
275 Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow

Authors: Mohamed Elghorab, Vendra C. Madhav Rao, Jennifer X. Wen

Abstract:

Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, ReT = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.

Keywords: flux limiters, implicit SGS, MILES, OpenFOAM, turbulence statistics

Procedia PDF Downloads 164
274 An Empirical Study on the Impact of Peace in Tourists' Country of Origin on Their Travel Behavior

Authors: Claudia Seabra, Elisabeth Kastenholz, José Luís Abrantes, Manuel Reis

Abstract:

In a world of increasing mobility and global risks, terrorism has, in a perverse way, capitalized on contemporaneous society’s growing interest in travel to explore a world whose national boundaries and distances have decreased. Terrorists have identified the modern tourist flows originated from the economically more developed countries as new appealing targets so as to: i) call attention to the causes they defend and ii) destroy a country’s foundations of tourism, with the final aim of disrupting the economic and consequently social fabric of the affected countries. The present study analyses sensitivity towards risk and travel behaviors in international travel amongst a sample of 600 international tourists from 49 countries travelling by air. Specifically, the sample was segmented according to the Global Peace Index. This index defines country profiles regarding the levels of peace. The indicators used are established over three broad themes: i) ongoing domestic and international conflict; ii) societal safety and security; and iii) militarisation. Tourists were segmented, according to their country of origin, in different levels of peacefulness. Several facets of travel behavior were evaluated, namely motivations, attitude towards trip planning, quality perception and perceived value of the trip. Also factors related with risk perception were evaluated, specifically terrorism risk perception during the trip, unsafety sensation as well as importance attributed to safety in travel. Results contribute to our understanding of the role of previous exposure to the lack of peace and safety at home in the international tourists behaviors, which is further discussed in terms of tourism management and marketing implications which should particularly interest tourism services and destinations more affected by terrorism, war, political turmoil, crime and other safety risks.

Keywords: terrorism, tourism, safety, risk perception

Procedia PDF Downloads 419
273 A Study on Utilizing Temporary Water Treatment Facilities to Tackle Century-Long Drought and Emergency Water Supply

Authors: Yu-Che Cheng, Min-Lih Chang, Ke-Hao Cheng, Chuan-Cheng Wang

Abstract:

Taiwan is an island located along the southeastern coast of the Asian continent, located between Japan and the Philippines. It is surrounded by the sea on all sides. However, due to the presence of the Central Mountain Range, the rivers on the east and west coasts of Taiwan are relatively short. This geographical feature results in a phenomenon where, despite having rainfall that is 2.6 times the world average, 58.5% of the rainwater flows into the ocean. Moreover, approximately 80% of the annual rainfall occurs between May and October, leading to distinct wet and dry periods. To address these challenges, Taiwan relies on large reservoirs, storage ponds, and groundwater extraction for water resource allocation. It is necessary to construct water treatment facilities at suitable locations to provide the population with a stable and reliable water supply. In general, the construction of a new water treatment plant requires careful planning and evaluation. The process involves acquiring land and issuing contracts for construction in a sequential manner. With the increasing severity of global warming and climate change, there is a heightened risk of extreme hydrological events and severe water situations in the future. In cases of urgent water supply needs in a region, relying on traditional lengthy processes for constructing water treatment plants might not be sufficient to meet the urgent demand. Therefore, this study aims to explore the use of simplified water treatment procedures and the construction of rapid "temporary water treatment plants" to tackle the challenges posed by extreme climate conditions (such as a century-long drought) and situations where water treatment plant construction cannot keep up with the pace of water source development.

Keywords: temporary water treatment plant, emergency water supply, construction site groundwater, drought

Procedia PDF Downloads 51
272 Redesigning the Plant Distribution of an Industrial Laundry in Arequipa

Authors: Ana Belon Hercilla

Abstract:

The study is developed in “Reactivos Jeans” company, in the city of Arequipa, whose main business is the laundry of garments at an industrial level. In 2012 the company initiated actions to provide a dry cleaning service of alpaca fiber garments, recognizing that this item is in a growth phase in Peru. Additionally this company took the initiative to use a new greenwashing technology which has not yet been developed in the country. To accomplish this, a redesign of both the process and the plant layout was required. For redesigning the plant, the methodology used was the Systemic Layout Planning, allowing this study divided into four stages. First stage is the information gathering and evaluation of the initial situation of the company, for which a description of the areas, facilities and initial equipment, distribution of the plant, the production process and flows of major operations was made. Second stage is the development of engineering techniques that allow the logging and analysis procedures, such as: Flow Diagram, Route Diagram, DOP (process flowchart), DAP (analysis diagram). Then the planning of the general distribution is carried out. At this stage, proximity factors of the areas are established, the Diagram Paths (TRA) is developed, and the Relational Diagram Activities (DRA). In order to obtain the General Grouping Diagram (DGC), further information is complemented by a time study and Guerchet method is used to calculate the space requirements for each area. Finally, the plant layout redesigning is presented and the implementation of the improvement is made, making it possible to obtain a model much more efficient than the initial design. The results indicate that the implementation of the new machinery, the adequacy of the plant facilities and equipment relocation resulted in a reduction of the production cycle time by 75.67%, routes were reduced by 68.88%, the number of activities during the process were reduced by 40%, waits and storage were removed 100%.

Keywords: redesign, time optimization, industrial laundry, greenwashing

Procedia PDF Downloads 369
271 Determination of Unsaturated Soil Permeability Based on Geometric Factor Development of Constant Discharge Model

Authors: A. Rifa’i, Y. Takeshita, M. Komatsu

Abstract:

After Yogyakarta earthquake in 2006, the main problem that occurred in the first yard of Prambanan Temple is ponding area that occurred after rainfall. Soil characterization needs to be determined by conducting several processes, especially permeability coefficient (k) in both saturated and unsaturated conditions to solve this problem. More accurate and efficient field testing procedure is required to obtain permeability data that present the field condition. One of the field permeability test equipment is Constant Discharge procedure to determine the permeability coefficient. Necessary adjustments of the Constant Discharge procedure are needed to be determined especially the value of geometric factor (F) to improve the corresponding value of permeability coefficient. The value of k will be correlated with the value of volumetric water content (θ) of an unsaturated condition until saturated condition. The principle procedure of Constant Discharge model provides a constant flow in permeameter tube that flows into the ground until the water level in the tube becomes constant. Constant water level in the tube is highly dependent on the tube dimension. Every tube dimension has a shape factor called the geometric factor that affects the result of the test. Geometric factor value is defined as the characteristic of shape and radius of the tube. This research has modified the geometric factor parameters by using empty material tube method so that the geometric factor will change. Saturation level is monitored by using soil moisture sensor. The field test results were compared with the results of laboratory tests to validate the results of the test. Field and laboratory test results of empty tube material method have an average difference of 3.33 x 10-4 cm/sec. The test results showed that modified geometric factor provides more accurate data. The improved methods of constant discharge procedure provide more relevant results.

Keywords: constant discharge, geometric factor, permeability coefficient, unsaturated soils

Procedia PDF Downloads 272
270 Effects of Bleaching Procedures on Dentine Sensitivity

Authors: Suhayla Reda Al-Banai

Abstract:

Problem Statement: Tooth whitening was used for over one hundred and fifty year. The question concerning the whiteness of teeth is a complex one since tooth whiteness will vary from individual to individual, dependent on age and culture, etc. Tooth whitening following treatment may be dependent on the type of whitening system used to whiten the teeth. There are a few side-effects to the process, and these include tooth sensitivity and gingival irritation. Some individuals may experience no pain or sensitivity following the procedure. Purpose: To systematically review the available published literature until 31st December 2021 to identify all relevant studies for inclusion and to determine whether there was any evidence demonstrating that the application of whitening procedures resulted in the tooth sensitivity. Aim: Systematically review the available published works of literature to identify all relevant studies for inclusion and to determine any evidence demonstrating that application of 10% & 15% carbamide peroxide in tooth whitening procedures resulted in tooth sensitivity. Material and Methods: Following a review of 70 relevant papers from searching both electronic databases (OVID MEDLINE and PUBMED) and hand searching of relevant written journals, 49 studies were identified, 42 papers were subsequently excluded, and 7 studies were finally accepted for inclusion. The extraction of data for inclusion was conducted by two reviewers. The main outcome measures were the methodology and assessment used by investigators to evaluate tooth sensitivity in tooth whitening studies. Results: The reported evaluation of tooth sensitivity during tooth whitening procedures was based on the subjective response of subjects rather than a recognized methodology for evaluating. One of the problems in evaluating was the lack of homogeneity in study design. Seven studies were included. The studies included essential features namely: randomized group, placebo controls, doubleblind and single-blind. Drop-out was obtained from two of included studies. Three of the included studies reported sensitivity at the baseline visit. Two of the included studies mentioned the exclusion criteria Conclusions: The results were inconclusive due to: Limited number of included studies, the study methodology, and evaluation of DS reported. Tooth whitening procedures adversely affect both hard and soft tissues in the oral cavity. Sideeffects are mild and transient in nature. Whitening solutions with greater than 10% carbamide peroxide causes more tooth sensitivity. Studies using nightguard vital bleaching with 10% carbamide peroxide reported two side effects tooth sensitivity and gingival irritation, although tooth sensitivity was more prevalent than gingival irritation

Keywords: dentine, sensitivity, bleaching, carbamide peroxde

Procedia PDF Downloads 48
269 Influence of Hydrophobic Surface on Flow Past Square Cylinder

Authors: S. Ajith Kumar, Vaisakh S. Rajan

Abstract:

In external flows, vortex shedding behind the bluff bodies causes to experience unsteady loads on a large number of engineering structures, resulting in structural failure. Vortex shedding can even turn out to be disastrous like the Tacoma Bridge failure incident. We need to have control over vortex shedding to get rid of this untoward condition by reducing the unsteady forces acting on the bluff body. In circular cylinders, hydrophobic surface in an otherwise no-slip surface is found to be delaying separation and minimizes the effects of vortex shedding drastically. Flow over square cylinder stands different from this behavior as separation can takes place from either of the two corner separation points (front or rear). An attempt is made in this study to numerically elucidate the effect of hydrophobic surface in flow over a square cylinder. A 2D numerical simulation has been done to understand the effects of the slip surface on the flow past square cylinder. The details of the numerical algorithm will be presented at the time of the conference. A non-dimensional parameter, Knudsen number is defined to quantify the slip on the cylinder surface based on Maxwell’s equation. The slip surface condition of the wall affects the vorticity distribution around the cylinder and the flow separation. In the numerical analysis, we observed that the hydrophobic surface enhances the shedding frequency and damps down the amplitude of oscillations of the square cylinder. We also found that the slip has a negative effect on aerodynamic force coefficients such as the coefficient of lift (CL), coefficient of drag (CD) etc. and hence replacing the no slip surface by a hydrophobic surface can be treated as an effective drag reduction strategy and the introduction of hydrophobic surface could be utilized for reducing the vortex induced vibrations (VIV) and is found as an effective method in controlling VIV thereby controlling the structural failures.

Keywords: drag reduction, flow past square cylinder, flow control, hydrophobic surfaces, vortex shedding

Procedia PDF Downloads 357
268 Part Variation Simulations: An Industrial Case Study with an Experimental Validation

Authors: Narendra Akhadkar, Silvestre Cano, Christophe Gourru

Abstract:

Injection-molded parts are widely used in power system protection products. One of the biggest challenges in an injection molding process is shrinkage and warpage of the molded parts. All these geometrical variations may have an adverse effect on the quality of the product, functionality, cost, and time-to-market. The situation becomes more challenging in the case of intricate shapes and in mass production using multi-cavity tools. To control the effects of shrinkage and warpage, it is very important to correctly find out the input parameters that could affect the product performance. With the advances in the computer-aided engineering (CAE), different tools are available to simulate the injection molding process. For our case study, we used the MoldFlow insight tool. Our aim is to predict the spread of the functional dimensions and geometrical variations on the part due to variations in the input parameters such as material viscosity, packing pressure, mold temperature, melt temperature, and injection speed. The input parameters may vary during batch production or due to variations in the machine process settings. To perform the accurate product assembly variation simulation, the first step is to perform an individual part variation simulation to render realistic tolerance ranges. In this article, we present a method to simulate part variations coming from the input parameters variation during batch production. The method is based on computer simulations and experimental validation using the full factorial design of experiments (DoE). The robustness of the simulation model is verified through input parameter wise sensitivity analysis study performed using simulations and experiments; all the results show a very good correlation in the material flow direction. There exists a non-linear interaction between material and the input process variables. It is observed that the parameters such as packing pressure, material, and mold temperature play an important role in spread on functional dimensions and geometrical variations. This method will allow us in the future to develop accurate/realistic virtual prototypes based on trusted simulated process variation and, therefore, increase the product quality and potentially decrease the time to market.

Keywords: correlation, molding process, tolerance, sensitivity analysis, variation simulation

Procedia PDF Downloads 154