Search results for: automated quantification
483 Vitamin Content of Swordfish (Xhiphias gladius) Affected by Salting and Frying
Authors: L. Piñeiro, N. Cobas, L. Gómez-Limia, S. Martínez, I. Franco
Abstract:
The swordfish (Xiphias gladius) is a large oceanic fish of high commercial value, which is widely distributed in waters of the world’s oceans. They are considered to be an important source of high quality proteins, vitamins and essential fatty acids, although only half of the population follows the recommendation of nutritionists to consume fish at least twice a week. Swordfish is consumed worldwide because of its low fat content and high protein content. It is generally sold as fresh, frozen, and as pieces or slices. The aim of this study was to evaluate the effect of salting and frying on the composition of the water-soluble vitamins (B2, B3, B9 and B12) and fat-soluble vitamins (A, D, and E) of swordfish. Three loins of swordfish from Pacific Ocean were analyzed. All the fishes had a weight between 50 and 70 kg and were transported to the laboratory frozen (-18 ºC). Before the processing, they were defrosted at 4 ºC. Each loin was sliced and salted in brine. After cleaning the slices, they were divided into portions (10×2 cm) and fried in olive oil. The identification and quantification of vitamins were carried out by high-performance liquid chromatography (HPLC), using methanol and 0.010% trifluoroacetic acid as mobile phases at a flow-rate of 0.7 mL min-1. The UV-Vis detector was used for the detection of the water- and fat-soluble vitamins (A and D), as well as the fluorescence detector for the detection of the vitamin E. During salting, water and fat-soluble vitamin contents remained constant, observing an evident decrease in the values of vitamin B2. The diffusion of salt into the interior of the pieces and the loss of constitution water that occur during this stage would be related to this significant decrease. In general, after frying water-soluble and fat-soluble vitamins showed a great thermolability with high percentages of retention with values among 50–100%. Vitamin B3 is the one that exhibited higher percentages of retention with values close to 100%. However, vitamin B9 presented the highest losses with a percentage of retention of less than 20%.Keywords: frying, HPLC, salting, swordfish, vitamins
Procedia PDF Downloads 126482 Defining a Reference Architecture for Predictive Maintenance Systems: A Case Study Using the Microsoft Azure IoT-Cloud Components
Authors: Walter Bernhofer, Peter Haber, Tobias Mayer, Manfred Mayr, Markus Ziegler
Abstract:
Current preventive maintenance measures are cost intensive and not efficient. With the available sensor data of state of the art internet of things devices new possibilities of automated data processing emerge. Current advances in data science and in machine learning enable new, so called predictive maintenance technologies, which empower data scientists to forecast possible system failures. The goal of this approach is to cut expenses in preventive maintenance by automating the detection of possible failures and to improve efficiency and quality of maintenance measures. Additionally, a centralization of the sensor data monitoring can be achieved by using this approach. This paper describes the approach of three students to define a reference architecture for a predictive maintenance solution in the internet of things domain with a connected smartphone app for service technicians. The reference architecture is validated by a case study. The case study is implemented with current Microsoft Azure cloud technologies. The results of the case study show that the reference architecture is valid and can be used to achieve a system for predictive maintenance execution with the cloud components of Microsoft Azure. The used concepts are technology platform agnostic and can be reused in many different cloud platforms. The reference architecture is valid and can be used in many use cases, like gas station maintenance, elevator maintenance and many more.Keywords: case study, internet of things, predictive maintenance, reference architecture
Procedia PDF Downloads 250481 Road Condition Monitoring Using Built-in Vehicle Technology Data, Drones, and Deep Learning
Authors: Judith Mwakalonge, Geophrey Mbatta, Saidi Siuhi, Gurcan Comert, Cuthbert Ruseruka
Abstract:
Transportation agencies worldwide continuously monitor their roads' conditions to minimize road maintenance costs and maintain public safety and rideability quality. Existing methods for carrying out road condition surveys involve manual observations of roads using standard survey forms done by qualified road condition surveyors or engineers either on foot or by vehicle. Automated road condition survey vehicles exist; however, they are very expensive since they require special vehicles equipped with sensors for data collection together with data processing and computing devices. The manual methods are expensive, time-consuming, infrequent, and can hardly provide real-time information for road conditions. This study contributes to this arena by utilizing built-in vehicle technologies, drones, and deep learning to automate road condition surveys while using low-cost technology. A single model is trained to capture flexible pavement distresses (Potholes, Rutting, Cracking, and raveling), thereby providing a more cost-effective and efficient road condition monitoring approach that can also provide real-time road conditions. Additionally, data fusion is employed to enhance the road condition assessment with data from vehicles and drones.Keywords: road conditions, built-in vehicle technology, deep learning, drones
Procedia PDF Downloads 124480 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.Keywords: decision tree, genetic algorithm, machine learning, software defect prediction
Procedia PDF Downloads 329479 Contactless Attendance System along with Temperature Monitoring
Authors: Nalini C. Iyer, Shraddha H., Anagha B. Varahamurthy, Dikshith C. S., Ishwar G. Kubasad, Vinayak I. Karalatti, Pavan B. Mulimani
Abstract:
The current scenario of the pandemic due to COVID-19 has led to the awareness among the people to avoid unneces-sary contact in public places. There is a need to avoid contact with physical objects to stop the spreading of infection. The contactless feature has to be included in the systems in public places wherever possible. For example, attendance monitoring systems with fingerprint biometric can be replaced with a contactless feature. One more important protocol followed in the current situation is temperature monitoring and screening. The paper describes an attendance system with a contactless feature and temperature screening for the university. The system displays a QR code to scan, which redirects to the student login web page only if the location is valid (the location where the student scans the QR code should be the location of the display of the QR code). Once the student logs in, the temperature of the student is scanned by the contactless temperature sensor (mlx90614) with an error of 0.5°C. If the temperature falls in the range of the desired value (range of normal body temperature), then the attendance of the student is marked as present, stored in the database, and the door opens automatically. The attendance is marked as absent in the other case, alerted with the display of temperature, and the door remains closed. The door is automated with the help of a servomotor. To avoid the proxy, IR sensors are used to count the number of students in the classroom. The hardware system consisting of a contactless temperature sensor and IR sensor is implemented on the microcontroller, NodeMCU.Keywords: NodeMCU, IR sensor, attendance monitoring, contactless, temperature
Procedia PDF Downloads 185478 Computer-Aided Detection of Simultaneous Abdominal Organ CT Images by Iterative Watershed Transform
Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid
Abstract:
Interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Segmentation of liver, spleen and kidneys is regarded as a major primary step in the computer-aided diagnosis of abdominal organ diseases. In this paper, a semi-automated method for medical image data is presented for the abdominal organ segmentation data using mathematical morphology. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. Our algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter, we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, simultaneous organ segmentation, the watershed algorithm
Procedia PDF Downloads 440477 Impacts of Applying Automated Vehicle Location Systems to Public Bus Transport Management
Authors: Vani Chintapally
Abstract:
The expansion of modest and minimized Global Positioning System (GPS) beneficiaries has prompted most Automatic Vehicle Location (AVL) frameworks today depending solely on satellite-based finding frameworks, as GPS is the most stable usage of these. This paper shows the attributes of a proposed framework for following and dissecting open transport in a run of the mill medium-sized city and complexities the qualities of such a framework to those of broadly useful AVL frameworks. Particular properties of the courses broke down by the AVL framework utilized for the examination of open transport in our study incorporate cyclic vehicle courses, the requirement for particular execution reports, and so forth. This paper particularly manages vehicle movement forecasts and the estimation of station landing time, combined with consequently produced reports on timetable conformance and other execution measures. Another side of the watched issue is proficient exchange of information from the vehicles to the control focus. The pervasiveness of GSM bundle information exchange advancements combined with decreased information exchange expenses have brought on today's AVL frameworks to depend predominantly on parcel information exchange administrations from portable administrators as the correspondences channel in the middle of vehicles and the control focus. This methodology brings numerous security issues up in this conceivably touchy application field.Keywords: automatic vehicle location (AVL), expectation of landing times, AVL security, data administrations, wise transport frameworks (ITS), guide coordinating
Procedia PDF Downloads 383476 Installing Beehives in Solar Parks to Enhance Local Biodiversity
Authors: Nuria Rubio, María Campo, Joana Ruiz, Paola Vecino
Abstract:
Renewable energies have been proposed for some years as a solution to the ecological crisis caused by traditional fuels. The installation of solar parks for electricity production is therefore necessary for a transition to cleaner energy. Additionally, spaces occupied by solar parks can be ideal places for biodiversity promotion consisting in controlled areas allowing free transit of numerous animal species in absence of phytosanitary products or other substances commonly used in rural areas. The main objective of this project is increasing local biodiversity. Secondary objectives include the installation of beehives with Apis mellifera iberiensis swarms (native honeybee species), the monitoring and periodic evaluation of the state of health and demographic progression of these swarms and study of biodiversity increase in these areas, mainly due to the presence of Apis mellifera iberiensis. Prior to bee-hives installation, a preliminary study of the area is carried out to quantify floral load, biocenosis and geo-climatological characteristics of the area of study for determining the optimal number of hives for the benefit of the local ecosystem. Once beehives set up, the bee-swarms health status is monitored and evaluated quarterly using monitoring systems. Parameters studies are weight, humidity inside the hive, external and internal temperature, and sound inside the hive. Furthermore, a biodiversity study of the area was conducted by direct observation and quantification of species (S) in the area of bee-foraging (1 km around the beehives). A great diversity of species has been detected in the area of study. Therefore, the population of Apis mellifera iberiensis is not displacing other pollinators in the area, on the contrary, results show that it is contributing to the pollination of the different plant species enhancing wild bees’ biodiversity.Keywords: biodiversity, honeybee, pollination, solar park
Procedia PDF Downloads 54475 Serum MicroRNA and Inflammatory Mediators: Diagnostic Biomarkers for Endometritis in Arabian Mares
Authors: Sally Ibrahim, Mohamed Hedia, Mohamed Taqi, Mohamed Derbala, Karima Mahmoud, Youssef Ahmed, Sayed Ismail, Mohamed El-Belely
Abstract:
The identification and quantification of serum microRNA (miRNA) from mares with endometritis might serve as useful and implementable clinical biomarkers for the early diagnosis of endometiritis. Aims of the current study were (I) to study the expression pattern of eca-miR-155, eca-miR-223, eca-miR-17, eca-miR-200a, and eca-miR-205, and (II) to determine the levels of interleukin 6 (IL-6), prostaglandins (PGF₂α and PGE₂), in the serum of Arabian mares with healthy and abnormal uterine status (endometritis). This study was conducted on 80 Arabian mares (4-14 years old). Mares were divided into 48 sub-fertile mares suspected of endometritis and 32 fertile at stud farms. The criteria for mares to be enrolled in the endometritis group were that they had been bred three or more times unsuccessfully in the breeding season or had a history of more than one year of reproductive failure. In addition, two or more of the following criteria on a checklist were present: abnormal clinical findings, transrectal ultrasonographic uterine examination showed abnormal fluid in the uterus (echogenic or ≥2 cm in diameter), positive endometrial cytology; and bacterial and/or fungal growth. Serum samples were collected for measuring IL-6, PGF₂α, and PGE₂ concentrations, as well as serum miRNA isolation and quantitative real-time PCR. Serum concentrations of IL-6, PGE₂, and PGF₂α were higher (P ≤ 0.001) in mares with endometritis compared to the control healthy ones. The expression profile of eca-miR-155, eca-miR-223, eca-miR-17, eca-miR-200a, and eca-miR-205 increased (P≤0.001) in mares with endometritis compared to the control ones. To the best of our knowledge, this is the first study that revealed that serum miRNA and serum inflammatory mediators (IL-6, PGE₂, and PGF₂α) could be used as non-invasive gold standard biomarkers, and therefore might be served as an important additional diagnostic tool for endometritis in Arabian mares. Moreover, estimation of the serum concentrations of serum miRNA, IL-6, PGE₂, and PGF₂α is a promising recommended tool during the breeding soundness examination in mares.Keywords: Arabian Mares, endometritis, inflammatory mediators, serum miRNA
Procedia PDF Downloads 180474 Multi-Criteria Bid/No Bid Decision Support Framework for General Contractors: A Case of Pakistan
Authors: Nida Iftikhar, Jamaluddin Thaheem, Bilal Iftikhar
Abstract:
In the construction industry, adequate and effective decision-making can mean the difference between success and failure. Bidding is the most important element of the construction business since it is a mean by which contractors obtain work. This is probably the only option for any contractor firm to sustain in the market and achieve its objective of earning the profits by winning tenders. The capability to select most appropriate ventures not only defines the success and wellbeing of contractor firms but also their survival and sustainability in the industry. The construction practitioners are usually on their own when it comes to deciding on bidding for a project or not. Usually, experience-based solutions are offered where a lot of subjectivity is involved. This research has been opted considering the local construction industry of Pakistan in order to examine the critical success factors from contractors’ perspective while making bidding decisions, listing and evaluating critical factors in order of their importance, categorization of these factors into decision support & decision oppose groups and to develop a framework to help contractors in the decision-making process. Literature review, questionnaires, and structured interviews are used for identification and quantification of factors affecting bid/no bid decision-making. Statistical methods of ranking analysis and analytical hierarchy process of multi-criteria decision-making method are used for analysis. It is found that profitability, need for work and financial health of client are the most decisive factors in bid/no bid decision-making while project size, project type, fulfilling the tender conditions imposed by the client and relationship, identity & reputation of the client are least impact factors in bid/no bid decision-making. Further, to verify the developed framework, case studies have been conducted to evaluate the bid/no bid decision-making in building procurement. This is the first of its nature study in the context of the local construction industry and recommends using a holistic decision-making framework for such business-critical deliberations.Keywords: bidding, bid decision-making, construction procurement, contractor
Procedia PDF Downloads 191473 Blockchain Based Hydrogen Market (BBH₂): A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change
Authors: Volker Wannack
Abstract:
Regional, national, and international strategies focusing on hydrogen (H₂) and blockchain are driving significant advancements in hydrogen and blockchain technology worldwide. These strategies lay the foundation for the groundbreaking "Blockchain Based Hydrogen Market (BBH₂)" project. The primary goal of this project is to develop a functional Blockchain Minimum Viable Product (B-MVP) for the hydrogen market. The B-MVP will leverage blockchain as an enabling technology with a common database and platform, facilitating secure and automated transactions through smart contracts. This innovation will revolutionize logistics, trading, and transactions within the hydrogen market. The B-MVP has transformative potential across various sectors. It benefits renewable energy producers, surplus energy-based hydrogen producers, hydrogen transport and distribution grid operators, and hydrogen consumers. By implementing standardized, automated, and tamper-proof processes, the B-MVP enhances cost efficiency and enables transparent and traceable transactions. Its key objective is to establish the verifiable integrity of climate-friendly "green" hydrogen by tracing its supply chain from renewable energy producers to end users. This emphasis on transparency and accountability promotes economic, ecological, and social sustainability while fostering a secure and transparent market environment. A notable feature of the B-MVP is its cross-border operability, eliminating the need for country-specific data storage and expanding its global applicability. This flexibility not only broadens its reach but also creates opportunities for long-term job creation through the establishment of a dedicated blockchain operating company. By attracting skilled workers and supporting their training, the B-MVP strengthens the workforce in the growing hydrogen sector. Moreover, it drives the emergence of innovative business models that attract additional company establishments and startups and contributes to long-term job creation. For instance, data evaluation can be utilized to develop customized tariffs and provide demand-oriented network capacities to producers and network operators, benefitting redistributors and end customers with tamper-proof pricing options. The B-MVP not only brings technological and economic advancements but also enhances the visibility of national and international standard-setting efforts. Regions implementing the B-MVP become pioneers in climate-friendly, sustainable, and forward-thinking practices, generating interest beyond their geographic boundaries. Additionally, the B-MVP serves as a catalyst for research and development, facilitating knowledge transfer between universities and companies. This collaborative environment fosters scientific progress, aligns with strategic innovation management, and cultivates an innovation culture within the hydrogen market. Through the integration of blockchain and hydrogen technologies, the B-MVP promotes holistic innovation and contributes to a sustainable future in the hydrogen industry. The implementation process involves evaluating and mapping suitable blockchain technology and architecture, developing and implementing the blockchain, smart contracts, and depositing certificates of origin. It also includes creating interfaces to existing systems such as nomination, portfolio management, trading, and billing systems, testing the scalability of the B-MVP to other markets and user groups, developing data formats for process-relevant data exchange, and conducting field studies to validate the B-MVP. BBH₂ is part of the "Technology Offensive Hydrogen" funding call within the research funding of the Federal Ministry of Economics and Climate Protection in the 7th Energy Research Programme of the Federal Government.Keywords: hydrogen, blockchain, sustainability, innovation, structural change
Procedia PDF Downloads 168472 Expression Level of Dehydration-Responsive Element Binding/DREB Gene of Some Local Corn Cultivars from Kisar Island-Maluku Indonesia Using Quantitative Real-Time PCR
Authors: Hermalina Sinay, Estri L. Arumingtyas
Abstract:
The research objective was to determine the expression level of dehydration responsive element binding/DREB gene of local corn cultivars from Kisar Island Maluku. The study design was a randomized block design with single factor consist of six local corn cultivars obtained from farmers in Kisar Island and one reference varieties wich has been released by the government as a drought-tolerant varieties and obtained from Cereal Crops Research Institute (ICERI) Maros South Sulawesi. Leaf samples were taken is the second leaf after the flag leaf at the 65 days after planting. Isolation of total RNA from leaf samples was carried out according to the protocols of the R & A-BlueTM Total RNA Extraction Kit and was used as a template for cDNA synthesis. The making of cDNA from total RNA was carried out according to the protocol of One-Step Reverse Transcriptase PCR Premix Kit. Real Time-PCR was performed on cDNA from reverse transcription followed the procedures of Real MODTM Green Real-Time PCR Master Mix Kit. Data obtained from the real time-PCR results were analyzed using relative quantification method based on the critical point / Cycle Threshold (CP / CT). The results of gene expression analysis of DREB gene showed that the expression level of the gene was highest obtained at Deep Yellow local corn cultivar, and the lowest one was obtained at the Rubby Brown Cob cultivar. It can be concluded that the expression level of DREB gene of Deep Yellow local corn cultivar was highest than other local corn cultivars and Srikandi variety as a reference variety.Keywords: expression, level, DREB gene, local corn cultivars, Kisar Island, Maluku
Procedia PDF Downloads 299471 Scoping Review of Biological Age Measurement Composed of Biomarkers
Authors: Diego Alejandro Espíndola-Fernández, Ana María Posada-Cano, Dagnóvar Aristizábal-Ocampo, Jaime Alberto Gallo-Villegas
Abstract:
Background: With the increase in life expectancy, aging has been subject of frequent research, and therefore multiple strategies have been proposed to quantify the advance of the years based on the known physiology of human senescence. For several decades, attempts have been made to characterize these changes through the concept of biological age, which aims to integrate, in a measure of time, structural or functional variation through biomarkers in comparison with simple chronological age. The objective of this scoping review is to deepen the updated concept of measuring biological age composed of biomarkers in the general population and to summarize recent evidence to identify gaps and priorities for future research. Methods: A scoping review was conducted according to the five-phase methodology developed by Arksey and O'Malley through a search of five bibliographic databases to February 2021. Original articles were included with no time or language limit that described the biological age composed of at least two biomarkers in those over 18 years of age. Results: 674 articles were identified, of which 105 were evaluated for eligibility and 65 were included with information on the measurement of biological age composed of biomarkers. Articles from 1974 of 15 nationalities were found, most observational studies, in which clinical or paraclinical biomarkers were used, and 11 different methods described for the calculation of the composite biological age were informed. The outcomes reported were the relationship with the same measured biomarkers, specified risk factors, comorbidities, physical or cognitive functionality, and mortality. Conclusions: The concept of biological age composed of biomarkers has evolved since the 1970s and multiple methods of its quantification have been described through the combination of different clinical and paraclinical variables from observational studies. Future research should consider the population characteristics, and the choice of biomarkers against the proposed outcomes to improve the understanding of aging variables to direct effective strategies for a proper approach.Keywords: biological age, biological aging, aging, senescence, biomarker
Procedia PDF Downloads 186470 Alternative Water Resources and Brominated Byproducts
Authors: Nora Kuiper, Candace Rowell, Hugues Preud'Homme, Basem Shomar
Abstract:
As the global dependence on seawater desalination as a primary drinking water resource increases, a unique class of secondary pollutants is emerging. The presence of bromide salts in seawater may result in increased levels of bromine and brominated byproducts in drinking water. The State of Qatar offers a unique setting to study these pollutants and their impacts on consumers as the country is 100% dependent on seawater desalination to supply municipal tap water and locally produced bottled water. Tap water (n=115) and bottled water (n=62) samples were collected throughout the State of Qatar and analyzed for a suite of inorganic and organic compounds, including 54 volatile organic compounds (VOCs), with an emphasis on brominated byproducts. All VOC identification and quantification was completed using a Bruker Scion GCMSMS with static headspace technologies. A risk survey tool was used to collect information regarding local consumption habits, health outcomes and perception of water sources for adults and children. This study is the first of its kind in the country. Dibromomethane, bromoform, and bromobenzene were detected in 61%, 88% and 2%, of the drinking water samples analyzed. The levels of dibromomethane ranged from approximately 100-500 ng/L and the concentrations of bromoform ranged from approximately 5-50 µg/L. Additionally, bromobenzene concentrations were 60 ng/L. The presence of brominated compounds in drinking water is a public health concern specific to populations using seawater as a feed water source and may pose unique risks that have not been previously studied. Risk assessments are ongoing to quantify the risks associated with prolonged consumption of disinfection byproducts; specifically the risks of brominated trihalomethanes as the levels of bromoform found in Qatar’s drinking water reach more than 60% of the US EPA’s Maximum Contaminant Level of all THMs.Keywords: brominated byproducts, desalination, trihalomethanes, risk assessment
Procedia PDF Downloads 428469 Research and Application of Multi-Scale Three Dimensional Plant Modeling
Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao
Abstract:
Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition
Procedia PDF Downloads 277468 Integrating Best Practices for Construction Waste in Quality Management Systems
Authors: Paola Villoria Sáez, Mercedes Del Río Merino, Jaime Santa Cruz Astorqui, Antonio Rodríguez Sánchez
Abstract:
The Spanish construction industry generates large volumes of waste. However, despite the legislative improvements introduced for construction and demolition waste (CDW), construction waste recycling rate remains well below other European countries and also below the target set for 2020. This situation can be due to many difficulties. i.e.: The difficulty of onsite segregation or the estimation in advance of the total amount generated. Despite these difficulties, the proper management of CDW must be one of the main aspects to be considered by the construction companies. In this sense, some large national companies are implementing Integrated Management Systems (IMS) including not only quality and safety aspects, but also environment issues. However, although this fact is a reality for large construction companies still the vast majority of companies need to adopt this trend. In short, it is common to find in small and medium enterprises a decentralized management system: A single system of quality management, another for system safety management and a third one for environmental management system (EMS). In addition, the EMSs currently used address CDW superficially and are mainly focus on other environmental concerns such as carbon emissions. Therefore, this research determines and implements a specific best practice management system for CDW based on eight procedures in a Spanish Construction company. The main advantages and drawbacks of its implementation are highlighted. Results of this study show that establishing and implementing a CDW management system in building works, improve CDW quantification as the company obtains their own CDW generation ratio. This helps construction stakeholders when developing CDW Management Plans and also helps to achieve a higher adjustment of CDW management costs. Finally, integrating this CDW system with the EMS of the company favors the cohesion of the construction process organization at all stages, establishing responsibilities in the field of waste and providing a greater control over the process.Keywords: construction and demolition waste, waste management, best practices, waste minimization, building, quality management systems
Procedia PDF Downloads 533467 Computational Fluid Dynamics Simulation of Reservoir for Dwell Time Prediction
Authors: Nitin Dewangan, Nitin Kattula, Megha Anawat
Abstract:
Hydraulic reservoir is the key component in the mobile construction vehicles; most of the off-road earth moving construction machinery requires bigger side hydraulic reservoirs. Their reservoir construction is very much non-uniform and designers used such design to utilize the space available under the vehicle. There is no way to find out the space utilization of the reservoir by oil and validity of design except virtual simulation. Computational fluid dynamics (CFD) helps to predict the reservoir space utilization by vortex mapping, path line plots and dwell time prediction to make sure the design is valid and efficient for the vehicle. The dwell time acceptance criteria for effective reservoir design is 15 seconds. The paper will describe the hydraulic reservoir simulation which is carried out using CFD tool acuSolve using automated mesh strategy. The free surface flow and moving reference mesh is used to define the oil flow level inside the reservoir. The first baseline design is not able to meet the acceptance criteria, i.e., dwell time below 15 seconds because the oil entry and exit ports were very close. CFD is used to redefine the port locations for the reservoir so that oil dwell time increases in the reservoir. CFD also proposed baffle design the effective space utilization. The final design proposed through CFD analysis is used for physical validation on the machine.Keywords: reservoir, turbulence model, transient model, level set, free-surface flow, moving frame of reference
Procedia PDF Downloads 151466 Simulating Elevated Rapid Transit System for Performance Analysis
Authors: Ran Etgar, Yuval Cohen, Erel Avineri
Abstract:
One of the major challenges of transportation in medium sized inner-cities (such as Tel-Aviv) is the last-mile solution. Personal rapid transit (PRT) seems like an applicable candidate for this, as it combines the benefits of personal (car) travel with the operational benefits of transit. However, the investment required for large area PRT grid is significant and there is a need to economically justify such investment by correctly evaluating the grid capacity. PRT main elements are small automated vehicles (sometimes referred to as podcars) operating on a network of specially built guideways. The research is looking at a specific concept of elevated PRT system. Literature review has revealed the drawbacks PRT modelling and simulation approaches, mainly due to the lack of consideration of technical and operational features of the system (such as headways, acceleration, safety issues); the detailed design of infrastructure (guideways, stations, and docks); the stochastic and sessional characteristics of demand; and safety regulations – all of them have a strong effect on the system performance. A highly detailed model of the system, developed in this research, is applying a discrete event simulation combined with an agent-based approach, to represent the system elements and the podecars movement logic. Applying a case study approach, the simulation model is used to study the capacity of the system, the expected throughput of the system, the utilization, and the level of service (journey time, waiting time, etc.).Keywords: capacity, productivity measurement, PRT, simulation, transportation
Procedia PDF Downloads 166465 Performance Evaluation of Composite Beam under Uniform Corrosion
Authors: Ririt Aprilin Sumarsono
Abstract:
Composite member (concrete and steel) has been widely advanced for structural utilization due to its best performance in resisting load, reducing the total weight of the structure, increasing stiffness, and other available advantages. On the other hand, the environment load such as corrosion (e.g. chloride ingress) creates significant time-dependent degradation for steel. Analysis performed in this paper is mainly considered uniform corrosion for evaluating the composite beam without examining the pit corrosion as the initial corrosion formed. Corrosion level in terms of weight loss is modified in yield stress and modulus elasticity of steel. Those two mechanical properties are utilized in this paper for observing the stresses due to corrosion attacked. As corrosion level increases, the effective width of the composite beam in the concrete section will be wider. The position of a neutral axis of composite section will indicate the composite action due to corrosion of composite beam so that numerous shear connectors provided must be reconsidered. Flexure capacity quantification provides stresses, and shear capacity calculation derives connectors needed in overcoming the shear problem for composite beam under corrosion. A model of simply supported composite beam examined in this paper under uniform corrosion where the stresses as the focus of the evaluation. Principal stress at the first stage of composite construction decline as the corrosion level incline, parallel for the second stage stress analysis where the tension region held by the steel undergoes lower capacity due to corrosion. Total stresses of the composite section for steel to be born significantly decreases particularly in the outermost fiber of tension side. Whereas, the available compression side is smaller as the corrosion level increases so that the stress occurs on the compression side shows reduction as well. As a conclusion, the increment of corrosion level will degrade both compression and tension side of stresses.Keywords: composite beam, modulus of elasticity, stress analysis, yield strength, uniform corrosion
Procedia PDF Downloads 286464 Design and Optimization of a Mini High Altitude Long Endurance (HALE) Multi-Role Unmanned Aerial Vehicle
Authors: Vishaal Subramanian, Annuatha Vinod Kumar, Santosh Kumar Budankayala, M. Senthil Kumar
Abstract:
This paper discusses the aerodynamic and structural design, simulation and optimization of a mini-High Altitude Long Endurance (HALE) UAV. The applications of this mini HALE UAV vary from aerial topological surveys, quick first aid supply, emergency medical blood transport, search and relief activates to border patrol, surveillance and estimation of forest fire progression. Although classified as a mini UAV according to UVS International, our design is an amalgamation of the features of ‘mini’ and ‘HALE’ categories, combining the light weight of the ‘mini’ and the high altitude ceiling and endurance of the HALE. Designed with the idea of implementation in India, it is in strict compliance with the UAS rules proposed by the office of the Director General of Civil Aviation. The plane can be completely automated or have partial override control and is equipped with an Infra-Red camera and a multi coloured camera with on-board storage or live telemetry, GPS system with Geo Fencing and fail safe measures. An additional of 1.5 kg payload can be attached to three major hard points on the aircraft and can comprise of delicate equipment or releasable payloads. The paper details the design, optimization process and the simulations performed using various software such as Design Foil, XFLR5, Solidworks and Ansys.Keywords: aircraft, endurance, HALE, high altitude, long range, UAV, unmanned aerial vehicle
Procedia PDF Downloads 396463 Salt Tolerance of Potato: Genetically Engineered with Atriplex canescens BADH Gene Driven by 3 Copies of CAMV35s Promoter
Authors: Arfan Ali, Muhammad Shahzad Iqbal, Idrees Ahmad Nasir
Abstract:
Potato (Solanum tuberosum L.) is ranked among the top leading staple foods in the world. Salinity adversely affects potato crop yield and quality. Therefore, increased level of salt tolerance is a key factor to ensure high yield. The present study focused on the Agrobacterium-mediated transformation of Atriplex canescens betaine aldehyde dehydrogenase (BADH) gene, using single, double and triple CAMV35s promoter to improve salt tolerance in potato. Detection of seven potato lines harboring BADH gene, followed by identification of T-DNA insertions, determination of transgenes copies no through Southern Hybridization and quantification of BADH protein through Enzyme Linked Immunosorbent Assay were considered in this study. The results clearly depict that the salt tolerance of potato was found to be promoter-dependent, as the potato transgenic lines with triple promoter showed 4.4 times more glycine betaine production which consequently leads towards high resistance to salt stress as compared to transgenic potato lines with single and double promoters having least production of glycine betaine. Moreover, triple promoter transgenic potato lines have also shown lower levels of H2O2, malondialdehyde (MDA), relative electrical conductivity, high proline and chlorophyll content as compared other two lines having a single and double promoter. Insilco analysis also confirmed that Atriplex canescens BADH has the tendency to interact with sodium ions and water molecules. Taken together these facts it can be concluded that over-expression of BADH under triple CAMV35s promoter with more glycine betaine, chlorophyll & MDA contents, high relative quantities of other metabolites results in an enhanced level of salt tolerance in potato.Keywords: Atriplex canescens, BADH, CAMV35s promotor, potato, Solanum tubersum
Procedia PDF Downloads 277462 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall
Procedia PDF Downloads 276461 Assessment of Alteration in High Density Lipo Protein, Apolipoprotein A1, Serum Glutamic Pyruvic Transaminase and Serum Glutamic Oxaloacetic Transaminase in Oral Submucous Fibrosis Patients
Authors: Marina Lazar Chandy, N. Kannan, Rajendra Patil, Vinod Mathew, Ajmal Mohamed, P. K. Sreeja, Renju Jose
Abstract:
Introduction- Arecoline, a major constituent of arecanut has shown to have some effect on liver. The use of arecanut is found to be the most common etiological factor for the development of Oral Submucous fibrosis (O.S.M.F). The effect of arecanut usage on liver in patients with O.S.M.F needs to be assessed. Lipids play a role in structural maintenance of cell. Alterations of lipid profile were noted in cancer patients. O.S.M.F being a precancerous lesion can have some effect on the level of lipids in the body. Objectives: This study was done to assess the alterations in liver enzymes (Serum Glutamic Pyruvic Transaminase(S.G.P.T ,Serum Glutamic Oxaloacetic Transaminase(S.G.O.T)) and lipid metabolism (High Density Lipoprotien(H.D.L) and Apo Lipoprotien A1 (Apo A1)) in patients with O.S.M.F. Methods-130 patients were taken for the study,100 patients with O.S.M.F and 30 as control group without O.S.M.F. Fasting blood sugar levels were taken, centrifuged and analyzed for S.G.P.T,S.G.O.T, H.D.L and Apo A1 using semi automated spectrophotometer. Results: After statistical analysis, it was concluded that there is an elevation of levels of S.G.P.T, S.G.O.T, and decreased levels of H.D.L, Apo A1 for O.S.M.F group when compared with control group. With increased grade of O.S.M.F. and duration of habit, S.G.P.T. & S.G.O.T. increased whereas, H.D.L. & Apo A1 decreased. All the values were statistically significant at p<0.01.Keywords: apolipoprotien A1, high density lipoprotien, oral submucous fibrosis, serum glutamic oxaloacetic transaminase
Procedia PDF Downloads 325460 Natural and Construction/Demolition Waste Aggregates: A Comparative Study
Authors: Debora C. Mendes, Matthias Eckert, Claudia S. Moço, Helio Martins, Jean-Pierre Gonçalves, Miguel Oliveira, Jose P. Da Silva
Abstract:
Disposal of construction and demolition waste (C&DW) in embankments in the periphery of cities causes both environmental and social problems. To achieve the management of C&DW, a detailed analysis of the properties of these materials should be done. In this work we report a comparative study of the physical, chemical and environmental properties of natural and C&DW aggregates from 25 different origins. Assays were performed according to European Standards. Analysis of heavy metals and organic compounds, namely polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were performed. Finally, properties of concrete prepared with C&DW aggregates are reported. Physical analyses of C&DW aggregates indicated lower quality properties than natural aggregates, particularly for concrete preparation and unbound layers of road pavements. Chemical properties showed that most samples (80%) meet the values required by European regulations for concrete and unbound layers of road pavements. Analyses of heavy metals Cd, Cr, Cu, Pb, Ni, Mo and Zn in the C&DW leachates showed levels below the limits established by the Council Decision of 19 December 2002. Identification and quantification of PCBs and PAHs indicated that few samples shows the presence of these compounds. The measured levels of PCBs and PAHs are also below the limits. Other compounds identified in the C&DW leachates include phthalates and diphenylmethanol. The characterized C&DW aggregates show lower quality properties than natural aggregates but most samples showed to be environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds should be made to trial safe C&DW aggregates. C&DW aggregates provide a good economic and environmental alternative to natural aggregates.Keywords: concrete preparation, construction and demolition waste, heavy metals, organic pollutants
Procedia PDF Downloads 359459 Evaluation of the Impact of Telematics Use on Young Drivers’ Driving Behaviour: A Naturalistic Driving Study
Authors: WonSun Chen, James Boylan, Erwin Muharemovic, Denny Meyer
Abstract:
In Australia, drivers aged between 18 and 24 remained at high risk of road fatality over the last decade. Despite the successful implementation of the Graduated Licensing System (GLS) that supports young drivers in their early phases of driving, the road fatality statistics for these drivers remains high. In response to these statistics, studies conducted in Australia prior to the start of the COVID-19 pandemic have demonstrated the benefits of using telematics devices for improving driving behaviour, However, the impact of COVID-19 lockdown on young drivers’ driving behaviour has emerged as a global concern. Therefore, this naturalistic study aimed to evaluate and compare the driving behaviour(such as acceleration, braking, speeding, etc.) of young drivers with the adoption of in-vehicle telematics devices. Forty-two drivers aged between 18 and 30 and residing in the Australian state of Victoria participated in this study during the period of May to October 2022. All participants drove with the telematics devices during the first 30-day. At the start of the second 30-day, twenty-one participants were randomised to an intervention group where they were provided with an additional telematics ray device that provided visual feedback to the drivers, especially when they committed to aggressive driving behaviour. The remaining twenty-one participants remined their driving journeys without the extra telematics ray device (control group). Such trustworthy data enabled the assessment of changes in the driving behaviour of these young drivers using a machine learning approach in Python. Results are expected to show participants from the intervention group will show improvements in their driving behaviour compared to those from the control group.Furthermore, the telematics data enable the assessment and quantification of such improvements in driving behaviour. The findings from this study are anticipated to shed some light in guiding the development of customised campaigns and interventions to further address the high road fatality among young drivers in Australia.Keywords: driving behaviour, naturalistic study, telematics data, young drivers
Procedia PDF Downloads 124458 General Architecture for Automation of Machine Learning Practices
Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain
Abstract:
Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler
Procedia PDF Downloads 57457 Automated Monitoring System to Support Investigation of Contributing Factors of Work-Related Disorders and Accidents
Authors: Erika R. Chambriard, Sandro C. Izidoro, Davidson P. Mendes, Douglas E. V. Pires
Abstract:
Work-related illnesses and disorders have been a constant aspect of work. Although their nature has changed over time, from musculoskeletal disorders to illnesses related to psychosocial aspects of work, its impact on the life of workers remains significant. Despite significant efforts worldwide to protect workers, the disparity between changes in work legislation and actual benefit for workers’ health has been creating a significant economic burden for social security and health systems around the world. In this context, this study aims to propose, test and validate a modular prototype that allows for work environmental aspects to be assessed, monitored and better controlled. The main focus is also to provide a historical record of working conditions and the means for workers to obtain comprehensible and useful information regarding their work environment and legal limits of occupational exposure to different types of environmental variables, as means to improve prevention of work-related accidents and disorders. We show the developed prototype provides useful and accurate information regarding the work environmental conditions, validating them with standard occupational hygiene equipment. We believe the proposed prototype is a cost-effective and adequate approach to work environment monitoring that could help elucidate the links between work and occupational illnesses, and that different industry sectors, as well as developing countries, could benefit from its capabilities.Keywords: Arduino prototyping, occupational health and hygiene, work environment, work-related disorders prevention
Procedia PDF Downloads 126456 SISSLE in Consensus-Based Ripple: Some Improvements in Speed, Security, Last Mile Connectivity and Ease of Use
Authors: Mayank Mundhra, Chester Rebeiro
Abstract:
Cryptocurrencies are rapidly finding wide application in areas such as Real Time Gross Settlements and Payments Systems. Ripple is a cryptocurrency that has gained prominence with banks and payment providers. It solves the Byzantine General’s Problem with its Ripple Protocol Consensus Algorithm (RPCA), where each server maintains a list of servers, called Unique Node List (UNL) that represents the network for the server, and will not collectively defraud it. The server believes that the network has come to a consensus when members of the UNL come to a consensus on a transaction. In this paper we improve Ripple to achieve better speed, security, last mile connectivity and ease of use. We implement guidelines and automated systems for building and maintaining UNLs for resilience, robustness, improved security, and efficient information propagation. We enhance the system so as to ensure that each server receives information from across the whole network rather than just from the UNL members. We also introduce the paradigm of UNL overlap as a function of information propagation and the trust a server assigns to its own UNL. Our design not only reduces vulnerabilities such as eclipse attacks, but also makes it easier to identify malicious behaviour and entities attempting to fraudulently Double Spend or stall the system. We provide experimental evidence of the benefits of our approach over the current Ripple scheme. We observe ≥ 4.97x and 98.22x in speedup and success rate for information propagation respectively, and ≥ 3.16x and 51.70x in speedup and success rate in consensus.Keywords: Ripple, Kelips, unique node list, consensus, information propagation
Procedia PDF Downloads 145455 Investigation of Mechanical Properties of Aluminum Tailor Welded Blanks
Authors: Dario Basile, Manuela De Maddis, Raffaella Sesana, Pasquale Russo Spena, Roberto Maiorano
Abstract:
Nowadays, the reduction of CO₂ emissions and the decrease in energy consumption are the main aims of several industries, especially in the automotive sector. To comply with the increasingly restrictive regulations, the automotive industry is constantly looking for innovative techniques to produce lighter, more efficient, and less polluting vehicles. One of the latest technologies, and still developing, is based on the fabrication of the body-in-white and car parts through the stamping of Aluminum Tailor Welded Blanks. Tailor Welded Blanks (TWBs) are generally the combination of two/three metal sheets with different thicknesses and/or mechanical strengths, which are commonly butt-welded together by laser sources. The use of aluminum TWBs has several advantages such as low density and corrosion resistance adequate. However, their use is still limited by the lower formability with respect to the parent materials and the more intrinsic difficulty of laser welding of aluminum sheets (i.e., internal porosity) that, although its use in automated industries is constantly growing, remains a process to be further developed and improved. This study has investigated the effect of the main laser welding process parameters (laser power, welding speed, and focal distance) on the mechanical properties of aluminum TWBs made of 6xxx series. The research results show that a narrow weldability window can be found to ensure welded joints with high strength and limited or no porosity.Keywords: aluminum sheets, automotive industry, laser welding, mechanical properties, tailor welded blanks
Procedia PDF Downloads 107454 Potential Risk Assessment Due to Groundwater Quality Deterioration and Quantifying the Major Influencing Factors Using Geographical Detectors in the Gunabay Watershed of Ethiopia
Authors: Asnakew Mulualem Tegegne, Tarun Kumar Lohani, , Abunu Atlabachew Eshete
Abstract:
Groundwater quality has become deteriorated due to natural and anthropogenic activities. Poor water quality has a potential risk to human health and the environment. Therefore, the study aimed to assess the potential risk of groundwater quality contamination levels and public health risks in the Gunabay watershed. For this task, seventy-eight groundwater samples were collected from thirty-nine locations in the dry and wet seasons during 2022. The ground water contamination index was applied to assess the overall quality of groundwater. Six major driving forces (temperature, population density, soil, land cover, recharge, and geology) and their quantitative impact of each factor on groundwater quality deterioration were demonstrated using Geodetector. The results showed that low groundwater quality was detected in urban and agricultural land. Especially nitrate contamination was highly linked to groundwater quality deterioration and public health risks, and a medium contamination level was observed in the area. This indicates that the inappropriate application of fertilizer on agricultural land and wastewater from urban areas has a great impact on shallow aquifers in the study area. Furthermore, the major influencing factors are ranked as soil type (0.33–0.31)>recharge (0.17–0.15)>temperature (0.13–0.08)>population density (0.1–0.08)>land cover types (0.07– 0.04)>lithology (0.05–0.04). The interaction detector revealed that the interaction between soil ∩ recharge, soil ∩ temperature, and soil ∩ land cover, temperature ∩ recharge is more influential to deteriorate groundwater quality in both seasons. Identification and quantification of the major influencing factors may provide new insight into groundwater resource management.Keywords: groundwater contamination index, geographical detectors, public health · influencing factors, and water resources management
Procedia PDF Downloads 16