Search results for: Trend Detection
4400 Fluorescence in situ Hybridization (FISH) Detection of Bacteria and Archaea in Fecal Samples
Authors: Maria Nejjari, Michel Cloutier, Guylaine Talbot, Martin Lanthier
Abstract:
The fluorescence in situ hybridization (FISH) is a staining technique that allows the identification, detection and quantification of microorganisms without prior cultivation by means of epifluorescence and confocal laser scanning microscopy (CLSM). Oligonucleotide probes have been used to detect bacteria and archaea that colonize the cattle and swine digestive systems. These bacterial strains have been obtained from fecal samples issued from cattle manure and swine slurry. The collection of these samples has been done at 3 different pit’s levels A, B and C with same height. Two collection depth levels have been taken in consideration, one collection level just under the pit’s surface and the second one at the bottom of the pit. Cells were fixed and FISH was performed using oligonucleotides of 15 to 25 nucleotides of length associated with a fluorescent molecule Cy3 or Cy5. The double hybridization using Cy3 probe targeting bacteria (Cy3-EUB338-I) along with a Cy5 probe targeting Archaea (Gy5-ARCH915) gave a better signal. The CLSM images show that there are more bacteria than archaea in swine slurry. However, the choice of fluorescent probes is critical for getting the double hybridization and a unique signature for each microorganism. FISH technique is an easy way to detect pathogens like E. coli O157, Listeria, Salmonella that easily contaminate water streams, agricultural soils and, consequently, food products and endanger human health.Keywords: archaea, bacteria, detection, FISH, fluorescence
Procedia PDF Downloads 3884399 Contourlet Transform and Local Binary Pattern Based Feature Extraction for Bleeding Detection in Endoscopic Images
Authors: Mekha Mathew, Varun P Gopi
Abstract:
Wireless Capsule Endoscopy (WCE) has become a great device in Gastrointestinal (GI) tract diagnosis, which can examine the entire GI tract, especially the small intestine without invasiveness and sedation. Bleeding in the digestive tract is a symptom of a disease rather than a disease itself. Hence the detection of bleeding is important in diagnosing many diseases. In this paper we proposes a novel method for distinguishing bleeding regions from normal regions based on Contourlet transform and Local Binary Pattern (LBP). Experiments show that this method provides a high accuracy rate of 96.38% in CIE XYZ colour space for k-Nearest Neighbour (k-NN) classifier.Keywords: Wireless Capsule Endoscopy, local binary pattern, k-NN classifier, contourlet transform
Procedia PDF Downloads 4854398 Distributed Framework for Pothole Detection and Monitoring Using Federated Learning
Authors: Ezil Sam Leni, Shalen S.
Abstract:
Transport service monitoring and upkeep are essential components of smart city initiatives. The main risks to the relevant departments and authorities are the ever-increasing vehicular traffic and the conditions of the roads. In India, the economy is greatly impacted by the road transport sector. In 2021, the Ministry of Road Transport and Highways Transport, Government of India, produced a report with statistical data on traffic accidents. The data included the number of fatalities, injuries, and other pertinent criteria. This study proposes a distributed infrastructure for the monitoring, detection, and reporting of potholes to the appropriate authorities. In a distributed environment, the nodes are the edge devices, and local edge servers, and global servers. The edge devices receive the initial model to be employed from the global server. The YOLOv8 model for pothole detection is used in the edge devices. The edge devices run the pothole detection model, gather the pothole images on their path, and send the updates to the nearby edge server. The local edge server selects the clients for its aggregation process, aggregates the model updates and sends the updates to the global server. The global server collects the updates from the local edge servers, performs aggregation and derives the updated model. The updated model has the information about the potholes received from the local edge servers and notifies the updates to the local edge servers and concerned authorities for monitoring and maintenance of road conditions. The entire process is implemented in FedCV distributed environment with the implementation using the client-server model and aggregation entities. After choosing the clients for its aggregation process, the local edge server gathers the model updates and transmits them to the global server. After gathering the updates from the regional edge servers, the global server aggregates them and creates the updated model. Performance indicators and the experimentation environment are assessed, discussed, and presented. Accelerometer data may be taken into consideration for improved performance in the future development of this study, in addition to the images captured from the transportation routes.Keywords: federated Learning, pothole detection, distributed framework, federated averaging
Procedia PDF Downloads 1044397 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects
Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes
Abstract:
Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction
Procedia PDF Downloads 1494396 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification
Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang
Abstract:
One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.Keywords: malware detection, network security, targeted attack, computational intelligence
Procedia PDF Downloads 2634395 Drivers of Land Degradation in Trays Ecosystem as Modulated under a Changing Climate: Case Study of Côte d'Ivoire
Authors: Kadio Valere R. Angaman, Birahim Bouna Niang
Abstract:
Land degradation is a serious problem in developing countries, including Cote d’Ivoire, which has its economy focused on agriculture. It occurs in all kinds of ecosystems over the world. However, the drivers of land degradation vary from one region to another and from one ecosystem to another. Thus, identifying these drivers is an essential prerequisite to developing and implementing appropriate policies to reverse the trend of land degradation in the country, especially in the trays ecosystem. Using the binary logistic model with primary data obtained through 780 farmers surveyed, we analyze and identify the drivers of land degradation in the trays ecosystem. The descriptive statistics show that 52% of farmers interviewed have stated facing land degradation in their farmland. This high rate shows the extent of land degradation in this ecosystem. Also, the results obtained from the binary logit regression reveal that land degradation is significantly influenced by a set of variables such as sex, education, slope, erosion, pesticide, agricultural activity, deforestation, and temperature. The drivers identified are mostly local; as a result, the government must implement some policies and strategies that facilitate and incentive the adoption of sustainable land management practices by farmers to reverse the negative trend of land degradation.Keywords: drivers, land degradation, trays ecosystem, sustainable land management
Procedia PDF Downloads 1454394 New Features for Copy-Move Image Forgery Detection
Authors: Michael Zimba
Abstract:
A novel set of features for copy-move image forgery, CMIF, detection method is proposed. The proposed set presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilised to extract robust features. The extracted features are shown to be invariant to additive noise, JPEG compression, and affine transformation. The proposed features can also be used in general object matching.Keywords: virtual electrostatic field, features, affine transformation, copy-move image forgery
Procedia PDF Downloads 5434393 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection
Authors: Yulan Wu
Abstract:
With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 974392 Luminescent Functionalized Graphene Oxide Based Sensitive Detection of Deadly Explosive TNP
Authors: Diptiman Dinda, Shyamal Kumar Saha
Abstract:
In the 21st century, sensitive and selective detection of trace amounts of explosives has become a serious problem. Generally, nitro compound and its derivatives are being used worldwide to prepare different explosives. Recently, TNP (2, 4, 6 trinitrophenol) is the most commonly used constituent to prepare powerful explosives all over the world. It is even powerful than TNT or RDX. As explosives are electron deficient in nature, it is very difficult to detect one separately from a mixture. Again, due to its tremendous water solubility, detection of TNP in presence of other explosives from water is very challenging. Simple instrumentation, cost-effective, fast and high sensitivity make fluorescence based optical sensing a grand success compared to other techniques. Graphene oxide (GO), with large no of epoxy grps, incorporate localized nonradiative electron-hole centres on its surface to give very weak fluorescence. In this work, GO is functionalized with 2, 6-diamino pyridine to remove those epoxy grps. through SN2 reaction. This makes GO into a bright blue luminescent fluorophore (DAP/rGO) which shows an intense PL spectrum at ∼384 nm when excited at 309 nm wavelength. We have also characterized the material by FTIR, XPS, UV, XRD and Raman measurements. Using this as fluorophore, a large fluorescence quenching (96%) is observed after addition of only 200 µL of 1 mM TNP in water solution. Other nitro explosives give very moderate PL quenching compared to TNP. Such high selectivity is related to the operation of FRET mechanism from fluorophore to TNP during this PL quenching experiment. TCSPC measurement also reveals that the lifetime of DAP/rGO drastically decreases from 3.7 to 1.9 ns after addition of TNP. Our material is also quite sensitive to 125 ppb level of TNP. Finally, we believe that this graphene based luminescent material will emerge a new class of sensing materials to detect trace amounts of explosives from aqueous solution.Keywords: graphene, functionalization, fluorescence quenching, FRET, nitroexplosive detection
Procedia PDF Downloads 4404391 Effect of Concentration Level and Moisture Content on the Detection and Quantification of Nickel in Clay Agricultural Soil in Lebanon
Authors: Layan Moussa, Darine Salam, Samir Mustapha
Abstract:
Heavy metal contamination in agricultural soils in Lebanon poses serious environmental and health problems. Intensive efforts are employed to improve existing quantification methods of heavy metals in contaminated environments since conventional detection techniques have shown to be time-consuming, tedious, and costly. The implication of hyperspectral remote sensing in this field is possible and promising. However, factors impacting the efficiency of hyperspectral imaging in detecting and quantifying heavy metals in agricultural soils were not thoroughly studied. This study proposes to assess the use of hyperspectral imaging for the detection of Ni in agricultural clay soil collected from the Bekaa Valley, a major agricultural area in Lebanon, under different contamination levels and soil moisture content. Soil samples were contaminated with Ni, with concentrations ranging from 150 mg/kg to 4000 mg/kg. On the other hand, soil with background contamination was subjected to increased moisture levels varying from 5 to 75%. Hyperspectral imaging was used to detect and quantify Ni contamination in the soil at different contamination levels and moisture content. IBM SPSS statistical software was used to develop models that predict the concentration of Ni and moisture content in agricultural soil. The models were constructed using linear regression algorithms. The spectral curves obtained reflected an inverse correlation between both Ni concentration and moisture content with respect to reflectance. On the other hand, the models developed resulted in high values of predicted R2 of 0.763 for Ni concentration and 0.854 for moisture content. Those predictions stated that Ni presence was well expressed near 2200 nm and that of moisture was at 1900 nm. The results from this study would allow us to define the potential of using the hyperspectral imaging (HSI) technique as a reliable and cost-effective alternative for heavy metal pollution detection in contaminated soils and soil moisture prediction.Keywords: heavy metals, hyperspectral imaging, moisture content, soil contamination
Procedia PDF Downloads 1014390 Artificial Intelligence and Machine Vision-Based Defect Detection Methodology for Solid Rocket Motor Propellant Grains
Authors: Sandip Suman
Abstract:
Mechanical defects (cracks, voids, irregularities) in rocket motor propellant are not new and it is induced due to various reasons, which could be an improper manufacturing process, lot-to-lot variation in chemicals or just the natural aging of the products. These defects are normally identified during the examination of radiographic films by quality inspectors. However, a lot of times, these defects are under or over-classified by human inspectors, which leads to unpredictable performance during lot acceptance tests and significant economic loss. The human eye can only visualize larger cracks and defects in the radiographs, and it is almost impossible to visualize every small defect through the human eye. A different artificial intelligence-based machine vision methodology has been proposed in this work to identify and classify the structural defects in the radiographic films of rocket motors with solid propellant. The proposed methodology can extract the features of defects, characterize them, and make intelligent decisions for acceptance or rejection as per the customer requirements. This will automatize the defect detection process during manufacturing with human-like intelligence. It will also significantly reduce production downtime and help to restore processes in the least possible time. The proposed methodology is highly scalable and can easily be transferred to various products and processes.Keywords: artificial intelligence, machine vision, defect detection, rocket motor propellant grains
Procedia PDF Downloads 984389 Trend and Distribution of Heavy Metals in Soil and Sediment: North of Thailand Region
Authors: Chatkaew Tansakul, Saovajit Nanruksa, Surasak Chonchirdsin
Abstract:
Heavy metals in the environment can be occurred by both natural weathering process and human activity, which may present significant risks to human health and the wider environment. A number of heavy metals, i.e. Arsenic (As) and Manganese (Mn), are found with a relatively high concentration in the northern part of Thailand that was assumptively from natural parent rocks and materials. However, scarce literature is challenging to identify the accurate root cause and best available explanation. This study is, therefore, aim to gather heavy metals data in 5 provinces of the North of Thailand where PTT Exploration and Production (PTTEP) public company limited has operated for more than 20 years. A thousand heavy metal analysis is collected and interpreted in term of Enrichment Factor (EF). The trend and distribution of heavy metals in soil and sediment are analyzed by considering altogether the geochemistry of the regional soil and rock. . In addition, the relationship between land use and heavy metals distribution is investigated. In the first conclusion, heavy metal concentrations of (As) and (Mn) in the studied areas are equal to 7.0 and 588.6 ppm, respectively, which are comparable to those in regional parent materials (1 – 12 and 850 – 1,000 ppm for As and Mn respectively). Moreover, there is an insignificant escalation of the heavy metals in these studied areas over two decades.Keywords: contaminated soil, enrichment factor, heavy metals, parent materials in North of Thailand
Procedia PDF Downloads 1564388 Long-Term Variabilities and Tendencies in the Zonally Averaged TIMED-SABER Ozone and Temperature in the Middle Atmosphere over 10°N-15°N
Authors: Oindrila Nath, S. Sridharan
Abstract:
Long-term (2002-2012) temperature and ozone measurements by Sounding of Atmosphere by Broadband Emission Radiometry (SABER) instrument onboard Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite zonally averaged over 10°N-15°N are used to study their long-term changes and their responses to solar cycle, quasi-biennial oscillation and El Nino Southern Oscillation. The region is selected to provide more accurate long-term trends and variabilities, which were not possible earlier with lidar measurements over Gadanki (13.5°N, 79.2°E), which are limited to cloud-free nights, whereas continuous data sets of SABER temperature and ozone are available. Regression analysis of temperature shows a cooling trend of 0.5K/decade in the stratosphere and that of 3K/decade in the mesosphere. Ozone shows a statistically significant decreasing trend of 1.3 ppmv per decade in the mesosphere although there is a small positive trend in stratosphere at 25 km. Other than this no significant ozone trend is observed in stratosphere. Negative ozone-QBO response (0.02ppmv/QBO), positive ozone-solar cycle (0.91ppmv/100SFU) and negative response to ENSO (0.51ppmv/SOI) have been found more in mesosphere whereas positive ozone response to ENSO (0.23ppmv/SOI) is pronounced in stratosphere (20-30 km). The temperature response to solar cycle is more positive (3.74K/100SFU) in the upper mesosphere and its response to ENSO is negative around 80 km and positive around 90-100 km and its response to QBO is insignificant at most of the heights. Composite monthly mean of ozone volume mixing ratio shows maximum values during pre-monsoon and post-monsoon season in middle stratosphere (25-30 km) and in upper mesosphere (85-95 km) around 10 ppmv. Composite monthly mean of temperature shows semi-annual variation with large values (~250-260 K) in equinox months and less values in solstice months in upper stratosphere and lower mesosphere (40-55 km) whereas the SAO becomes weaker above 55 km. The semi-annual variation again appears at 80-90 km, with large values in spring equinox and winter months. In the upper mesosphere (90-100 km), less temperature (~170-190 K) prevails in all the months except during September, when the temperature is slightly more. The height profiles of amplitudes of semi-annual and annual oscillations in ozone show maximum values of 6 ppmv and 2.5 ppmv respectively in upper mesosphere (80-100 km), whereas SAO and AO in temperature show maximum values of 5.8 K and 4.6 K in lower and middle mesosphere around 60-85 km. The phase profiles of both SAO and AO show downward progressions. These results are being compared with long-term lidar temperature measurements over Gadanki (13.5°N, 79.2°E) and the results obtained will be presented during the meeting.Keywords: trends, QBO, solar cycle, ENSO, ozone, temperature
Procedia PDF Downloads 4104387 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets
Authors: Najmeh Abedzadeh, Matthew Jacobs
Abstract:
An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.Keywords: IDS, imbalanced datasets, sampling algorithms, big data
Procedia PDF Downloads 3284386 Intelligent Crowd Management Systems in Trains
Authors: Sai S. Hari, Shriram Ramanujam, Unnati Trivedi
Abstract:
The advent of mass transit systems like rail, metro, maglev, and various other rail based transport has pacified the requirement of public transport for the masses to a great extent. However, the abatement of the demand does not necessarily mean it is managed efficiently, eloquently or in an encapsulating manner. The primary problem identified that the one this paper seeks to solve is the dipsomaniac like manner in which the compartments are occupied. This problem is solved by using a comparison of an empty train and an occupied one. The pixel data of an occupied train is compared to the pixel data of an empty train. This is done using canny edge detection technique. After the comparison it intimates the passengers at the consecutive stops which compartments are not occupied or have low occupancy. Thus, redirecting them and preventing overcrowding.Keywords: canny edge detection, comparison, encapsulation, redirection
Procedia PDF Downloads 3334385 Designing a Cyclic Redundancy Checker-8 for 32 Bit Input Using VHDL
Authors: Ankit Shai
Abstract:
CRC or Cyclic Redundancy Check is one of the most common, and one of the most powerful error-detecting codes implemented on modern computers. Most of the modern communication protocols use some error detection algorithms in digital networks and storage devices to detect accidental changes to raw data between transmission and reception. Cyclic Redundancy Check, or CRC, is the most popular one among these error detection codes. CRC properties are defined by the generator polynomial length and coefficients. The aim of this project is to implement an efficient FPGA based CRC-8 that accepts a 32 bit input, taking into consideration optimal chip area and high performance, using VHDL. The proposed architecture is implemented on Xilinx ISE Simulator. It is designed while keeping in mind the hardware design, complexity and cost factor.Keywords: cyclic redundancy checker, CRC-8, 32-bit input, FPGA, VHDL, ModelSim, Xilinx
Procedia PDF Downloads 2924384 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 1024383 Advanced Driver Assistance System: Veibra
Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins
Abstract:
Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system
Procedia PDF Downloads 1554382 Qualitative Detection of HCV and GBV-C Co-infection in Cirrhotic Patients Using a SYBR Green Multiplex Real Time RT-PCR Technique
Authors: Shahzamani Kiana, Esmaeil Lashgarian Hamed, Merat Shahin
Abstract:
HCV and GBV-C belong to the Flaviviridae family of viruses and GBV-C is the closest virus to HCV genetically. Accumulative research is in progress all over the world to clarify clinical aspects of GBV-C. Possibility of interaction between HCV and GBV-C and also its consequence with other liver diseases are the most important clinical aspects which encourage researchers to develop a technique for simultaneous detection of these viruses. In this study a SYBR Green multiplex real time RT-PCR technique as a new economical and sensitive method was optimized for simultaneous detection of HCV/GBV-C in HCV positive plasma samples. After designing and selection of two pairs of specific primers for HCV and GBV-C, SYBR Green Real time RT-PCR technique optimization was performed separately for each virus. Establishment of multiplex PCR was the next step. Finally our technique was performed on positive and negative plasma samples. 89 cirrhotic HCV positive plasma samples (29 of genotype 3 a and 27 of genotype 1a) were collected from patients before receiving treatment. 14% of genotype 3a and 17.1% of genotype 1a showed HCV/GBV-C co-infection. As a result, 13.48% of 89 samples had HCV/GBV-C co-infection that was compatible with other results from all over the world. Data showed no apparent influence of HGV co-infection on the either clinical or virological aspect of HCV infection. Furthermore, with application of multiplex Real time RT-PCR technique, more time and cost could be saved in clinical-research settings.Keywords: HCV, GBV-C, cirrhotic patients, multiplex real time RT- PCR
Procedia PDF Downloads 2954381 Temperature Contour Detection of Salt Ice Using Color Thermal Image Segmentation Method
Authors: Azam Fazelpour, Saeed Reza Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
The study uses a novel image analysis based on thermal imaging to detect temperature contours created on salt ice surface during transient phenomena. Thermal cameras detect objects by using their emissivities and IR radiance. The ice surface temperature is not uniform during transient processes. The temperature starts to increase from the boundary of ice towards the center of that. Thermal cameras are able to report temperature changes on the ice surface at every individual moment. Various contours, which show different temperature areas, appear on the ice surface picture captured by a thermal camera. Identifying the exact boundary of these contours is valuable to facilitate ice surface temperature analysis. Image processing techniques are used to extract each contour area precisely. In this study, several pictures are recorded while the temperature is increasing throughout the ice surface. Some pictures are selected to be processed by a specific time interval. An image segmentation method is applied to images to determine the contour areas. Color thermal images are used to exploit the main information. Red, green and blue elements of color images are investigated to find the best contour boundaries. The algorithms of image enhancement and noise removal are applied to images to obtain a high contrast and clear image. A novel edge detection algorithm based on differences in the color of the pixels is established to determine contour boundaries. In this method, the edges of the contours are obtained according to properties of red, blue and green image elements. The color image elements are assessed considering their information. Useful elements proceed to process and useless elements are removed from the process to reduce the consuming time. Neighbor pixels with close intensities are assigned in one contour and differences in intensities determine boundaries. The results are then verified by conducting experimental tests. An experimental setup is performed using ice samples and a thermal camera. To observe the created ice contour by the thermal camera, the samples, which are initially at -20° C, are contacted with a warmer surface. Pictures are captured for 20 seconds. The method is applied to five images ,which are captured at the time intervals of 5 seconds. The study shows the green image element carries no useful information; therefore, the boundary detection method is applied on red and blue image elements. In this case study, the results indicate that proposed algorithm shows the boundaries more effective than other edges detection methods such as Sobel and Canny. Comparison between the contour detection in this method and temperature analysis, which states real boundaries, shows a good agreement. This color image edge detection method is applicable to other similar cases according to their image properties.Keywords: color image processing, edge detection, ice contour boundary, salt ice, thermal image
Procedia PDF Downloads 3144380 Unsupervised Neural Architecture for Saliency Detection
Authors: Natalia Efremova, Sergey Tarasenko
Abstract:
We propose a novel neural network architecture for visual saliency detections, which utilizes neuro physiologically plausible mechanisms for extraction of salient regions. The model has been significantly inspired by recent findings from neuro physiology and aimed to simulate the bottom-up processes of human selective attention. Two types of features were analyzed: color and direction of maximum variance. The mechanism we employ for processing those features is PCA, implemented by means of normalized Hebbian learning and the waves of spikes. To evaluate performance of our model we have conducted psychological experiment. Comparison of simulation results with those of experiment indicates good performance of our model.Keywords: neural network models, visual saliency detection, normalized Hebbian learning, Oja's rule, psychological experiment
Procedia PDF Downloads 3484379 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach
Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar
Abstract:
Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI
Procedia PDF Downloads 1534378 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation
Authors: Arian Hosseini, Mahmudul Hasan
Abstract:
To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing
Procedia PDF Downloads 554377 Clustered Regularly Interspaced Short Palindromic Repeat/cas9-Based Lateral Flow and Fluorescence Diagnostics for Rapid Pathogen Detection
Authors: Mark Osborn
Abstract:
Clustered, regularly interspaced short palindromic repeat (CRISPR/Cas) proteins can be designed to bind specified DNA and RNA sequences and hold great promise for the accurate detection of nucleic acids for diagnostics. Commercially available reagents were integrated into a CRISPR/Cas9-based lateral flow assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences with single-base specificity. This approach requires minimal equipment and represents a simplified platform for field-based deployment. A rapid, multiplex fluorescence CRISPR/Cas9 nuclease cleavage assay capable of detecting and differentiating SARS-CoV-2, influenza A and B, and respiratory syncytial virus in a single reaction was also developed. These findings provide proof of principle for CRISPR/Cas9 point-of-care diagnosis that can detect specific SARS-CoV-2 strain(s). Further, Cas9 cleavage allows for a scalable fluorescent platform for identifying respiratory viral pathogens with overlapping symptomology. Collectively, this approach is a facile platform for diagnostics with broad application to user-defined sequence interrogation and detection.Keywords: CRISPR/Cas9, lateral flow assay, SARS-Co-V2, single-nucleotide resolution
Procedia PDF Downloads 1844376 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning
Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza
Abstract:
The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library
Procedia PDF Downloads 1774375 Study on an Integrated Real-Time Sensor in Droplet-Based Microfluidics
Authors: Tien-Li Chang, Huang-Chi Huang, Zhao-Chi Chen, Wun-Yi Chen
Abstract:
The droplet-based microfluidic are used as micro-reactors for chemical and biological assays. Hence, the precise addition of reagents into the droplets is essential for this function in the scope of lab-on-a-chip applications. To obtain the characteristics (size, velocity, pressure, and frequency of production) of droplets, this study describes an integrated on-chip method of real-time signal detection. By controlling and manipulating the fluids, the flow behavior can be obtained in the droplet-based microfluidics. The detection method is used a type of infrared sensor. Through the varieties of droplets in the microfluidic devices, the real-time conditions of velocity and pressure are gained from the sensors. Here the microfluidic devices are fabricated by polydimethylsiloxane (PDMS). To measure the droplets, the signal acquisition of sensor and LabVIEW program control must be established in the microchannel devices. The devices can generate the different size droplets where the flow rate of oil phase is fixed 30 μl/hr and the flow rates of water phase range are from 20 μl/hr to 80 μl/hr. The experimental results demonstrate that the sensors are able to measure the time difference of droplets under the different velocity at the voltage from 0 V to 2 V. Consequently, the droplets are measured the fastest speed of 1.6 mm/s and related flow behaviors that can be helpful to develop and integrate the practical microfluidic applications.Keywords: microfluidic, droplets, sensors, single detection
Procedia PDF Downloads 4934374 Transformation of Traditional Marketplaces in an Urban Context: Case of Chalai Market, Thiruvananthapuram
Authors: Aswathy Vijayan, Sharath Sunder Rajeev
Abstract:
Trade has been fundamental in the footprint of human civilization since ancient time. In most of the historic cities, city development was along trading routes, where marketplaces are the major entrance to a city and hence a major element of the urban fabric. Marketplaces are where the commercial activities flourish, people, having a sense of belonging to the place, where they easily fit in. Acknowledging the built environment in and around the market in a way, creating a sense of place is an important factor in the success of public spaces. Local markets are developed in an organic manner, which adds on to the people experience and perception of urban space. With the city development, the commercial needs within the city increase, hence marketplaces flourish, irrespective of the functional segregation within. The work-live culture in the marketplaces diminishes as the commercial expansion washes away the residential patches within it. Real estate flourishes as the newer infills are without considering the carrying capacity of the place. Chalai market is a prominent business center serving the regional level of Thiruvananthapuram city. The transformation trend of marketplaces in city cores are understood from case study on Fatimid Cairo Marketplace. The parameters that led to transformation of marketplaces in a global context is considered for the analysis of the Chalai market. The structure of the marketplace over the years is analyzed in terms of transformation in location, transformation in the land- use, change in commodity, and transformation in movement and activity. The aim of the research is to emphasize the need to understand the transformation trend, in creating a suitable development pattern for the city. The unregulated transformation within the city core has led to tremendous transformation in the user group and user pattern and eventually to the commercial trend. With the change in lifestyle and need for new amenities have led to addition of new infills leading to the degradation of the native commerce. Hence addressing the transformation of marketplaces are crucial to maintaining the locational significance and cultural importance and heritage of the place.Keywords: bazaar, market centers, marketplaces, traditional city, traditional market, urban fabric
Procedia PDF Downloads 1534373 Application of Support Vector Machines in Fault Detection and Diagnosis of Power Transmission Lines
Authors: I. A. Farhat, M. Bin Hasan
Abstract:
A developed approach for the protection of power transmission lines using Support Vector Machines (SVM) technique is presented. In this paper, the SVM technique is utilized for the classification and isolation of faults in power transmission lines. Accurate fault classification and location results are obtained for all possible types of short circuit faults. As in distance protection, the approach utilizes the voltage and current post-fault samples as inputs. The main advantage of the method introduced here is that the method could easily be extended to any power transmission line.Keywords: fault detection, classification, diagnosis, power transmission line protection, support vector machines (SVM)
Procedia PDF Downloads 5594372 The Benefits of Security Culture for Improving Physical Protection Systems at Detection and Radiation Measurement Laboratory
Authors: Ari S. Prabowo, Nia Febriyanti, Haryono B. Santosa
Abstract:
Security function that is called as Physical Protection Systems (PPS) has functions to detect, delay and response. Physical Protection Systems (PPS) in Detection and Radiation Measurement Laboratory needs to be improved continually by using internal resources. The nuclear security culture provides some potentials to support this research. The study starts by identifying the security function’s weaknesses and its strengths of security culture as a purpose. Secondly, the strengths of security culture are implemented in the laboratory management. Finally, a simulation was done to measure its effectiveness. Some changes were happened in laboratory personnel behaviors and procedures. All became more prudent. The results showed a good influence of nuclear security culture in laboratory security functions.Keywords: laboratory, physical protection system, security culture, security function
Procedia PDF Downloads 1854371 Sustainable Smart Contraction: China Eco-district Evolution Research and Future Exploration
Authors: Xincheng He, Weijun Gao, Gangwei Cai
Abstract:
In the process of rapid urbanization, large-scale industrial production, and unreasonable planning and construction have caused various ecological and environmental problems, while hindered the sustainable development of cities. The ecological district not only realizes the coordinated development of society, economy, and environment but also conforms to the trend of smart contraction of the development of cities in China from the periphery to the center. This paper reviews the development of China's ecological district, including the full life cycle process of policy, planning, implementation, and operation. Based on sorting out the concept, connotation, and development status of China’s ecological district, the relationship between the construction of the ecological district and the sustainable city is discussed. Summarizing the development trend of the ecological district, the ecological district should combine the construction of smart cities, actively respond to the digital information era, and improve the construction of the ecological district system. It proposes that the future direction of city's sustainable development needs to change from a thematic focus on ecology to the common urbanization of humanity, society, and nature. Focusing on people-oriented, ecological, and digital future communities will become an important construction method for the city's sustainable smart contraction.Keywords: eco-district, smart contraction, sustainable development, future community
Procedia PDF Downloads 146