Search results for: online learning tools
2921 Exploring Acceptance of Artificial Intelligence Software Solution Amongst Healthcare Personnel: A Case in a Private Medical Centre
Authors: Sandra So, Mohd Roslan Ismail, Safurah Jaafar
Abstract:
With the rapid proliferation of data in healthcare has provided an opportune platform creation of Artificial Intelligence (AI). AI has brought a paradigm shift for healthcare professionals, promising improvement in delivery and quality. This study aims to determine the perception of healthcare personnel on perceived ease of use, perceived usefulness, and subjective norm toward attitude for artificial intelligence acceptance. A cross-sectional single institutional study of employees’ perception of adopting AI in the hospital was conducted. The survey was conducted using a questionnaire adapted from Technology Acceptance Model and a four-point Likert scale was used. There were 96 or 75.5% of the total population responded. This study has shown the significant relationship and the importance of ease of use, perceived usefulness, and subjective norm to the acceptance of AI. In the study results, it concluded that the determining factor to the strong acceptance of AI in their practices is mostly those respondents with the most interaction with the patients and clinical management.Keywords: artificial intelligence, machine learning, perceived ease of use, perceived usefulness, subjective norm
Procedia PDF Downloads 2262920 The Facilitators and Barriers to the Implementation of Educational Neuroscience: Teachers’ Perspectives
Authors: S. Kawther, C. Marshall
Abstract:
Educational neuroscience has the intention of transforming research findings of the underpinning neural processes of learning to educational practices. A main criticism of the field, hitherto, is that less focus has been put on studying the in-progress practical application of these findings. Therefore, this study aims to gain a better understanding of teachers’ perceptions of the practical application and utilization of brain knowledge. This was approached by investigating the answer to 'What are the facilitators and barriers for bringing research from neuroscience to bear on education?'. Following a qualitative design, semi-structured interviews were conducted with 12 teachers who had a proficient course in educational neuroscience. Thematic analysis was performed on the transcribed data applying Braun & Clark’s steps. Findings emerged with four main themes: time, knowledge, teacher’s involvement, and system. These themes revealed that some effective brain-based practices are being engaged in by the teachers. However, the lack of guidance and challenges regarding this implementation were also found. This study discusses findings in light of the development of educational neuroscience implementation.Keywords: brain-based, educational neuroscience, neuroeducation, neuroscience-informed
Procedia PDF Downloads 1672919 Intermediate-Term Impact of Taiwan High-Speed Rail (HSR) and Land Use on Spatial Patterns of HSR Travel
Authors: Tsai Yu-hsin, Chung Yi-Hsin
Abstract:
The employment of an HSR system, resulting in elevation in the inter-city/-region accessibility, is likely to promote spatial interaction between places in the HSR and extended territory. The inter-city/-region travel via HSR could be, among others, affected by the land use, transportation, and location of the HSR station at both trip origin and destination ends. However, relatively few insights have been shed on these impacts and spatial patterns of the HSR travel. The research purposes, as phase one of a series of HSR related research, of this study are threefold: to analyze the general spatial patterns of HSR trips, such as the spatial distribution of trip origins and destinations; to analyze if specific land use, transportation characteristics, and trip characteristics affect HSR trips in terms of the use of HSR, the distribution of trip origins and destinations, and; to analyze the socio-economic characteristics of HSR travelers. With the Taiwan HSR starting operation in 2007, this study emphasizes on the intermediate-term impact of HSR, which is made possible with the population and housing census and industry and commercial census data and a station area intercept survey conducted in the summer 2014. The analysis will be conducted at the city, inter-city, and inter-region spatial levels, as necessary and required. The analysis tools include descriptive statistics and multivariate analysis with the assistance of SPSS, HLM and ArcGIS. The findings, on the one hand, can provide policy implications for associated land use, transportation plan and the site selection of HSR station. On the other hand, on the travel the findings are expected to provide insights that can help explain how land use and real estate values could be affected by HSR in following phases of this series of research.Keywords: high speed rail, land use, travel, spatial pattern
Procedia PDF Downloads 4622918 A Factor-Analytical Approach on Identities in Environmentally Significant Behavior
Authors: Alina M. Udall, Judith de Groot, Simon de Jong, Avi Shankar
Abstract:
There are many ways in which environmentally significant behavior can be explained. Dominant psychological theories, namely, the theory of planned behavior, the norm-activation theory, its extension, the value-belief-norm theory, and the theory of habit do not explain large parts of environmentally significant behaviors. A new and rapidly growing approach is to focus on how consumer’s identities predict environmentally significant behavior. Identity may be relevant because consumers have many identities that are assumed to guide their behavior. Therefore, we assume that many identities will guide environmentally significant behavior. Many identities can be relevant for environmentally significant behavior. In reviewing the literature, over 200 identities have been studied making it difficult to establish the key identities for explaining environmentally significant behavior. Therefore, this paper first aims to establish the key identities previously used for explaining environmentally significant behavior. Second, the aim is to test which key identities explain environmentally significant behavior. To address the aims, an online survey study (n = 578) is conducted. First, the exploratory factor analysis reveals 15 identity factors. The identity factors are namely, environmentally concerned identity, anti-environmental self-identity, environmental place identity, connectedness with nature identity, green space visitor identity, active ethical identity, carbon off-setter identity, thoughtful self-identity, close community identity, anti-carbon off-setter identity, environmental group member identity, national identity, identification with developed countries, cyclist identity, and thoughtful organisation identity. Furthermore, to help researchers understand and operationalize the identities, the article provides theoretical definitions for each of the identities, in line with identity theory, social identity theory, and place identity theory. Second, the hierarchical regression shows only 10 factors significantly uniquely explain the variance in environmentally significant behavior. In order of predictive power the identities are namely, environmentally concerned identity, anti-environmental self-identity, thoughtful self-identity, environmental group member identity, anti-carbon off-setter identity, carbon off-setter identity, connectedness with nature identity, national identity, and green space visitor identity. The identities explain over 60% of the variance in environmentally significant behavior, a large effect size. Based on this finding, the article reveals a new, theoretical framework showing the key identities explaining environmentally significant behavior, to help improve and align the field.Keywords: environmentally significant behavior, factor analysis, place identity, social identity
Procedia PDF Downloads 4512917 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines
Authors: Kamyar Tolouei, Ehsan Moosavi
Abstract:
In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization
Procedia PDF Downloads 1052916 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness
Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers
Abstract:
The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning
Procedia PDF Downloads 2862915 Prediction of Cardiovascular Markers Associated With Aromatase Inhibitors Side Effects Among Breast Cancer Women in Africa
Authors: Jean Paul M. Milambo
Abstract:
Purpose: Aromatase inhibitors (AIs) are indicated in the treatment of hormone-receptive breast cancer in postmenopausal women in various settings. Studies have shown cardiovascular events in some developed countries. To date the data is sparce for evidence-based recommendations in African clinical settings due to lack of cancer registries, capacity building and surveillance systems. Therefore, this study was conducted to assess the feasibility of HyBeacon® probe genotyping adjunctive to standard care for timely prediction and diagnosis of Aromatase inhibitors (AIs) associated adverse events in breast cancer survivors in Africa. Methods: Cross sectional study was conducted to assess the knowledge of POCT among six African countries using online survey and telephonically contacted. Incremental cost effectiveness ratio (ICER) was calculated, using diagnostic accuracy study. This was based on mathematical modeling. Results: One hundred twenty-six participants were considered for analysis (mean age = 61 years; SD = 7.11 years; 95%CI: 60-62 years). Comparison of genotyping from HyBeacon® probe technology to Sanger sequencing showed that sensitivity was reported at 99% (95% CI: 94.55% to 99.97%), specificity at 89.44% (95% CI: 87.25 to 91.38%), PPV at 51% (95%: 43.77 to 58.26%), and NPV at 99.88% (95% CI: 99.31 to 100.00%). Based on the mathematical model, the assumptions revealed that ICER was R7 044.55. Conclusion: POCT using HyBeacon® probe genotyping for AI-associated adverse events maybe cost effective in many African clinical settings. Integration of preventive measures for early detection and prevention guided by different subtype of breast cancer diagnosis with specific clinical, biomedical and genetic screenings may improve cancer survivorship. Feasibility of POCT was demonstrated but the implementation could be achieved by improving the integration of POCT within primary health cares, referral cancer hospitals with capacity building activities at different level of health systems. This finding is pertinent for a future envisioned implementation and global scale-up of POCT-based initiative as part of risk communication strategies with clear management pathways.Keywords: breast cancer, diagnosis, point of care, South Africa, aromatase inhibitors
Procedia PDF Downloads 782914 Adding Business Value in Enterprise Applications through Quality Matrices Using Agile
Authors: Afshan Saad, Muhammad Saad, Shah Muhammad Emaduddin
Abstract:
Nowadays the business condition is so quick paced that enhancing ourselves consistently has turned into a huge factor for the presence of an undertaking. We can check this for structural building and significantly more so in the quick-paced universe of data innovation and programming designing. The lithe philosophies, similar to Scrum, have a devoted advance in the process that objectives the enhancement of the improvement procedure and programming items. Pivotal to process enhancement is to pick up data that grants you to assess the condition of the procedure and its items. From the status data, you can design activities for the upgrade and furthermore assess the accomplishment of those activities. This investigation builds a model that measures the product nature of the improvement procedure. The product quality is dependent on the useful and auxiliary nature of the product items, besides the nature of the advancement procedure is likewise vital to enhance programming quality. Utilitarian quality covers the adherence to client prerequisites, while the auxiliary quality tends to the structure of the product item's source code with reference to its practicality. The procedure quality is identified with the consistency and expectedness of the improvement procedure. The product quality model is connected in a business setting by social occasion the information for the product measurements in the model. To assess the product quality model, we investigate the information and present it to the general population engaged with the light-footed programming improvement process. The outcomes from the application and the client input recommend that the model empowers a reasonable evaluation of the product quality and that it very well may be utilized to help the persistent enhancement of the advancement procedure and programming items.Keywords: Agile SDLC Tools, Agile Software development, business value, enterprise applications, IBM, IBM Rational Team Concert, RTC, software quality, software metrics
Procedia PDF Downloads 1742913 Small Text Extraction from Documents and Chart Images
Authors: Rominkumar Busa, Shahira K. C., Lijiya A.
Abstract:
Text recognition is an important area in computer vision which deals with detecting and recognising text from an image. The Optical Character Recognition (OCR) is a saturated area these days and with very good text recognition accuracy. However the same OCR methods when applied on text with small font sizes like the text data of chart images, the recognition rate is less than 30%. In this work, aims to extract small text in images using the deep learning model, CRNN with CTC loss. The text recognition accuracy is found to improve by applying image enhancement by super resolution prior to CRNN model. We also observe the text recognition rate further increases by 18% by applying the proposed method, which involves super resolution and character segmentation followed by CRNN with CTC loss. The efficiency of the proposed method shows that further pre-processing on chart image text and other small text images will improve the accuracy further, thereby helping text extraction from chart images.Keywords: small text extraction, OCR, scene text recognition, CRNN
Procedia PDF Downloads 1252912 A Web-Based Systems Immunology Toolkit Allowing the Visualization and Comparative Analysis of Publically Available Collective Data to Decipher Immune Regulation in Early Life
Authors: Mahbuba Rahman, Sabri Boughorbel, Scott Presnell, Charlie Quinn, Darawan Rinchai, Damien Chaussabel, Nico Marr
Abstract:
Collections of large-scale datasets made available in public repositories can be used to identify and fill gaps in biomedical knowledge. But first, these data need to be made readily accessible to researchers for analysis and interpretation. Here a collection of transcriptome datasets was made available to investigate the functional programming of human hematopoietic cells in early life. Thirty two datasets were retrieved from the NCBI Gene Expression Omnibus (GEO) and loaded in a custom, interactive web application called the Gene Expression browser (GXB), designed for visualization and query of integrated large-scale data. Multiple sample groupings and gene rank lists were created based on the study design and variables in each dataset. Web links to customized graphical views can be generated by users and subsequently be used to graphically present data in manuscripts for publication. The GXB tool also enables browsing of a single gene across datasets, which can provide information on the role of a given molecule across biological systems. The dataset collection is available online. As a proof-of-principle, one of the datasets (GSE25087) was re-analyzed to identify genes that are differentially expressed by regulatory T cells in early life. Re-analysis of this dataset and a cross-study comparison using multiple other datasets in the above mentioned collection revealed that PMCH, a gene encoding a precursor of melanin-concentrating hormone (MCH), a cyclic neuropeptide, is highly expressed in a variety of other hematopoietic cell types, including neonatal erythroid cells as well as plasmacytoid dendritic cells upon viral infection. Our findings suggest an as yet unrecognized role of MCH in immune regulation, thereby highlighting the unique potential of the curated dataset collection and systems biology approach to generate new hypotheses which can be tested in future mechanistic studies.Keywords: early-life, GEO datasets, PMCH, interactive query, systems biology
Procedia PDF Downloads 2962911 White Wine Discrimination Based on Deconvoluted Surface Enhanced Raman Spectroscopy Signals
Authors: Dana Alina Magdas, Nicoleta Simona Vedeanu, Ioana Feher, Rares Stiufiuc
Abstract:
Food and beverages authentication using rapid and non-expensive analytical tools represents nowadays an important challenge. In this regard, the potential of vibrational techniques in food authentication has gained an increased attention during the last years. For wines discrimination, Raman spectroscopy appears more feasible to be used as compared with IR (infrared) spectroscopy, because of the relatively weak water bending mode in the vibrational spectroscopy fingerprint range. Despite this, the use of Raman technique in wine discrimination is in an early stage. Taking this into consideration, the wine discrimination potential of surface-enhanced Raman scattering (SERS) technique is reported in the present work. The novelty of this study, compared with the previously reported studies, concerning the application of vibrational techniques in wine discrimination consists in the fact that the present work presents the wines differentiation based on the individual signals obtained from deconvoluted spectra. In order to achieve wines classification with respect to variety, geographical origin and vintage, the peaks intensities obtained after spectra deconvolution were compared using supervised chemometric methods like Linear Discriminant Analysis (LDA). For this purpose, a set of 20 white Romanian wines from different viticultural Romanian regions four varieties, was considered. Chemometric methods applied directly to row SERS experimental spectra proved their efficiency, but discrimination markers identification found to be very difficult due to the overlapped signals as well as for the band shifts. By using this approach, a better general view related to the differences that appear among the wines in terms of compositional differentiation could be reached.Keywords: chemometry, SERS, variety, wines discrimination
Procedia PDF Downloads 1602910 Plant Leaf Recognition Using Deep Learning
Authors: Aadhya Kaul, Gautam Manocha, Preeti Nagrath
Abstract:
Our environment comprises of a wide variety of plants that are similar to each other and sometimes the similarity between the plants makes the identification process tedious thus increasing the workload of the botanist all over the world. Now all the botanists cannot be accessible all the time for such laborious plant identification; therefore, there is an urge for a quick classification model. Also, along with the identification of the plants, it is also necessary to classify the plant as healthy or not as for a good lifestyle, humans require good food and this food comes from healthy plants. A large number of techniques have been applied to classify the plants as healthy or diseased in order to provide the solution. This paper proposes one such method known as anomaly detection using autoencoders using a set of collections of leaves. In this method, an autoencoder model is built using Keras and then the reconstruction of the original images of the leaves is done and the threshold loss is found in order to classify the plant leaves as healthy or diseased. A dataset of plant leaves is considered to judge the reconstructed performance by convolutional autoencoders and the average accuracy obtained is 71.55% for the purpose.Keywords: convolutional autoencoder, anomaly detection, web application, FLASK
Procedia PDF Downloads 1632909 Semantic Textual Similarity on Contracts: Exploring Multiple Negative Ranking Losses for Sentence Transformers
Authors: Yogendra Sisodia
Abstract:
Researchers are becoming more interested in extracting useful information from legal documents thanks to the development of large-scale language models in natural language processing (NLP), and deep learning has accelerated the creation of powerful text mining models. Legal fields like contracts benefit greatly from semantic text search since it makes it quick and easy to find related clauses. After collecting sentence embeddings, it is relatively simple to locate sentences with a comparable meaning throughout the entire legal corpus. The author of this research investigated two pre-trained language models for this task: MiniLM and Roberta, and further fine-tuned them on Legal Contracts. The author used Multiple Negative Ranking Loss for the creation of sentence transformers. The fine-tuned language models and sentence transformers showed promising results.Keywords: legal contracts, multiple negative ranking loss, natural language inference, sentence transformers, semantic textual similarity
Procedia PDF Downloads 1072908 Comparison between High Resolution Ultrasonography and Magnetic Resonance Imaging in Assessment of Musculoskeletal Disorders Causing Ankle Pain
Authors: Engy S. El-Kayal, Mohamed M. S. Arafa
Abstract:
There are various causes of ankle pain including traumatic and non-traumatic causes. Various imaging techniques are available for assessment of AP. MRI is considered to be the imaging modality of choice for ankle joint evaluation with an advantage of its high spatial resolution, multiplanar capability, hence its ability to visualize small complex anatomical structures around the ankle. However, the high costs and the relatively limited availability of MRI systems, as well as the relatively long duration of the examination all are considered disadvantages of MRI examination. Therefore there is a need for a more rapid and less expensive examination modality with good diagnostic accuracy to fulfill this gap. HRU has become increasingly important in the assessment of ankle disorders, with advantages of being fast, reliable, of low cost and readily available. US can visualize detailed anatomical structures and assess tendinous and ligamentous integrity. The aim of this study was to compare the diagnostic accuracy of HRU with MRI in the assessment of patients with AP. We included forty patients complaining of AP. All patients were subjected to real-time HRU and MRI of the affected ankle. Results of both techniques were compared to surgical and arthroscopic findings. All patients were examined according to a defined protocol that includes imaging the tendon tears or tendinitis, muscle tears, masses, or fluid collection, ligament sprain or tears, inflammation or fluid effusion within the joint or bursa, bone and cartilage lesions, erosions and osteophytes. Analysis of the results showed that the mean age of patients was 38 years. The study comprised of 24 women (60%) and 16 men (40%). The accuracy of HRU in detecting causes of AP was 85%, while the accuracy of MRI in the detection of causes of AP was 87.5%. In conclusions: HRU and MRI are two complementary tools of investigation with the former will be used as a primary tool of investigation and the latter will be used to confirm the diagnosis and the extent of the lesion especially when surgical interference is planned.Keywords: ankle pain (AP), high-resolution ultrasound (HRU), magnetic resonance imaging (MRI) ultrasonography (US)
Procedia PDF Downloads 1902907 Application of Causal Inference and Discovery in Curriculum Evaluation and Continuous Improvement
Authors: Lunliang Zhong, Bin Duan
Abstract:
The undergraduate graduation project is a vital part of the higher education curriculum, crucial for engineering accreditation. Current evaluations often summarize data without identifying underlying issues. This study applies the Peter-Clark algorithm to analyze causal relationships within the graduation project data of an Electronics and Information Engineering program, creating a causal model. Structural equation modeling confirmed the model's validity. The analysis reveals key teaching stages affecting project success, uncovering problems in the process. Introducing causal discovery and inference into project evaluation helps identify issues and propose targeted improvement measures. The effectiveness of these measures is validated by comparing the learning outcomes of two student cohorts, stratified by confounding factors, leading to improved teaching quality.Keywords: causal discovery, causal inference, continuous improvement, Peter-Clark algorithm, structural equation modeling
Procedia PDF Downloads 182906 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects
Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes
Abstract:
Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction
Procedia PDF Downloads 1492905 Assessing the Financial Impact of Federal Benefit Program Enrollment on Low-income Households
Authors: Timothy Scheinert, Eliza Wright
Abstract:
Background: Link Health is a Boston-based non-profit leveraging in-person and digital platforms to promote health equity. Its primary aim is to financially support low-income individuals through enrollment in federal benefit programs. This study examines the monetary impact of enrollment in several benefit programs. Methodologies: Approximately 17,000 individuals have been screened for eligibility via digital outreach, community events, and in-person clinics. Enrollment and financial distributions are evaluated across programs, including the Affordable Connectivity Program (ACP), Lifeline, LIHEAP, Transitional Aid to Families with Dependent Children (TAFDC), and the Supplemental Nutrition Assistance Program (SNAP). Major Findings: A total of 1,895 individuals have successfully applied, collectively distributing an estimated $1,288,152.00 in aid. The largest contributors to this sum include: ACP: 1,149 enrollments, $413,640 distributed annually. Child Care Financial Assistance (CCFA): 15 enrollments, $240,000 distributed annually. Lifeline: 602 enrollments, $66,822 distributed annually. LIHEAP: 25 enrollments, $48,750 distributed annually. SNAP: 41 enrollments, $123,000 distributed annually. TAFDC: 21 enrollments, $341,760 distributed annually. Conclusions: These results highlight the role of targeted outreach and effective enrollment processes in promoting access to federal benefit programs. High enrollment rates in ACP and Lifeline demonstrate a considerable need for affordable broadband and internet services. Programs like CCFA and TAFDC, despite lower enrollment numbers, provide sizable support per individual. This analysis advocates for continued funding of federal benefit programs. Future efforts can be made to develop screening tools that identify eligibility for multiple programs and reduce the complexity of enrollment.Keywords: benefits, childcare, connectivity, equity, nutrition
Procedia PDF Downloads 262904 A Study of the Disorders of Sexual Functioning in Women with Type 2 Diabetes Mellitus in a Tertiary Care Hospital in India
Authors: Mehak Nagpal, T. S. Sathyanarayan Rao
Abstract:
Background: Sexual functioning is a neglected aspect of health in women with diabetes, though it contributes greatly towards quality of life and feeling of wellbeing. Also women with DM are at higher risk than men of developing sexual dysfunction and depression. Materials and Methods: Cross-sectional comparison study. Sample size: 100 previously diagnosed type 2DM patients attending Outpatient Diabetic Clinic at Medicine department JSS Hospital Mysore; aged 20-65 years and 60 normal healthy female subjects for Control group. Data was collected with ethical approval over a period of 2 years. Tools Used: 1) Hamilton Depression Rating Scale (HAMD – 17 item) 2) Female Sexual Functioning Index (FSFI) 3) Arizona Sexual Experience Scale (ASEX-F) for female-for screening. 4) The Appraisal of Diabetes Scale (ADS). Results: Statistically significant differences were observed in prevalence rate and severity of depression between diabetic group (45% vs 11% syndromal depression) and controls. Depression scores correlated significantly with glycaemic control, adherence to treatment, BMI and the cognitive appraisal of diabetes. There was significantly greater impairment in the sexual functioning of women with type 2 diabetes mellitus as compared to controls; both prevalence (62% vs 38.3%) and severity (p value < 0.01). Arousal (74.2% vs 53.3%), Desire (76.3% vs 50%) and Satisfaction (76.7% vs 63.7%) were most affected and 64.5% were affected in 2 or more domains. A negative illness appraisal on ADS correlated significantly with poor glycaemic control, higher rates of depression and also more severe female sexual dysfunction (p value < 0.05). Conclusion: Diabetes specific factors that correlated significantly with FSD in this study included the psychological appraisal of diabetes, duration of diabetes, presence of complications and BMI.Keywords: depression, female sexual dysfunction, India, type 2 diabetes mellitus
Procedia PDF Downloads 3282903 A Study on Factors Affecting (Building Information Modelling) BIM Implementation in European Renovation Projects
Authors: Fatemeh Daneshvartarigh
Abstract:
New technologies and applications have radically altered construction techniques in recent years. In order to anticipate how the building will act, perform, and appear, these technologies encompass a wide range of visualization, simulation, and analytic tools. These new technologies and applications have a considerable impact on completing construction projects in today's (architecture, engineering and construction)AEC industries. The rate of changes in BIM-related topics is different worldwide, and it depends on many factors, e.g., the national policies of each country. Therefore, there is a need for comprehensive research focused on a specific area with common characteristics. Therefore, one of the necessary measures to increase the use of this new approach is to examine the challenges and obstacles facing it. In this research, based on the Delphi method, at first, the background and related literature are reviewed. Then, using the knowledge obtained from the literature, a primary questionnaire is generated and filled by experts who are selected using snowball sampling. It covered the experts' attitudes towards implementing BIM in renovation projects and their view of the benefits and obstacles in this regard. By analyzing the primary questionnaire, the second group of experts is selected among the participants to be interviewed. The results are analyzed using Theme analysis. Six themes, including Management support, staff resistance, client willingness, Cost of software and implementation, the difficulty of implementation, and other reasons, are obtained. Then a final questionnaire is generated from the themes and filled by the same group of experts. The result is analyzed by the Fuzzy Delphi method, showing the exact ranking of the obtained themes. The final results show that management support, staff resistance, and client willingness are the most critical barrier to BIM usage in renovation projects.Keywords: building information modeling, BIM, BIM implementation, BIM barriers, BIM in renovation
Procedia PDF Downloads 1662902 Surveillance of Adverse Events Following Immunization during New Vaccines Introduction in Cameroon: A Cross-Sectional Study on the Role of Mobile Technology
Authors: Andreas Ateke Njoh, Shalom Tchokfe Ndoula, Amani Adidja, Germain Nguessan Menan, Annie Mengue, Eric Mboke, Hassan Ben Bachir, Sangwe Clovis Nchinjoh, Yauba Saidu, Laurent Cleenewerck De Kiev
Abstract:
Vaccines serve a great deal in protecting the population globally. Vaccine products are subject to rigorous quality control and approval before use to ensure safety. Even if all actors take the required precautions, some people could still have adverse events following immunization (AEFI) caused by the vaccine composition or an error in its administration. AEFI underreporting is pronounced in low-income settings like Cameroon. The Country introduced electronic platforms to strengthen surveillance. With the introduction of many novel vaccines, like COVID-19 and the novel Oral Polio Vaccine (nOPV) 2, there was a need to monitor AEFI in the Country. A cross-sectional study was conducted from July to December 2022. Data on AEFI per region of Cameroon were reviewed for the past five years. Data were analyzed with MS Excel, and the results were presented in proportions. AEFI reporting was uncommon in Cameroon. With the introduction of novel vaccines in 2021, the health authorities engaged in new tools and training to capture cases. AEFI detected almost doubled using the open data kit (ODK) compared to previous platforms, especially following the introduction of the nOPV2 and COVID-19 vaccines. The AEFI rate was 1.9 and 160 per administered 100 000 doses of nOPV2 and COVID-19 vaccines, respectively. This mobile tool captured individual information for people with AEFI from all regions. The platform helped to identify common AEFI following the use of these new vaccines. The ODK mobile technology was vital in improving AEFI reporting and providing data to monitor using new vaccines in Cameroon.Keywords: adverse events following immunization, cameroon, COVID-19 vaccines, nOPV, ODK
Procedia PDF Downloads 882901 Decision Making in Medicine and Treatment Strategies
Authors: Kamran Yazdanbakhsh, Somayeh Mahmoudi
Abstract:
Three reasons make good use of the decision theory in medicine: 1. Increased medical knowledge and their complexity makes it difficult treatment information effectively without resorting to sophisticated analytical methods, especially when it comes to detecting errors and identify opportunities for treatment from databases of large size. 2. There is a wide geographic variability of medical practice. In a context where medical costs are, at least in part, by the patient, these changes raise doubts about the relevance of the choices made by physicians. These differences are generally attributed to differences in estimates of probabilities of success of treatment involved, and differing assessments of the results on success or failure. Without explicit criteria for decision, it is difficult to identify precisely the sources of these variations in treatment. 3. Beyond the principle of informed consent, patients need to be involved in decision-making. For this, the decision process should be explained and broken down. A decision problem is to select the best option among a set of choices. The problem is what is meant by "best option ", or know what criteria guide the choice. The purpose of decision theory is to answer this question. The systematic use of decision models allows us to better understand the differences in medical practices, and facilitates the search for consensus. About this, there are three types of situations: situations certain, risky situations, and uncertain situations: 1. In certain situations, the consequence of each decision are certain. 2. In risky situations, every decision can have several consequences, the probability of each of these consequences is known. 3. In uncertain situations, each decision can have several consequences, the probability is not known. Our aim in this article is to show how decision theory can usefully be mobilized to meet the needs of physicians. The decision theory can make decisions more transparent: first, by clarifying the data systematically considered the problem and secondly by asking a few basic principles should guide the choice. Once the problem and clarified the decision theory provides operational tools to represent the available information and determine patient preferences, and thus assist the patient and doctor in their choices.Keywords: decision making, medicine, treatment strategies, patient
Procedia PDF Downloads 5792900 Analytical Slope Stability Analysis Based on the Statistical Characterization of Soil Shear Strength
Authors: Bernardo C. P. Albuquerque, Darym J. F. Campos
Abstract:
Increasing our ability to solve complex engineering problems is directly related to the processing capacity of computers. By means of such equipments, one is able to fast and accurately run numerical algorithms. Besides the increasing interest in numerical simulations, probabilistic approaches are also of great importance. This way, statistical tools have shown their relevance to the modelling of practical engineering problems. In general, statistical approaches to such problems consider that the random variables involved follow a normal distribution. This assumption tends to provide incorrect results when skew data is present since normal distributions are symmetric about their means. Thus, in order to visualize and quantify this aspect, 9 statistical distributions (symmetric and skew) have been considered to model a hypothetical slope stability problem. The data modeled is the friction angle of a superficial soil in Brasilia, Brazil. Despite the apparent universality, the normal distribution did not qualify as the best fit. In the present effort, data obtained in consolidated-drained triaxial tests and saturated direct shear tests have been modeled and used to analytically derive the probability density function (PDF) of the safety factor of a hypothetical slope based on Mohr-Coulomb rupture criterion. Therefore, based on this analysis, it is possible to explicitly derive the failure probability considering the friction angle as a random variable. Furthermore, it is possible to compare the stability analysis when the friction angle is modelled as a Dagum distribution (distribution that presented the best fit to the histogram) and as a Normal distribution. This comparison leads to relevant differences when analyzed in light of the risk management.Keywords: statistical slope stability analysis, skew distributions, probability of failure, functions of random variables
Procedia PDF Downloads 3382899 Vocational Rehabilitation for People with Disabilities: Employment Rates, Job Persistence and Wages
Authors: Hester Fass, Ofir Pinto
Abstract:
Research indicates gaps in education, employment rates and wages between people with disabilities and those without disabilities. One of the main tools available to reduce these gaps is vocational rehabilitation. In order to examine the effects of vocational rehabilitation, a follow-up study, based on comprehensive administrative data, was conducted. The study included 88,286 people with disabilities who participated in vocational rehabilitation of the National Insurance Institute of Israel (NII), and completed the process between 1999 and 2012. Research variables included: employment rates, job persistence and wage levels. This research, the first of its kind in Israel, has several unique aspects: a)a long-range follow-up study on people who completed vocational rehabilitation; b) examination of a broad population spectrum, including also people that are not eligible to disability pensions ; c) a comparison among those with work-related injuries, those injured in hostile acts and those injured in other circumstances; and finally d) the identification of the characteristics of those who are entitled to vocational rehabilitation but who do not participate in any vocational rehabilitation plan. The most notable results include: 1. Vocational rehabilitation contributed to employment, job persistence and wage levels. Participation in vocational rehabilitation resulted in an employment rate of 65% within two years after completing the program, and 73% eventually. Participation in a vocational rehabilitation plan also contributed to job persistence and wage levels. 2. Vocational rehabilitation plans aimed at integration in universal frameworks increased the chances of being employed, persisting at the job and receiving a higher wage than did the vocational rehabilitation aimed at selective frameworks (such as sheltered workshops). 3. The type of disability affected the chances of integration in a vocational rehabilitation plan and in the labor market. People with a disability from birth had greater chances of integration in a vocational rehabilitation plan, while the type of disability and its severity affected the chances of the person with disabilities to find employment.Keywords: vocational rehabilitation, employment, job persistence, wages
Procedia PDF Downloads 4532898 Deep Learning-Based Channel Estimation for RIS-Assisted Unmanned Aerial Vehicle-Enabled Wireless Communication System
Authors: Getaneh Berie Tarekegn
Abstract:
Wireless communication via unmanned aerial vehicles (UAVs) has drawn a great deal of attention due to its flexibility in establishing line-of-sight (LoS) communications. However, in complex urban and dynamic environments, the movement of UAVs can be blocked by trees and high-rise buildings that obstruct directional paths. With reconfigurable intelligent surfaces (RIS), this problem can be effectively addressed. To achieve this goal, accurate channel estimation in RIS-assisted UAV-enabled wireless communications is crucial. This paper proposes an accurate channel estimation model using long short-term memory (LSTM) for a multi-user RIS-assisted UAV-enabled wireless communication system. According to simulation results, LSTM can improve the channel estimation performance of RIS-assisted UAV-enabled wireless communication.Keywords: channel estimation, reconfigurable intelligent surfaces, long short-term memory, unmanned aerial vehicles
Procedia PDF Downloads 572897 Engaging Employees in Innovation - A Quantitative Study on The Role of Affective Commitment to Change Among Norwegian Employees in Higher Education.
Authors: Barbara Rebecca Mutonyi, Chukwuemeka Echebiri, Terje Slåtten, Gudbrand Lien
Abstract:
The concept of affective commitment to change has been scarcely explored among employees in the higher education literature. The present study addresses this knowledge gap in the literature by examining how various psychological factors, such as psychological empowerment (PsyEmp), and psychological capital (PsyCap), promotes affective commitment to change. As affective commitment to change has been identified by previous studies as an important aspect to implementation behavior, the study examines the correlation of affective commitment to change on employee innovative behavior (EIB) in higher education. The study proposes mediation relationship between PsyEmp, PsyCap, and affective commitment to change. 250 employees in higher education in Norway were sampled for this study. The study employed online survey for data collection, utilizing Stata software to perform Partial least square equation modeling to test the proposed hypotheses of the study. Through bootstrapping, the study was able to test for mediating effects. Findings of the study shows a strong direct relationship between the leadership factor PsyEmp on the individual factor PsyCap ( = 0.453). In addition, the findings of the study reveal that both PsyEmp and PsyCap are related to affective commitment to change ( = 0.28 and = 0.249, respectively). In total, PsyEmp and PsyCap explains about 10% of the variance in the concept of affective commitment to change. Further, the direct effect of effective commitment to change and EIB is also supported ( = 0.183). The three factors, PsyEmp, PsyCap, and affective commitment to change, explains nearly 40% (R2 = 0.39) of the variance found in EIB. The relationship between PsyEmp, PsyCap, and affective commitment to change are mediated through the individual factor PsyCap. In order to effectively promote affective commitment to change among higher education employees, higher education managers should focus on both the leadership factor, PsyEmp, as well as the individual factor, PsyCap, of their employees. In this regard, higher education managers should strengthen employees EIB through providing autonomy, creating a safe environment that encourages innovation thinking and action, and providing employees in higher education opportunities to be involved in changes occurring at work. This contributes to strengthening employees´ affective commitment to change, that further improves their EIB in their work roles as higher education employees. As such, the results of this study implicate the ambidextrous nature of the concepts of affective commitment to change and EIB that should be considered in future studies of innovation in higher education research.Keywords: affective commitment to change, psychological capital, innovative behavior, psychological empowerment, higher education
Procedia PDF Downloads 1162896 Urban Refugees and Education in Developing Countries
Authors: Sheraz Akhtar
Abstract:
In recent years, a massive influx of refugees into developing countries has placed significant constraints on the host government’s capacities to provide social services, including education, to all. As a result, the refugee communities often find themselves deprived of their rights to education in these host countries, particularly for those who to live outside camps in urban locations. While previous research has examined the educational experiences of refugees who have resettled in developed nations, there remains a dearth of research on the educational experiences of urban refugees in developing nations. This study examines this issue through a case study of Pakistani Christian refugees living in urban settings in Thailand. Using a combination of observations within community learning centres set up by international non-government organisations (INGOs) working with these communities, and interviews with young Pakistani Christian refugees and their families, the research aims to give greater voice to the Pakistani Christian refugee community living in Thailand, and better understand their educational aspirations.Keywords: Education, Developing Countries , INGOs, Urban Refugees
Procedia PDF Downloads 1252895 Meet Automotive Software Safety and Security Standards Expectations More Quickly
Authors: Jean-François Pouilly
Abstract:
This study addresses the growing complexity of embedded systems and the critical need for secure, reliable software. Traditional cybersecurity testing methods, often conducted late in the development cycle, struggle to keep pace. This talk explores how formal methods, integrated with advanced analysis tools, empower C/C++ developers to 1) Proactively address vulnerabilities and bugs, which includes formal methods and abstract interpretation techniques to identify potential weaknesses early in the development process, reducing the reliance on penetration and fuzz testing in later stages. 2) Streamline development by focusing on bugs that matter, with close to no false positives and catching flaws earlier, the need for rework and retesting is minimized, leading to faster development cycles, improved efficiency and cost savings. 3) Enhance software dependability which includes combining static analysis using abstract interpretation with full context sensitivity, with hardware memory awareness allows for a more comprehensive understanding of potential vulnerabilities, leading to more dependable and secure software. This approach aligns with industry best practices (ISO2626 or ISO 21434) and empowers C/C++ developers to deliver robust, secure embedded systems that meet the demands of today's and tomorrow's applications. We will illustrate this approach with the TrustInSoft analyzer to show how it accelerates verification for complex cases, reduces user fatigue, and improves developer efficiency, cost-effectiveness, and software cybersecurity. In summary, integrating formal methods and sound Analyzers enhances software reliability and cybersecurity, streamlining development in an increasingly complex environment.Keywords: safety, cybersecurity, ISO26262, ISO24434, formal methods
Procedia PDF Downloads 192894 Adjustments of Mechanical and Hydraulic Properties of Wood Formed under Environmental Stresses
Authors: B. Niez, B. Moulia, J. Dlouha, E. Badel
Abstract:
Trees adjust their development to the environmental conditions they experience. Storms events of last decades showed that acclimation of trees to mechanical stresses due to wind is a very important process that allows the trees to sustain for long years. In the future, trees will experience new wind patterns, namely, more often strong winds and fewer daily moderate winds. Moreover, these patterns will go along with drought periods that may interact with the capacity of trees to adjust their growth to mechanical stresses due to wind. It is necessary to understand the mechanisms of wood functional acclimations to environmental conditions in order to predict their behaviour and in order to give foresters and breeders the relevant tools to adapt their forest management. This work aims to study how trees adjust the mechanical and hydraulic functions of their wood to environmental stresses and how this acclimation may be beneficial for the tree to resist to future stresses. In this work, young poplars were grown under controlled climatic conditions that include permanent environmental stress (daily mechanical stress of the stem by bending and/or hydric stress). Then, the properties of wood formed under these stressed conditions were characterized. First, hydraulic conductivity and sensibility to cavitation were measured at the tissue level in order to evaluate the changes in water transport capacity. Secondly, bending tests and Charpy impact tests were carried out at the millimetric scale to locally measure mechanical parameters such as elastic modulus, elastic limit or rupture energy. These experimental data allow evaluating the impacts of mechanical and water stress on the wood material. At the stem level, they will be merged in an integrative model in order to evaluate the beneficial aspect of wood acclimation for trees.Keywords: acclimation, environmental stresses, hydraulics, mechanics, wood
Procedia PDF Downloads 2042893 Rejuvenating a Space into World Class Environment through Conservation of Heritage Architecture
Authors: Abhimanyu Sharma
Abstract:
India is known for its cultural heritage. As the country is rich in diversity along its length and breadth, the state of Jammu & Kashmir is world famous for the beautiful tourist destinations in the Kashmir region of the state. However, equally destined destinations are also located in Jammu region of the said state. For most of the time in last 50-60 years, the prime focus of development was centered around Kashmir region. But now due to an ever increase in globalization, the focus is decentralizing throughout the country. Pertinently, the potential of Jammu Region needs to be incorporated into the world tourist map in particular. One such spot in the Jammu region of the state is a place called ‘Mubarak Mandi’ – the palace with the royal residence of the Maharaja of Jammu & Kashmir from the Dogra Dynasty, is located in the heart of Jammu city (the winter capital of the state). Since the place is destined with a heritage importance but yet lack the supporting infrastructure to attract the national tourist in general and worldwide tourist at large. For such places, conservation and restoration of the existing structures are the potential tools to overcome the present limiting nature of the place. The rejuvenation of this place through potential and dynamic conservation techniques is targeted through this paper. This paper deals with developing and restoring the areas within the whole campus with appropriate building materials, conservation techniques, etc. to promote a great number of visitors by developing it into a prioritised tourist attraction point. Major thrust shall be on studying the criteria’s for developing the place considering the psychological effect needed to create a socially interactive environment. Additionally, thrust shall be on the spatial elements that will aid in creating a common platform for all kinds of tourists. Accordingly, different conservation guidelines (or model) shall be targeted through this paper so that this Jammu region shall also be an equally contributor to the tourist graph of the country as the Kashmir part is.Keywords: conservation, heritage architecture, rejuvenating, restoration
Procedia PDF Downloads 2972892 Code Mixing and Code-Switching Patterns in Kannada-English Bilingual Children and Adults Who Stutter
Authors: Vasupradaa Manivannan, Santosh Maruthy
Abstract:
Background/Aims: Preliminary evidence suggests that code-switching and code-mixing may act as one of the voluntary coping behavior to avoid the stuttering characteristics in children and adults; however, less is known about the types and patterns of code-mixing (CM) and code-switching (CS). Further, it is not known how it is different between children to adults who stutter. This study aimed to identify and compare the CM and CS patterns between Kannada-English bilingual children and adults who stutter. Method: A standard group comparison was made between five children who stutter (CWS) in the age range of 9-13 years and five adults who stutter (AWS) in the age range of 20-25 years. The participants who are proficient in Kannada (first language- L1) and English (second language- L2) were considered for the study. There were two tasks given to both the groups, a) General conversation (GC) with 10 random questions, b) Narration task (NAR) (Story / General Topic, for example., A Memorable Life Event) in three different conditions {Mono Kannada (MK), Mono English (ME), and Bilingual (BIL) Condition}. The children and adults were assessed online (via Zoom session) with a high-quality internet connection. The audio and video samples of the full assessment session were auto-recorded and manually transcribed. The recorded samples were analyzed for the percentage of dysfluencies using SSI-4 and CM, and CS exhibited in each participant using Matrix Language Frame (MLF) model parameters. The obtained data were analyzed using the Statistical Package for the Social Sciences (SPSS) software package (Version 20.0). Results: The mean, median, and standard deviation values were obtained for the percentage of dysfluencies (%SS) and frequency of CM and CS in Kannada-English bilingual children and adults who stutter for various parameters obtained through the MLF model. The inferential results indicated that %SS significantly varied between population (AWS vs CWS), languages (L1 vs L2), and tasks (GC vs NAR) but not across free (BIL) and bound (MK, ME) conditions. It was also found that the frequency of CM and CS patterns varies between CWS and AWS. The AWS had a lesser %SS but greater use of CS patterns than CWS, which is due to their excessive coping skills. The language mixing patterns were more observed in L1 than L2, and it was significant in most of the MLF parameters. However, there was a significantly higher (P<0.05) %SS in L2 than L1. The CS and CS patterns were more in conditions 1 and 3 than 2, which may be due to the higher proficiency of L2 than L1. Conclusion: The findings highlight the importance of assessing the CM and CS behaviors, their patterns, and the frequency of CM and CS between CWS and AWS on MLF parameters in two different tasks across three conditions. The results help us to understand CM and CS strategies in bilingual persons who stutter.Keywords: bilinguals, code mixing, code switching, stuttering
Procedia PDF Downloads 78