Search results for: cross layer network topology
1650 Application Reliability Method for the Analysis of the Stability Limit States of Large Concrete Dams
Authors: Mustapha Kamel Mihoubi, Essadik Kerkar, Abdelhamid Hebbouche
Abstract:
According to the randomness of most of the factors affecting the stability of a gravity dam, probability theory is generally used to TESTING the risk of failure and there is a confusing logical transition from the state of stability failed state, so the stability failure process is considered as a probable event. The control of risk of product failures is of capital importance for the control from a cross analysis of the gravity of the consequences and effects of the probability of occurrence of identified major accidents and can incur a significant risk to the concrete dam structures. Probabilistic risk analysis models are used to provide a better understanding the reliability and structural failure of the works, including when calculating stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of the reliability analysis methods including the methods used in engineering. It is in our case of the use of level II methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type FORM (First Order Reliability Method), SORM (Second Order Reliability Method). By way of comparison, a second level III method was used which generates a full analysis of the problem and involving an integration of the probability density function of, random variables are extended to the field of security by using of the method of Mont-Carlo simulations. Taking into account the change in stress following load combinations: normal, exceptional and extreme the acting on the dam, calculation results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities thus causing a significant decrease in strength, especially in the presence of combinations of unique and extreme loads. Shear forces then induce a shift threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case THE increase of uplift in a hypothetical default of the drainage system.Keywords: dam, failure, limit state, monte-carlo, reliability, probability, sliding, Taylor
Procedia PDF Downloads 3181649 Effect of Different Feed Composition on the Growth Performance in Early Weaned Piglets
Authors: Obuzor Eze Obuzor, Ekpoke Okurube Sliver
Abstract:
The study was carried out at Debee farms at Ahoada West Local Government area, Rivers State, Nigeria. To evaluate the impact of two different cost-effective available feed composition on growth performance of weaned piglets. Thirty weaned uncontrolled cross bred (Large white x pietrain) piglets of average initial weight of 3.04 Kg weaned at 30days were assigned to three dietary treatments, comprising three replicates of 10 weaned piglets each, piglets were kept at 7 °C in different pens with dimensions of 4.50 × 4.50 m. The design of the experiment was completely randomized design, data from the study were subjected to one-way analysis of variance (ANOVA) and significant means were separated using Duncan's Multiple Range Test using Statistical Analysis System (SAS) software for windows (2 0 0 3), statistical significance was assessed at P < 0.05 (95% confidence interval) while survival rate was calculated using simple percentage. A standard diet was prepared to meet the nutrient requirements of weaned piglets at (20.8% crude protein). The three diets were fed to the animals in concrete feeding trough, control diet (C) had soybean meal while first treatment had spent grain (T1) and the second treatment had wheat offal (T2) respectively. The experiment was partitioned into four weeks periods (days 1-7, 8-14, 15-21 and 22-28). Feed and water were given unrestrictedly throughout the period of the experiment. The feed intake and weights of the pigs were recorded on weekly basis. Feed conversion ratio and daily weight gain were calculated and the study lasted for four weeks. There was no significant (P>0.05) effect of diet on survival rate, final body weight, average daily weight gain, daily feed intake and feed conversion ratio. The overall performance showed that treatment one (T1) had survival rate (93%), improved daily weight gain (36.21 g), average daily feed intake (120.14 g) and had the best feed conversion ratio (0.29) similar high mean value with the control while treatment two (T2) had lowest and negative response to all parameters. It could be concluded that feed formulated with spent grain is cheaper than control (soybean meal) and also improved the growth performance of weaned piglets.Keywords: piglets, weaning, feed conversions ratio, daily weight gain
Procedia PDF Downloads 651648 Adjusting Electricity Demand Data to Account for the Impact of Loadshedding in Forecasting Models
Authors: Migael van Zyl, Stefanie Visser, Awelani Phaswana
Abstract:
The electricity landscape in South Africa is characterized by frequent occurrences of loadshedding, a measure implemented by Eskom to manage electricity generation shortages by curtailing demand. Loadshedding, classified into stages ranging from 1 to 8 based on severity, involves the systematic rotation of power cuts across municipalities according to predefined schedules. However, this practice introduces distortions in recorded electricity demand, posing challenges to accurate forecasting essential for budgeting, network planning, and generation scheduling. Addressing this challenge requires the development of a methodology to quantify the impact of loadshedding and integrate it back into metered electricity demand data. Fortunately, comprehensive records of loadshedding impacts are maintained in a database, enabling the alignment of Loadshedding effects with hourly demand data. This adjustment ensures that forecasts accurately reflect true demand patterns, independent of loadshedding's influence, thereby enhancing the reliability of electricity supply management in South Africa. This paper presents a methodology for determining the hourly impact of load scheduling and subsequently adjusting historical demand data to account for it. Furthermore, two forecasting models are developed: one utilizing the original dataset and the other using the adjusted data. A comparative analysis is conducted to evaluate forecast accuracy improvements resulting from the adjustment process. By implementing this methodology, stakeholders can make more informed decisions regarding electricity infrastructure investments, resource allocation, and operational planning, contributing to the overall stability and efficiency of South Africa's electricity supply system.Keywords: electricity demand forecasting, load shedding, demand side management, data science
Procedia PDF Downloads 611647 Ground Short Circuit Contributions of a MV Distribution Line Equipped with PWMSC
Authors: Mohamed Zellagui, Heba Ahmed Hassan
Abstract:
This paper proposes a new approach for the calculation of short-circuit parameters in the presence of Pulse Width Modulated based Series Compensator (PWMSC). PWMSC is a newly Flexible Alternating Current Transmission System (FACTS) device that can modulate the impedance of a transmission line through applying a variation to the duty cycle (D) of a train of pulses with fixed frequency. This results in an improvement of the system performance as it provides virtual compensation of distribution line impedance by injecting controllable apparent reactance in series with the distribution line. This controllable reactance can operate in both capacitive and inductive modes and this makes PWMSC highly effective in controlling the power flow and increasing system stability in the system. The purpose of this work is to study the impact of fault resistance (RF) which varies between 0 to 30 Ω on the fault current calculations in case of a ground fault and a fixed fault location. The case study is for a medium voltage (MV) Algerian distribution line which is compensated by PWMSC in the 30 kV Algerian distribution power network. The analysis is based on symmetrical components method which involves the calculations of symmetrical components of currents and voltages, without and with PWMSC in both cases of maximum and minimum duty cycle value for capacitive and inductive modes. The paper presents simulation results which are verified by the theoretical analysis.Keywords: pulse width modulated series compensator (pwmsc), duty cycle, distribution line, short-circuit calculations, ground fault, symmetrical components method
Procedia PDF Downloads 5001646 Linking Adaptation to Climate Change and Sustainable Development: The Case of ClimAdaPT.Local in Portugal
Authors: A. F. Alves, L. Schmidt, J. Ferrao
Abstract:
Portugal is one of the more vulnerable European countries to the impacts of climate change. These include: temperature increase; coastal sea level rise; desertification and drought in the countryside; and frequent and intense extreme weather events. Hence, adaptation strategies to climate change are of great importance. This is what was addressed by ClimAdaPT.Local. This policy-oriented project had the main goal of developing 26 Municipal Adaptation Strategies for Climate Change, through the identification of local specific present and future vulnerabilities, the training of municipal officials, and the engagement of local communities. It is intended to be replicated throughout the whole territory and to stimulate the creation of a national network of local adaptation in Portugal. Supported by methodologies and tools specifically developed for this project, our paper is based on the surveys, training and stakeholder engagement workshops implemented at municipal level. In an 'adaptation-as-learning' process, these tools functioned as a social-learning platform and an exercise in knowledge and policy co-production. The results allowed us to explore the nature of local vulnerabilities and the exposure of gaps in the context of reappraisal of both future climate change adaptation opportunities and possible dysfunctionalities in the governance arrangements of municipal Portugal. Development issues are highlighted when we address the sectors and social groups that are both more sensitive and more vulnerable to the impacts of climate change. We argue that a pluralistic dialogue and a common framing can be established between them, with great potential for transformational adaptation. Observed climate change, present-day climate variability and future expectations of change are great societal challenges which should be understood in the context of the sustainable development agenda.Keywords: adaptation, ClimAdaPT.Local, climate change, Portugal, sustainable development
Procedia PDF Downloads 1961645 Organic Geochemistry and Oil-Source Correlation of Cretaceous Sediments in the Kohat Basin, Pakistan
Authors: Syed Mamoon Siyar, Fayaz Ali, Sajjad Ahmad, Samina Jahandad, George Kontakiotis, Hammad T. Janjuhah, Assimina Antonarakou, Waqas Naseem
Abstract:
The Cretaceous Chichali Formation in the Chanda-01, Chanda-02, Chanda-03 and Mela-05 wells and the oil samples from Chanda-01 and Chanda-01 wells located in the Kohat Basin, Pakistan, were analyzed with the objectives of evaluating the hydrocarbon generation potential, source, thermal maturity and depositional of organic matter, and oil-source correlation by employing geochemical screening techniques and biomarker studies. The total organic carbon (TOC) values in Chanda-02, Chanda-03 and Mela-05 indicate, in general, poor to fair, fair and fair to good source rock potential with low genetic potential, respectively. The nature of organic matter has been determined by standard cross plots of Rock Eval pyrolysis parameters, indicating that studied cuttings from the Chichali Formation dominantly contain type III kerogen at present and show maturity for oil generation in the studied wells. The organic petrographic study also confirmed the vitrinite (type III) as a major maceral in the investigated Chichali Shales and its reflectance values show maturity for oil. The different ratios of non-biomarkers and biomarkers i.e., steranes, terpenes and aromatics parameters, indicate the marine source of organic matter deposited in the anoxic environment for the Chichali Formation in Chanda-01 and Chanda-02 wells and mixed source input of organic matter deposited in suboxic conditions for oil in the same wells. The CPI, and different biomarkers parameters such as C29 S/S+R, ββ/αα+ββ), M29/H30, Ts/Ts+Tm, H31 (S/S+R) and aromatic compounds methyl phenanthrene index (MPI) and organic petrographic analysis (vitrinite reflectance) suggest mature stage of oil generation for Chichali Shales and oil samples in the study area with little high thermal maturity in case of oils. Based on source and thermal maturity biomarkers and non-biomarkers parameters, the produced oils have no correlation with the Cretaceous Chichali Formation in the studied Chanda-01 and Chanda-02 wells in Kohat Basin, Pakistan, but it has been suggested that these oils have been generated by the strata containing high terrestrial organic input compare to Chichali Shales.Keywords: Organic geochemistry, Chichali Shales and crude oils, Kohat Basin, Pakistan
Procedia PDF Downloads 831644 Assessment of Incomplete Childhood Immunization Determinants in Ethiopia: A Nationwide Multilevel Study
Authors: Mastewal Endeshaw Getnet
Abstract:
Imunization is one of the most cost-effective and extensively adopted public health strategies for preventing child disability and mortality. Expanded Program on Immunization (EPI) was launched in 1974 with the goal of providing life-saving vaccines to all children in all and building on the success of the global smallpox eradication program. According to World Health Organization report, by 2020, all countries should have achieved 90% vaccination coverage. Many developing countries still have not achieved the goal. Ethiopia is one of Africa's developing countries. The Ethiopian Ministry of health (MoH) launched the EPI program in 1980, with the goal of achieving 90% coverage among children under the age of 1 year by 1990. Among children aged 12-23 months, complete immunization coverage was 47% based on the Ethiopian Demographic and Health Survey (EDAS) 2019 report. The coverage varies depending on the administrative region, ranging from 21% in Afar region to 89% in Amhara region, Ethiopia. Therefore, identifying risk factors for incomplete immunization among children is a key challenge, particularly in Ethiopia, which has a large geographical diversity and a predicted with 119.96 million projected population size in the year 2022. Despite its critical and challenging issue, this issue is still open and has not yet been fully investigated. Recently, a few previous studies have been conducted on the assessment of incomplete children immunization determinants. However, the majority of the studies were cross-sectional surveys that assessed only EPI coverage. Motivated by the above investigation, this study focuses on investigating determinants associated with incomplete immunization among Ethiopian children to facilitate the rate of full immunization coverage. Moreover, we consider both individual immunization and service performance-related factors to investigate incomplete children's determinants. Consequently, we adopted an ecological model in this study. Individual and environmental factors are combined in the Ecological model, which provides multilevel framework for exploring different determinants related with health behaviors. The Ethiopian Demographic and Health Survey will be used as a source of data from 2021 to achieve the objective of this study. The findings of this study will be useful to the Ethiopian government and other public health institutes to improve the coverage score of childhood immunization based on the identified risk determinants.Keywords: incomplete immunization, children, ethiopia, ecological model
Procedia PDF Downloads 411643 Numerical Investigation of Flow Boiling within Micro-Channels in the Slug-Plug Flow Regime
Authors: Anastasios Georgoulas, Manolia Andredaki, Marco Marengo
Abstract:
The present paper investigates the hydrodynamics and heat transfer characteristics of slug-plug flows under saturated flow boiling conditions within circular micro-channels. Numerical simulations are carried out, using an enhanced version of the open-source CFD-based solver ‘interFoam’ of OpenFOAM CFD Toolbox. The proposed user-defined solver is based in the Volume Of Fluid (VOF) method for interface advection, and the mentioned enhancements include the implementation of a smoothing process for spurious current reduction, the coupling with heat transfer and phase change as well as the incorporation of conjugate heat transfer to account for transient solid conduction. In all of the considered cases in the present paper, a single phase simulation is initially conducted until a quasi-steady state is reached with respect to the hydrodynamic and thermal boundary layer development. Then, a predefined and constant frequency of successive vapour bubbles is patched upstream at a certain distance from the channel inlet. The proposed numerical simulation set-up can capture the main hydrodynamic and heat transfer characteristics of slug-plug flow regimes within circular micro-channels. In more detail, the present investigation is focused on exploring the interaction between subsequent vapour slugs with respect to their generation frequency, the hydrodynamic characteristics of the liquid film between the generated vapour slugs and the channel wall as well as of the liquid plug between two subsequent vapour slugs. The proposed investigation is carried out for the 3 different working fluids and three different values of applied heat flux in the heated part of the considered microchannel. The post-processing and analysis of the results indicate that the dynamics of the evolving bubbles in each case are influenced by both the upstream and downstream bubbles in the generated sequence. In each case a slip velocity between the vapour bubbles and the liquid slugs is evident. In most cases interfacial waves appear close to the bubble tail that significantly reduce the liquid film thickness. Finally, in accordance with previous investigations vortices that are identified in the liquid slugs between two subsequent vapour bubbles can significantly enhance the convection heat transfer between the liquid regions and the heated channel walls. The overall results of the present investigation can be used to enhance the present understanding by providing better insight of the complex, underpinned heat transfer mechanisms in saturated boiling within micro-channels in the slug-plug flow regime.Keywords: slug-plug flow regime, micro-channels, VOF method, OpenFOAM
Procedia PDF Downloads 2671642 Comparative Analysis of Data Gathering Protocols with Multiple Mobile Elements for Wireless Sensor Network
Authors: Bhat Geetalaxmi Jairam, D. V. Ashoka
Abstract:
Wireless Sensor Networks are used in many applications to collect sensed data from different sources. Sensed data has to be delivered through sensors wireless interface using multi-hop communication towards the sink. The data collection in wireless sensor networks consumes energy. Energy consumption is the major constraints in WSN .Reducing the energy consumption while increasing the amount of generated data is a great challenge. In this paper, we have implemented two data gathering protocols with multiple mobile sinks/elements to collect data from sensor nodes. First, is Energy-Efficient Data Gathering with Tour Length-Constrained Mobile Elements in Wireless Sensor Networks (EEDG), in which mobile sinks uses vehicle routing protocol to collect data. Second is An Intelligent Agent-based Routing Structure for Mobile Sinks in WSNs (IAR), in which mobile sinks uses prim’s algorithm to collect data. Authors have implemented concepts which are common to both protocols like deployment of mobile sinks, generating visiting schedule, collecting data from the cluster member. Authors have compared the performance of both protocols by taking statistics based on performance parameters like Delay, Packet Drop, Packet Delivery Ratio, Energy Available, Control Overhead. Authors have concluded this paper by proving EEDG is more efficient than IAR protocol but with few limitations which include unaddressed issues likes Redundancy removal, Idle listening, Mobile Sink’s pause/wait state at the node. In future work, we plan to concentrate more on these limitations to avail a new energy efficient protocol which will help in improving the life time of the WSN.Keywords: aggregation, consumption, data gathering, efficiency
Procedia PDF Downloads 4971641 Visualising Charles Bonnet Syndrome: Digital Co-Creation of Pseudohallucinations
Authors: Victoria H. Hamilton
Abstract:
Charles Bonnet Syndrome (CBS) is when a person experiences pseudohallucinations that fill in visual information from any type of sight loss. CBS arises from an epiphenomenal process, with the physical actions of sight resulting in the mental formations of images. These pseudohallucinations—referred to as visions by the CBS community—manifest in a wide range of forms, from complex scenes to simple geometric shapes. To share these unique visual experiences, a remote co-creation website was created where CBS participants communicated their lived experiences. This created a reflexive process, and we worked to produce true representations of these interesting and little-known phenomena. Digital reconstruction of the visions is utilised as it echoes the vivid, experiential movie-like nature of what is being perceived. This paper critically analyses co-creation as a method for making digital assets. The implications of the participants' vision impairments and the application of ethical safeguards are examined in this context. Important to note, this research is of a medical syndrome for a non-medical, practice-based design. CBS research to date is primarily conducted by the ophthalmic, neurological, and psychiatric fields and approached with the primary concerns of these specialties. This research contributes a distinct approach incorporating practice-based digital design, autoethnography, and phenomenology. Autoethnography and phenomenology combine as a foundation, with the first bringing understanding and insights, balanced by the second philosophical, bigger picture, and established approach. With further refining, it is anticipated that the research may be applied to other conditions. Conditions where articulating internal experiences proves challenging and the use of digital methods could aid communication. Both the research and CBS communities will benefit from the insights regarding the relationship between cognitive perceptions and the vision process. This research combines the digital visualising of visions with interest in the link between metaphor, embodied cognition, and image. The argument for a link between CBS visions and metaphor may appear evident due to the cross-category mapping of images that is necessary for comprehension. They both are— CBS visions and metaphors—the experience of picturing images, often with lateral connections and imaginative associations.Keywords: Charles Bonnet Syndrome, digital design, visual hallucinations, visual perception
Procedia PDF Downloads 441640 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 1141639 Dry Reforming of Methane Using Metal Supported and Core Shell Based Catalyst
Authors: Vinu Viswanath, Lawrence Dsouza, Ugo Ravon
Abstract:
Syngas typically and intermediary gas product has a wide range of application of producing various chemical products, such as mixed alcohols, hydrogen, ammonia, Fischer-Tropsch products methanol, ethanol, aldehydes, alcohols, etc. There are several technologies available for the syngas production. An alternative to the conventional processes an attractive route of utilizing carbon dioxide and methane in equimolar ratio to generate syngas of ratio close to one has been developed which is also termed as Dry Reforming of Methane technology. It also gives the privilege to utilize the greenhouse gases like CO2 and CH4. The dry reforming process is highly endothermic, and indeed, ΔG becomes negative if the temperature is higher than 900K and practically, the reaction occurs at 1000-1100K. At this temperature, the sintering of the metal particle is happening that deactivate the catalyst. However, by using this strategy, the methane is just partially oxidized, and some cokes deposition occurs that causing the catalyst deactivation. The current research work was focused to mitigate the main challenges of dry reforming process such coke deposition, and metal sintering at high temperature.To achieve these objectives, we employed three different strategies of catalyst development. 1) Use of bulk catalysts such as olivine and pyrochlore type materials. 2) Use of metal doped support materials, like spinel and clay type material. 3) Use of core-shell model catalyst. In this approach, a thin layer (shell) of redox metal oxide is deposited over the MgAl2O4 /Al2O3 based support material (core). For the core-shell approach, an active metal is been deposited on the surface of the shell. The shell structure formed is a doped metal oxide that can undergo reduction and oxidation reactions (redox), and the core is an alkaline earth aluminate having a high affinity towards carbon dioxide. In the case of metal-doped support catalyst, the enhanced redox properties of doped CeO2 oxide and CO2 affinity property of alkaline earth aluminates collectively helps to overcome coke formation. For all of the mentioned three strategies, a systematic screening of the metals is carried out to optimize the efficiency of the catalyst. To evaluate the performance of them, the activity and stability test were carried out under reaction conditions of temperature ranging from 650 to 850 ̊C and an operating pressure ranging from 1 to 20 bar. The result generated infers that the core-shell model catalyst showed high activity and better stable DR catalysts under atmospheric as well as high-pressure conditions. In this presentation, we will show the results related to the strategy.Keywords: carbon dioxide, dry reforming, supports, core shell catalyst
Procedia PDF Downloads 1781638 Non-Invasive Assessment of Peripheral Arterial Disease: Automated Ankle Brachial Index Measurement and Pulse Volume Analysis Compared to Ultrasound Duplex Scan
Authors: Jane E. A. Lewis, Paul Williams, Jane H. Davies
Abstract:
Introduction: There is, at present, a clear and recognized need to optimize the diagnosis of peripheral arterial disease (PAD), particularly in non-specialist settings such as primary care, and this arises from several key facts. Firstly, PAD is a highly prevalent condition. In 2010, it was estimated that globally, PAD affected more than 202 million people and furthermore, this prevalence is predicted to further escalate. The disease itself, although frequently asymptomatic, can cause considerable patient suffering with symptoms such as lower limb pain, ulceration, and gangrene which, in worse case scenarios, can necessitate limb amputation. A further and perhaps the most eminent consequence of PAD arises from the fact that it is a manifestation of systemic atherosclerosis and therefore is a powerful predictor of coronary heart disease and cerebrovascular disease. Objective: This cross sectional study aimed to individually and cumulatively compare sensitivity and specificity of the (i) ankle brachial index (ABI) and (ii) pulse volume waveform (PVW) recorded by the same automated device, with the presence or absence of peripheral arterial disease (PAD) being verified by an Ultrasound Duplex Scan (UDS). Methods: Patients (n = 205) referred for lower limb arterial assessment underwent an ABI and PVW measurement using volume plethysmography followed by a UDS. Presence of PAD was recorded for ABI if < 0.9 (noted if > 1.30) if PVW was graded as 2, 3 or 4 or a hemodynamically significant stenosis > 50% with UDS. Outcome measure was agreement between measured ABI and interpretation of the PVW for PAD diagnosis, using UDS as the reference standard. Results: Sensitivity of ABI was 80%, specificity 91%, and overall accuracy 88%. Cohen’s kappa revealed good agreement between ABI and UDS (k = 0.7, p < .001). PVW sensitivity 97%, specificity 81%, overall accuracy 84%, with a good level of agreement between PVW and UDS (k = 0.67, p < .001). The combined sensitivity of ABI and PVW was 100%, specificity 76%, and overall accuracy 85% (k = 0.67, p < .001). Conclusions: Combing these two diagnostic modalities within one device provided a highly accurate method of ruling out PAD. Such a device could be utilized within the primary care environment to reduce the number of unnecessary referrals to secondary care with concomitant cost savings, reduced patient inconvenience, and prioritization of urgent PAD cases.Keywords: ankle brachial index, peripheral arterial disease, pulse volume waveform, ultrasound duplex scan
Procedia PDF Downloads 1651637 Cellular Targeting to Dual Gaseous Microenvironments by Polydimethylsiloxane Microchip
Authors: Samineh Barmaki, Ville Jokinen, Esko Kankuri
Abstract:
We report a microfluidic chip that can be used to modify the gaseous microenvironment of a cell-culture in ambient atmospheric conditions. The aim of the study is to show the cellular response to nitric oxide (NO) under hypoxic (oxygen < 5%) condition. Simultaneously targeting to hypoxic and nitric oxide will provide an opportunity for NO‑based therapeutics. Studies on cellular responses to lowered oxygen concentration or to gaseous mediators are usually carried out under a specific macro environment, such as hypoxia chambers, or with specific NO donor molecules that may have additional toxic effects. In our study, the chip consists of a microfluidic layer and a cell culture well, separated by a thin gas permeable polydimethylsiloxane (PDMS) membrane. The main design goal is to separate the gas oxygen scavenger and NO donor solutions, which are often toxic, from the cell media. Two different types of gas exchangers, titled 'pool' and 'meander' were tested. We find that the pool design allows us to reach a higher level of oxygen depletion than meander (24.32 ± 19.82 %vs -3.21 ± 8.81). Our microchip design can make the cells culture more simple and makes it easy to adapt existing cell culture protocols. Our first application is utilizing the chip to create hypoxic conditions on targeted areas of cell culture. In this study, oxygen scavenger sodium sulfite generates hypoxia and its effect on human embryonic kidney cells (HEK-293). The PDMS membrane was coated with fibronectin before initiating cell cultures, and the cells were grown for 48h on the chips before initiating the gas control experiments. The hypoxia experiments were performed by pumping of O₂-depleted H₂O into the microfluidic channel with a flow-rate of 0.5 ml/h. Image-iT® reagent as an oxygen level responser was mixed with HEK-293 cells. The fluorescent signal appears on cells stained with Image-iT® hypoxia reagent (after 6h of pumping oxygen-depleted H₂O through the microfluidic channel in pool area). The exposure to different levels of O₂ can be controlled by varying the thickness of the PDMS membrane. Recently, we improved the design of the microfluidic chip, which can control the microenvironment of two different gases at the same time. The hypoxic response was also improved from the new design of microchip. The cells were grown on the thin PDMS membrane for 30 hours, and with a flowrate of 0.1 ml/h; the oxygen scavenger was pumped into the microfluidic channel. We also show that by pumping sodium nitroprusside (SNP) as a nitric oxide donor activated under light and can generate nitric oxide on top of PDMS membrane. We are aiming to show cellular microenvironment response of HEK-293 cells to both nitric oxide (by pumping SNP) and hypoxia (by pumping oxygen scavenger solution) in separated channels in one microfluidic chip.Keywords: hypoxia, nitric oxide, microenvironment, microfluidic chip, sodium nitroprusside, SNP
Procedia PDF Downloads 1341636 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection
Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine
Abstract:
Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine
Procedia PDF Downloads 2671635 Cognitive Science Based Scheduling in Grid Environment
Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya
Abstract:
Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence
Procedia PDF Downloads 3941634 Security Report Profiling for Mobile Banking Applications in Indonesia Based on OWASP Mobile Top 10-2016
Authors: Bambang Novianto, Rizal Aditya Herdianto, Raphael Bianco Huwae, Afifah, Alfonso Brolin Sihite, Rudi Lumanto
Abstract:
The mobile banking application is a type of mobile application that is growing rapidly. This is caused by the ease of service and time savings in making transactions. On the other hand, this certainly provides a challenge in security issues. The use of mobile banking can not be separated from cyberattacks that may occur which can result the theft of sensitive information or financial loss. The financial loss and the theft of sensitive information is the most avoided thing because besides harming the user, it can also cause a loss of customer trust in a bank. Cyberattacks that are often carried out against mobile applications are phishing, hacking, theft, misuse of data, etc. Cyberattack can occur when a vulnerability is successfully exploited. OWASP mobile Top 10 has recorded as many as 10 vulnerabilities that are most commonly found in mobile applications. In the others, android permissions also have the potential to cause vulnerabilities. Therefore, an overview of the profile of the mobile banking application becomes an urgency that needs to be known. So that it is expected to be a consideration of the parties involved for improving security. In this study, an experiment has been conducted to capture the profile of the mobile banking applications in Indonesia based on android permission and OWASP mobile top 10 2016. The results show that there are six basic vulnerabilities based on OWASP Mobile Top 10 that are most commonly found in mobile banking applications in Indonesia, i.e. M1:Improper Platform Usage, M2:Insecure Data Storage, M3:Insecure Communication, M5:Insufficient Cryptography, M7:Client Code Quality, and M9:Reverse Engineering. The most permitted android permissions are the internet, status network access, and telephone read status.Keywords: mobile banking application, OWASP mobile top 10 2016, android permission, sensitive information, financial loss
Procedia PDF Downloads 1411633 Flood Hazards, Vulnerability and Adaptations in Upper Imo River Basin of South Eastern Nigera Introduction
Authors: Christian N. Chibo
Abstract:
Imo River Basin is located in South Eastern Nigeria comprising of 11 states of Imo, Abia, Anambra, Ebonyi, Enugu, Edo, Rivers, Cross river, AkwaIbom, Bayelsa, Delta, and Bayelsa states. The basin has a fluvial erosional system dominated by powerful rivers coming down from steep slopes in the area. This research investigated various hazards associated with flood, the vulnerable areas, elements at risk of flood and various adaptation strategies adopted by local inhabitants to cope with the hazards. The research aim is to identify, examine and assess flood hazards, vulnerability and adaptations in the Upper Imo River Basin. The study identified the role of elevation in cause of flood, elements at risk of flood as well as examine the effectiveness or otherwise of the adaptation strategies for coping with the hazards. Data for this research is grouped as primary and secondary. Their various methods of generation are field measurement, questionnaire, library websites etc. Other types of data were generated from topographical, geological, and Digital Elevation model (DEM) maps, while the hydro meteorological data was sourced from Nigeria Meteorological Agency (NIMET), Meteorological stations of Geography and Environmental Management Departments of Imo State University and Alvan Ikoku Federal College of Education. 800 copies of questionnaire were distributed using systematic sampling to 8 locations used for the pilot survey. About 96% of the questionnaire were retrieved and used for the study. 13 flood events were identified in the study area. Their causes, years and dates of events were documented in the text, and the damages they caused were evaluated. The study established that for each flood event, there is over 200mm of rain observed on the day of the flood and the day before the flood. The study also observed that the areas that situate at higher elevation (See DEM) are less prone to flood hazards while areas at low elevations are more prone to flood hazards. Elements identified to be at risk of flood are agricultural land, residential dwellings, retail trading and related services, public buildings and community services. The study thereby recommends non settlement at flood plains and flood prone areas and rearrangement of land use activities in the upper Imo River Basin among othersKeywords: flood hazard, flood plain, geomorphology, Imo River Basin
Procedia PDF Downloads 3041632 The Influence of Infiltration and Exfiltration Processes on Maximum Wave Run-Up: A Field Study on Trinidad Beaches
Authors: Shani Brathwaite, Deborah Villarroel-Lamb
Abstract:
Wave run-up may be defined as the time-varying position of the landward extent of the water’s edge, measured vertically from the mean water level position. The hydrodynamics of the swash zone and the accurate prediction of maximum wave run-up, play a critical role in the study of coastal engineering. The understanding of these processes is necessary for the modeling of sediment transport, beach recovery and the design and maintenance of coastal engineering structures. However, due to the complex nature of the swash zone, there remains a lack of detailed knowledge in this area. Particularly, there has been found to be insufficient consideration of bed porosity and ultimately infiltration/exfiltration processes, in the development of wave run-up models. Theoretically, there should be an inverse relationship between maximum wave run-up and beach porosity. The greater the rate of infiltration during an event, associated with a larger bed porosity, the lower the magnitude of the maximum wave run-up. Additionally, most models have been developed using data collected on North American or Australian beaches and may have limitations when used for operational forecasting in Trinidad. This paper aims to assess the influence and significance of infiltration and exfiltration processes on wave run-up magnitudes within the swash zone. It also seeks to pay particular attention to how well various empirical formulae can predict maximum run-up on contrasting beaches in Trinidad. Traditional surveying techniques will be used to collect wave run-up and cross-sectional data on various beaches. Wave data from wave gauges and wave models will be used as well as porosity measurements collected using a double ring infiltrometer. The relationship between maximum wave run-up and differing physical parameters will be investigated using correlation analyses. These physical parameters comprise wave and beach characteristics such as wave height, wave direction, period, beach slope, the magnitude of wave setup, and beach porosity. Most parameterizations to determine the maximum wave run-up are described using differing parameters and do not always have a good predictive capability. This study seeks to improve the formulation of wave run-up by using the aforementioned parameters to generate a formulation with a special focus on the influence of infiltration/exfiltration processes. This will further contribute to the improvement of the prediction of sediment transport, beach recovery and design of coastal engineering structures in Trinidad.Keywords: beach porosity, empirical models, infiltration, swash, wave run-up
Procedia PDF Downloads 3571631 Urine Neutrophil Gelatinase-Associated Lipocalin as an Early Marker of Acute Kidney Injury in Hematopoietic Stem Cell Transplantation Patients
Authors: Sara Ataei, Maryam Taghizadeh-Ghehi, Amir Sarayani, Asieh Ashouri, Amirhossein Moslehi, Molouk Hadjibabaie, Kheirollah Gholami
Abstract:
Background: Acute kidney injury (AKI) is common in hematopoietic stem cell transplantation (HSCT) patients with an incidence of 21–73%. Prevention and early diagnosis reduces the frequency and severity of this complication. Predictive biomarkers are of major importance to timely diagnosis. Neutrophil gelatinase associated lipocalin (NGAL) is a widely investigated novel biomarker for early diagnosis of AKI. However, no study assessed NGAL for AKI diagnosis in HSCT patients. Methods: We performed further analyses on gathered data from our recent trial to evaluate the performance of urine NGAL (uNGAL) as an indicator of AKI in 72 allogeneic HSCT patients. AKI diagnosis and severity were assessed using Risk–Injury–Failure–Loss–End-stage renal disease and AKI Network criteria. We assessed uNGAL on days -6, -3, +3, +9 and +15. Results: Time-dependent Cox regression analysis revealed a statistically significant relationship between uNGAL and AKI occurrence. (HR=1.04 (1.008-1.07), P=0.01). There was a relation between uNGAL day +9 to baseline ratio and incidence of AKI (unadjusted HR=.1.047(1.012-1.083), P<0.01). The area under the receiver-operating characteristic curve for day +9 to baseline ratio was 0.86 (0.74-0.99, P<0.01) and a cut-off value of 2.62 was 85% sensitive and 83% specific in predicting AKI. Conclusions: Our results indicated that increase in uNGAL augmented the risk of AKI and the changes of day +9 uNGAL concentrations from baseline could be of value for predicting AKI in HSCT patients. Additionally uNGAL changes preceded serum creatinine rises by nearly 2 days.Keywords: acute kidney injury, hemtopoietic stem cell transplantation, neutrophil gelatinase-associated lipocalin, Receiver-operating characteristic curve
Procedia PDF Downloads 4091630 An Investigation of the Compliance of Kermanian College Students' Diet with Who/Fao Nutrition Targets
Authors: Farideh Doostan, Sahar Mohseni Taklloo, Mohammad Nosrati
Abstract:
Chronic diseases are non-communicable and largely preventable by lifestyle changes including healthy diet consumption. They are the most common cause of death in the world and projected to increase by 15% globally between 2010 and 2020.The hazardous effects of behavioral and dietary risk factors on chronic disease have been established in prospective cohort studies and randomized trials. Because of some changes occur in college students’ lifestyle, assessment of dietary risk factors is important in these populations. Objective: This research was the first study that conducted to evaluate dietary intakes of Kermanian college students with WHO/FAO nutritional objectives. Material and Methods: In this descriptive cross-sectional study, 229 healthy college students of health faculty in Kerman University of Medical Sciences that do not intake any medical drugs were recruited using multistage sampling in 2013.Usual dietary intake was collected using a valid Food Frequency Questionnaire (FFQ) and diet quality was calculated based on WHO nutrient goals. To analysis of data between two groups, independent sample t. test and man whitney were applied. Results: Two hundred and twenty-nine college students; 151 females (65.9%) and 78 males (34.1%), the mean age of 21.9 years were studied. The mean of the Body Mass Index (Kg/m2) and Waist Circumference (cm) in males were 22.34 ±3.52 and 80.76±11.16 and in females were 21.19±2.62 and 73.67±7.65 respectively. Mean of daily cholesterol intake in males was significantly more than females (305±101 VS 268±98; P=0.008) and more than WHO/FAO recommendation (less than 300 mg/day). The mean of daily sodium intake in men and women were 10.4±1 and 10.9±5.3 respectively. These amounts were more than WHO/FAO recommendation (less than 2g/day). In addition, women were consumed fruit and vegetables more than men (839±336 VS 638±281; p ‹ 0.001) and these amounts were more than WHO/FAO recommendation (more than 400g/day) in both groups. Other intake indices were in the range of WHO/FAO recommendations, So that Percent of calories intake from total fat, saturated fatty acids, polyunsaturated fatty acids and added sugar were in compliance with WHO/FAO recommendations. Conclusion: Cholesterol intake in men and sodium intake in all participants were more than WHO/FAO recommendation. These dietary components are the most important causes of cardiovascular disease (one of the main causes of death in our population). These results indicated that proper nutritional education and interventions are needed in this population.Keywords: college students, food intake, WHO /FAO nutrient intake goals, Kerman
Procedia PDF Downloads 4041629 Climate Changes Impact on Artificial Wetlands
Authors: Carla Idely Palencia-Aguilar
Abstract:
Artificial wetlands play an important role at Guasca Municipality in Colombia, not only because they are used for the agroindustry, but also because more than 45 species were found, some of which are endemic and migratory birds. Remote sensing was used to determine the changes in the area occupied by water of artificial wetlands by means of Aster and Modis images for different time periods. Evapotranspiration was also determined by three methods: Surface Energy Balance System-Su (SEBS) algorithm, Surface Energy Balance- Bastiaanssen (SEBAL) algorithm, and Potential Evapotranspiration- FAO. Empirical equations were also developed to determine the relationship between Normalized Difference Vegetation Index (NDVI) versus net radiation, ambient temperature and rain with an obtained R2 of 0.83. Groundwater level fluctuations on a daily basis were studied as well. Data from a piezometer placed next to the wetland were fitted with rain changes (with two weather stations located at the proximities of the wetlands) by means of multiple regression and time series analysis, the R2 from the calculated and measured values resulted was higher than 0.98. Information from nearby weather stations provided information for ordinary kriging as well as the results for the Digital Elevation Model (DEM) developed by using PCI software. Standard models (exponential, spherical, circular, gaussian, linear) to describe spatial variation were tested. Ordinary Cokriging between height and rain variables were also tested, to determine if the accuracy of the interpolation would increase. The results showed no significant differences giving the fact that the mean result of the spherical function for the rain samples after ordinary kriging was 58.06 and a standard deviation of 18.06. The cokriging using for the variable rain, a spherical function; for height variable, the power function and for the cross variable (rain and height), the spherical function had a mean of 57.58 and a standard deviation of 18.36. Threatens of eutrophication were also studied, given the unconsciousness of neighbours and government deficiency. Water quality was determined over the years; different parameters were studied to determine the chemical characteristics of water. In addition, 600 pesticides were studied by gas and liquid chromatography. Results showed that coliforms, nitrogen, phosphorous and prochloraz were the most significant contaminants.Keywords: DEM, evapotranspiration, geostatistics, NDVI
Procedia PDF Downloads 1201628 Modeling and Analysis of Drilling Operation in Shale Reservoirs with Introduction of an Optimization Approach
Authors: Sina Kazemi, Farshid Torabi, Todd Peterson
Abstract:
Drilling in shale formations is frequently time-consuming, challenging, and fraught with mechanical failures such as stuck pipes or hole packing off when the cutting removal rate is not sufficient to clean the bottom hole. Crossing the heavy oil shale and sand reservoirs with active shale and microfractures is generally associated with severe fluid losses causing a reduction in the rate of the cuttings removal. These circumstances compromise a well’s integrity and result in a lower rate of penetration (ROP). This study presents collective results of field studies and theoretical analysis conducted on data from South Pars and North Dome in an Iran-Qatar offshore field. Solutions to complications related to drilling in shale formations are proposed through systemically analyzing and applying modeling techniques to select field mud logging data. Field data measurements during actual drilling operations indicate that in a shale formation where the return flow of polymer mud was almost lost in the upper dolomite layer, the performance of hole cleaning and ROP progressively change when higher string rotations are initiated. Likewise, it was observed that this effect minimized the force of rotational torque and improved well integrity in the subsequent casing running. Given similar geologic conditions and drilling operations in reservoirs targeting shale as the producing zone like the Bakken formation within the Williston Basin and Lloydminster, Saskatchewan, a drill bench dynamic modeling simulation was used to simulate borehole cleaning efficiency and mud optimization. The results obtained by altering RPM (string revolution per minute) at the same pump rate and optimized mud properties exhibit a positive correlation with field measurements. The field investigation and developed model in this report show that increasing the speed of string revolution as far as geomechanics and drilling bit conditions permit can minimize the risk of mechanically stuck pipes while reaching a higher than expected ROP in shale formations. Data obtained from modeling and field data analysis, optimized drilling parameters, and hole cleaning procedures are suggested for minimizing the risk of a hole packing off and enhancing well integrity in shale reservoirs. Whereas optimization of ROP at a lower pump rate maintains the wellbore stability, it saves time for the operator while reducing carbon emissions and fatigue of mud motors and power supply engines.Keywords: ROP, circulating density, drilling parameters, return flow, shale reservoir, well integrity
Procedia PDF Downloads 861627 Investigate the Rural Mobility and Accessibility Challenges of Seniors
Authors: Tom Ryan
Abstract:
This paper investigates the rural mobility and accessibility challenges of a specific target group - Seniors. The target group is those over 66 years of age who are entitled to use the Public Transport (PT) Free Travel Scheme in rural Ireland. The paper explores at a high level some of the projected rural PT challenges and requirements over the next 10-15 years, noting that statistical predictions show that there will be a significant population demographic shift within the Senior's age profile. Using the PESTEL framework, the literature review explored existing research concerning mobility, accessibility challenges, and the opportunities Seniors face. Twenty-seven qualitative in-depth interviews with stakeholders within the ecosystem were undertaken. The stakeholders included: rural PT customers, Local-Link managers, NTA senior management, a Minister of State, and a European parliament policymaker. Tier 1 interviewee feedback spotlights that the PT network system does not exist for rural patients to access hospital facilities. There was no evidence from the Tier 2 research findings to show that health policymakers and transport planners are working to deliver a national solution to support patients getting access to hospital appointments. Several research interviewees discussed the theme of isolation and the perceived stigma of senior males utilising PT. The findings indicated that MaaS is potentially revolutionary in the PT arena. Finally, this paper suggests several short-, medium- and long-term recommendations based on the research findings. These recommendations are a potential springboard to ensure that rural PT is suitable for future Irish generations.Keywords: accessibility, active ageing, car dependence, isolation, seniors health issues, behavioural changes, environmental challenges, internet of things, demand responsive, mobility as a service
Procedia PDF Downloads 1091626 Study of Structural Behavior and Proton Conductivity of Inorganic Gel Paste Electrolyte at Various Phosphorous to Silicon Ratio by Multiscale Modelling
Authors: P. Haldar, P. Ghosh, S. Ghoshdastidar, K. Kargupta
Abstract:
In polymer electrolyte membrane fuel cells (PEMFC), the membrane electrode assembly (MEA) is consisting of two platinum coated carbon electrodes, sandwiched with one proton conducting phosphoric acid doped polymeric membrane. Due to low mechanical stability, flooding and fuel cell crossover, application of phosphoric acid in polymeric membrane is very critical. Phosphorous and silica based 3D inorganic gel gains the attention in the field of supercapacitors, fuel cells and metal hydrate batteries due to its thermally stable highly proton conductive behavior. Also as a large amount of water molecule and phosphoric acid can easily get trapped in Si-O-Si network cavities, it causes a prevention in the leaching out. In this study, we have performed molecular dynamics (MD) simulation and first principle calculations to understand the structural, electronics and electrochemical and morphological behavior of this inorganic gel at various P to Si ratios. We have used dipole-dipole interactions, H bonding, and van der Waals forces to study the main interactions between the molecules. A 'structure property-performance' mapping is initiated to determine optimum P to Si ratio for best proton conductivity. We have performed the MD simulations at various temperature to understand the temperature dependency on proton conductivity. The observed results will propose a model which fits well with experimental data and other literature values. We have also studied the mechanism behind proton conductivity. And finally we have proposed a structure for the gel paste with optimum P to Si ratio.Keywords: first principle calculation, molecular dynamics simulation, phosphorous and silica based 3D inorganic gel, polymer electrolyte membrane fuel cells, proton conductivity
Procedia PDF Downloads 1291625 Simulation of Focusing of Diamagnetic Particles in Ferrofluid Microflows with a Single Set of Overhead Permanent Magnets
Authors: Shuang Chen, Zongqian Shi, Jiajia Sun, Mingjia Li
Abstract:
Microfluidics is a technology that small amounts of fluids are manipulated using channels with dimensions of tens to hundreds of micrometers. At present, this significant technology is required for several applications in some fields, including disease diagnostics, genetic engineering, and environmental monitoring, etc. Among these fields, manipulation of microparticles and cells in microfluidic device, especially separation, have aroused general concern. In magnetic field, the separation methods include positive and negative magnetophoresis. By comparison, negative magnetophoresis is a label-free technology. It has many advantages, e.g., easy operation, low cost, and simple design. Before the separation of particles or cells, focusing them into a single tight stream is usually a necessary upstream operation. In this work, the focusing of diamagnetic particles in ferrofluid microflows with a single set of overhead permanent magnets is investigated numerically. The geometric model of the simulation is based on the configuration of previous experiments. The straight microchannel is 24mm long and has a rectangular cross-section of 100μm in width and 50μm in depth. The spherical diamagnetic particles of 10μm in diameter are suspended into ferrofluid. The initial concentration of the ferrofluid c₀ is 0.096%, and the flow rate of the ferrofluid is 1.8mL/h. The magnetic field is induced by five identical rectangular neodymium−iron− boron permanent magnets (1/8 × 1/8 × 1/8 in.), and it is calculated by equivalent charge source (ECS) method. The flow of the ferrofluid is governed by the Navier–Stokes equations. The trajectories of particles are solved by the discrete phase model (DPM) in the ANSYS FLUENT program. The positions of diamagnetic particles are recorded by transient simulation. Compared with the results of the mentioned experiments, our simulation shows consistent results that diamagnetic particles are gradually focused in ferrofluid under magnetic field. Besides, the diamagnetic particle focusing is studied by varying the flow rate of the ferrofluid. It is in agreement with the experiment that the diamagnetic particle focusing is better with the increase of the flow rate. Furthermore, it is investigated that the diamagnetic particle focusing is affected by other factors, e.g., the width and depth of the microchannel, the concentration of the ferrofluid and the diameter of diamagnetic particles.Keywords: diamagnetic particle, focusing, microfluidics, permanent magnet
Procedia PDF Downloads 1301624 The Impact of Temporal Impairment on Quality of Experience (QoE) in Video Streaming: A No Reference (NR) Subjective and Objective Study
Authors: Muhammad Arslan Usman, Muhammad Rehan Usman, Soo Young Shin
Abstract:
Live video streaming is one of the most widely used service among end users, yet it is a big challenge for the network operators in terms of quality. The only way to provide excellent Quality of Experience (QoE) to the end users is continuous monitoring of live video streaming. For this purpose, there are several objective algorithms available that monitor the quality of the video in a live stream. Subjective tests play a very important role in fine tuning the results of objective algorithms. As human perception is considered to be the most reliable source for assessing the quality of a video stream, subjective tests are conducted in order to develop more reliable objective algorithms. Temporal impairments in a live video stream can have a negative impact on the end users. In this paper we have conducted subjective evaluation tests on a set of video sequences containing temporal impairment known as frame freezing. Frame Freezing is considered as a transmission error as well as a hardware error which can result in loss of video frames on the reception side of a transmission system. In our subjective tests, we have performed tests on videos that contain a single freezing event and also for videos that contain multiple freezing events. We have recorded our subjective test results for all the videos in order to give a comparison on the available No Reference (NR) objective algorithms. Finally, we have shown the performance of no reference algorithms used for objective evaluation of videos and suggested the algorithm that works better. The outcome of this study shows the importance of QoE and its effect on human perception. The results for the subjective evaluation can serve the purpose for validating objective algorithms.Keywords: objective evaluation, subjective evaluation, quality of experience (QoE), video quality assessment (VQA)
Procedia PDF Downloads 6011623 Influence of Nanomaterials on the Properties of Shape Memory Polymeric Materials
Authors: Katielly Vianna Polkowski, Rodrigo Denizarte de Oliveira Polkowski, Cristiano Grings Herbert
Abstract:
The use of nanomaterials in the formulation of polymeric materials modifies their molecular structure, offering an infinite range of possibilities for the development of smart products, being of great importance for science and contemporary industry. Shape memory polymers are generally lightweight, have high shape recovery capabilities, they are easy to process and have properties that can be adapted for a variety of applications. Shape memory materials are active materials that have attracted attention due to their superior damping properties when compared to conventional structural materials. The development of methodologies capable of preparing new materials, which use graphene in their structure, represents technological innovation that transforms low-cost products into advanced materials with high added value. To obtain an improvement in the shape memory effect (SME) of polymeric materials, it is possible to use graphene in its composition containing low concentration by mass of graphene nanoplatelets (GNP), graphene oxide (GO) or other functionalized graphene, via different mixture process. As a result, there was an improvement in the SME, regarding the increase in the values of maximum strain. In addition, the use of graphene contributes to obtaining nanocomposites with superior electrical properties, greater crystallinity, as well as resistance to material degradation. The methodology used in the research is Systematic Review, scientific investigation, gathering relevant studies on influence of nanomaterials on the properties of shape memory polymeric, using the literature database as a source and study methods. In the present study, a systematic reviewwas performed of all papers published from 2014 to 2022 regarding graphene and shape memory polymeric througha search of three databases. This study allows for easy identification of themost relevant fields of study with respect to graphene and shape memory polymeric, as well as the main gaps to beexplored in the literature. The addition of graphene showed improvements in obtaining higher values of maximum deformation of the material, attributed to a possible slip between stacked or agglomerated nanostructures, as well as an increase in stiffness due to the increase in the degree of phase separation that results in a greater amount physical cross-links, referring to the formation of shortrange rigid domains.Keywords: graphene, shape memory, smart materials, polymers, nanomaterials
Procedia PDF Downloads 841622 Technical Sustainable Management: An Instrument to Increase Energy Efficiency in Wastewater Treatment Plants, a Case Study in Jordan
Authors: Dirk Winkler, Leon Koevener, Lamees AlHayary
Abstract:
This paper contributes to the improvement of the municipal wastewater systems in Jordan. An important goal is increased energy efficiency in wastewater treatment plants and therefore lower expenses due to reduced electricity consumption. The chosen way to achieve this goal is through the implementation of Technical Sustainable Management adapted to the Jordanian context. Three wastewater treatment plants in Jordan have been chosen as a case study for the investigation. These choices were supported by the fact that the three treatment plants are suitable for average performance and size. Beyond that, an energy assessment has been recently conducted in those facilities. The project succeeded in proving the following hypothesis: Energy efficiency in wastewater treatment plants can be improved by implementing principles of Technical Sustainable Management adapted to the Jordanian context. With this case study, a significant increase in energy efficiency can be achieved by optimization of operational performance, identifying and eliminating shortcomings and appropriate plant management. Implementing Technical Sustainable Management as a low-cost tool with a comparable little workload, provides several additional benefits supplementing increased energy efficiency, including compliance with all legal and technical requirements, process optimization, but also increased work safety and convenient working conditions. The research in the chosen field continues because there are indications for possible integration of the adapted tool into other regions and sectors. The concept of Technical Sustainable Management adapted to the Jordanian context could be extended to other wastewater treatment plants in all regions of Jordan but also into other sectors including water treatment, water distribution, wastewater network, desalination, or chemical industry.Keywords: energy efficiency, quality management system, technical sustainable management, wastewater treatment
Procedia PDF Downloads 1621621 Finite Element Modeling and Analysis of Reinforced Concrete Coupled Shear Walls Strengthened with Externally Bonded Carbon Fiber Reinforced Polymer Composites
Authors: Sara Honarparast, Omar Chaallal
Abstract:
Reinforced concrete (RC) coupled shear walls (CSWs) are very effective structural systems in resisting lateral loads due to winds and earthquakes and are particularly used in medium- to high-rise RC buildings. However, most of existing old RC structures were designed for gravity loads or lateral loads well below the loads specified in the current modern seismic international codes. These structures may behave in non-ductile manner due to poorly designed joints, insufficient shear reinforcement and inadequate anchorage length of the reinforcing bars. This has been the main impetus to investigate an appropriate strengthening method to address or attenuate the deficiencies of these structures. The objective of this paper is to twofold: (i) evaluate the seismic performance of existing reinforced concrete coupled shear walls under reversed cyclic loading; and (ii) investigate the seismic performance of RC CSWs strengthened with externally bonded (EB) carbon fiber reinforced polymer (CFRP) sheets. To this end, two CSWs were considered as follows: (a) the first one is representative of old CSWs and therefore was designed according to the 1941 National Building Code of Canada (NBCC, 1941) with conventionally reinforced coupling beams; and (b) the second one, representative of new CSWs, was designed according to modern NBCC 2015 and CSA/A23.3 2014 requirements with diagonally reinforced coupling beam. Both CSWs were simulated using ANSYS software. Nonlinear behavior of concrete is modeled using multilinear isotropic hardening through a multilinear stress strain curve. The elastic-perfectly plastic stress-strain curve is used to simulate the steel material. Bond stress–slip is modeled between concrete and steel reinforcement in conventional coupling beam rather than considering perfect bond to better represent the slip of the steel bars observed in the coupling beams of these CSWs. The old-designed CSW was strengthened using CFRP sheets bonded to the concrete substrate and the interface was modeled using an adhesive layer. The behavior of CFRP material is considered linear elastic up to failure. After simulating the loading and boundary conditions, the specimens are analyzed under reversed cyclic loading. The comparison of results obtained for the two unstrengthened CSWs and the one retrofitted with EB CFRP sheets reveals that the strengthening method improves the seismic performance in terms of strength, ductility, and energy dissipation capacity.Keywords: carbon fiber reinforced polymer, coupled shear wall, coupling beam, finite element analysis, modern code, old code, strengthening
Procedia PDF Downloads 197