Search results for: trade gravity model
8799 How Manufacturing Firm Manages Information Security: Need Pull and Technology Push Perspective
Authors: Geuna Kim, Sanghyun Kim
Abstract:
This study investigates various factors that may influence the ISM process, including the organization’s internal needs and external pressure, and examines the role of regulatory pressure in ISM development and performance. The 105 sets of data collected in a survey were tested against the research model using SEM. The results indicate that NP and TP had positive effects on the ISM process, except for perceived benefits. Regulatory pressure had a positive effect on the relationship between ISM awareness and ISM development and performance.Keywords: information security management, need pull, technology push, regulatory pressure
Procedia PDF Downloads 3028798 Phenology and Size in the Social Sweat Bee, Halictus ligatus, in an Urban Environment
Authors: Rachel A. Brant, Grace E. Kenny, Paige A. Muñiz, Gerardo R. Camilo
Abstract:
The social sweat bee, Halictus ligatus, has been documented to alter its phenology as a response to changes in temporal dynamics of resources. Furthermore, H. ligatus exhibits polyethism in natural environments as a consequence of the variation in resources. Yet, we do not know if or how H. ligatus responds to these variations in urban environments. As urban environments become much more widespread, and human population is expected to reach nine billion by 2050, it is crucial to distinguish how resources are allocated by bees in cities. We hypothesize that in urban regions, where floral availability varies with human activity, H. ligatus will exhibit polyethism in order to match the extremely localized spatial variability of resources. We predict that in an urban setting, where resources vary both spatially and temporally, the phenology of H. ligatus will alter in response to these fluctuations. This study was conducted in Saint Louis, Missouri, at fifteen sites each varying in size and management type (community garden, urban farm, prairie restoration). Bees were collected by hand netting from 2013-2016. Results suggest that the largest individuals, mostly gynes, occurred in lower income neighborhood community gardens in May and August. We used a model averaging procedure, based on information theoretical methods, to determine a best model for predicting bee size. Our results suggest that month and locality within the city are the best predictors of bee size. Halictus ligatus was observed to comply with the predictions of polyethism from 2013 to 2015. However, in 2016 there was an almost complete absence of the smallest worker castes. This is a significant deviation from what is expected under polyethism. This could be attributed to shifts in planting decisions, shifts in plant-pollinator matches, or local climatic conditions. Further research is needed to determine if this divergence from polyethism is a new strategy for the social sweat bee as climate continues to alter or a response to human dominated landscapes.Keywords: polyethism, urban environment, phenology, social sweat bee
Procedia PDF Downloads 2238797 Studies on Non-Isothermal Crystallization Kinetics of PP/SEBS-g-MA Blends
Authors: Rishi Sharma, S. N. Maiti
Abstract:
The non-isothermal crystallization kinetics of PP/SEBS-g-MA blends up to 0-50% concentration of copolymer was studied by differential scanning calorimetry at four different cooling rates. Crystallization parameters were analyzed by Avrami and Jeziorny models. Primary and secondary crystallization processes were described by Avrami equation. Avrami model showed that all types of shapes grow from small dimensions during primary crystallization. However, three-dimensional crystal growth was observed during the secondary crystallization process. The crystallization peak and onset temperature decrease, howeverKeywords: crystallization kinetics, non-isothermal, polypropylene, SEBS-g-MA
Procedia PDF Downloads 6268796 The Integration of Geographical Information Systems and Capacitated Vehicle Routing Problem with Simulated Demand for Humanitarian Logistics in Tsunami-Prone Area: A Case Study of Phuket, Thailand
Authors: Kiatkulchai Jitt-Aer, Graham Wall, Dylan Jones
Abstract:
As a result of the Indian Ocean tsunami in 2004, logistics applied to disaster relief operations has received great attention in the humanitarian sector. As learned from such disaster, preparing and responding to the aspect of delivering essential items from distribution centres to affected locations are of the importance for relief operations as the nature of disasters is uncertain especially in suffering figures, which are normally proportional to quantity of supplies. Thus, this study proposes a spatial decision support system (SDSS) for humanitarian logistics by integrating Geographical Information Systems (GIS) and the capacitated vehicle routing problem (CVRP). The GIS is utilised for acquiring demands simulated from the tsunami flooding model of the affected area in the first stage, and visualising the simulation solutions in the last stage. While CVRP in this study encompasses designing the relief routes of a set of homogeneous vehicles from a relief centre to a set of geographically distributed evacuation points in which their demands are estimated by using both simulation and randomisation techniques. The CVRP is modeled as a multi-objective optimization problem where both total travelling distance and total transport resources used are minimized, while demand-cost efficiency of each route is maximized in order to determine route priority. As the model is a NP-hard combinatorial optimization problem, the Clarke and Wright Saving heuristics is proposed to solve the problem for the near-optimal solutions. The real-case instances in the coastal area of Phuket, Thailand are studied to perform the SDSS that allows a decision maker to visually analyse the simulation scenarios through different decision factors.Keywords: demand simulation, humanitarian logistics, geographical information systems, relief operations, capacitated vehicle routing problem
Procedia PDF Downloads 2528795 Micro-Droplet Formation in a Microchannel under the Effect of an Electric Field: Experiment
Authors: Sercan Altundemir, Pinar Eribol, A. Kerem Uguz
Abstract:
Microfluidics systems allow many-large scale laboratory applications to be miniaturized on a single device in order to reduce cost and advance fluid control. Moreover, such systems enable to generate and control droplets which have a significant role on improved analysis for many chemical and biological applications. For example, they can be employed as the model for cells in microfluidic systems. In this work, the interfacial instability of two immiscible Newtonian liquids flowing in a microchannel is investigated. When two immiscible liquids are in laminar regime, a flat interface is formed between them. If a direct current electric field is applied, the interface may deform, i.e. may become unstable and it may be ruptured and form micro-droplets. First, the effect of thickness ratio, total flow rate, viscosity ratio of the silicone oil and ethylene glycol liquid couple on the critical voltage at which the interface starts to destabilize is investigated. Then the droplet sizes are measured under the effect of these parameters at various voltages. Moreover, the effect of total flow rate on the time elapsed for the interface to be ruptured to form droplets by hitting the wall of the channel is analyzed. It is observed that an increase in the viscosity or the thickness ratio of the silicone oil to the ethylene glycol has a stabilizing effect, i.e. a higher voltage is needed while the total flow rate has no effect on it. However, it is observed that an increase in the total flow rate results in shortening of the elapsed time for the interface to hit the wall. Moreover, the droplet size decreases down to 0.1 μL with an increase in the applied voltage, the viscosity ratio or the total flow rate or a decrease in the thickness ratio. In addition to these observations, two empirical models for determining the critical electric number, i.e., the dimensionless voltage and the droplet size and another model which is a combination of both models, for determining the droplet size at the critical voltage are established.Keywords: droplet formation, electrohydrodynamics, microfluidics, two-phase flow
Procedia PDF Downloads 1808794 Optimizing the Insertion of Renewables in the Colombian Power Sector
Authors: Felipe Henao, Yeny Rodriguez, Juan P. Viteri, Isaac Dyner
Abstract:
Colombia is rich in natural resources and greatly focuses on the exploitation of water for hydroelectricity purposes. Alternative cleaner energy sources, such as solar and wind power, have been largely neglected despite: a) its abundance, b) the complementarities between hydro, solar and wind power, and c) the cost competitiveness of renewable technologies. The current limited mix of energy sources creates considerable weaknesses for the system, particularly when facing extreme dry weather conditions, such as El Niño event. In the past, El Niño have exposed the truly consequences of a system heavily dependent on hydropower, i.e. loss of power supply, high energy production costs, and loss of overall competitiveness for the country. Nonetheless, it is expected that the participation of hydroelectricity will increase in the near future. In this context, this paper proposes a stochastic lineal programming model to optimize the insertion of renewable energy systems (RES) into the Colombian electricity sector. The model considers cost-based generation competition between traditional energy technologies and alternative RES. This work evaluates the financial, environmental, and technical implications of different combinations of technologies. Various scenarios regarding the future evolution of costs of the technologies are considered to conduct sensitivity analysis of the solutions – to assess the extent of the participation of the RES in the Colombian power sector. Optimization results indicate that, even in the worst case scenario, where costs remain constant, the Colombian power sector should diversify its portfolio of technologies and invest strongly in solar and wind power technologies. The diversification through RES will contribute to make the system less vulnerable to extreme weather conditions, reduce the overall system costs, cut CO2 emissions, and decrease the chances of having national blackout events in the future. In contrast, the business as usual scenario indicates that the system will turn more costly and less reliable.Keywords: energy policy and planning, stochastic programming, sustainable development, water management
Procedia PDF Downloads 3008793 Sizing of Drying Processes to Optimize Conservation of the Nuclear Power Plants on Stationary
Authors: Assabo Mohamed, Bile Mohamed, Ali Farah, Isman Souleiman, Olga Alos Ramos, Marie Cadet
Abstract:
The life of a nuclear power plant is regularly punctuated by short or long period outages to carry out maintenance operations and/or nuclear fuel reloading. During these stops periods, it is essential to conserve all the secondary circuit equipment to avoid corrosion priming. This kind of circuit is one of the main components of a nuclear reactor. Indeed, the conservation materials on shutdown of a nuclear unit improve circuit performance and reduce the maintenance cost considerably. This study is a part of the optimization of the dry preservation of equipment from the water station of the nuclear reactor. The main objective is to provide tools to guide Electricity Production Nuclear Centre (EPNC) in order to achieve the criteria required by the chemical specifications of conservation materials. A theoretical model of drying exchangers of water station is developed by the software Engineering Equation Solver (EES). It used to size requirements and air quality needed for dry conservation of equipment. This model is based on heat transfer and mass transfer governing the drying operation. A parametric study is conducted to know the influence of aerothermal factor taking part in the drying operation. The results show that the success of dry conservation of equipment of the secondary circuit of nuclear reactor depends strongly on the draining, the quality of drying air and the flow of air injecting in the secondary circuit. Finally, theoretical case study performed on EES highlights the importance of mastering the entire system to balance the air system to provide each exchanger optimum flow depending on its characteristics. From these results, recommendations to nuclear power plants can be formulated to optimize drying practices and achieve good performance in the conservation of material from the water at the stop position.Keywords: dry conservation, optimization, sizing, water station
Procedia PDF Downloads 2658792 Agri-Food Transparency and Traceability: A Marketing Tool to Satisfy Consumer Awareness Needs
Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli
Abstract:
The link between man and food plays, in the social and economic system, a central role where cultural and multidisciplinary aspects intertwine: food is not only nutrition, but also communication, culture, politics, environment, science, ethics, fashion. This multi-dimensionality has many implications in the food economy. In recent years, the consumer became more conscious about his food choices, involving a consistent change in consumption models. This change concerns several aspects: awareness of food system issues, employment of socially and environmentally conscious decision-making, food choices based on different characteristics than nutritional ones i.e. origin of food, how it’s produced, and who’s producing it. In this frame the ‘consumption choices’ and the ‘interests of the citizen’ become one part of the others. The figure of the ‘Citizen Consumer’ is born, a responsible and ethically motivated individual to change his lifestyle, achieving the goal of sustainable consumption. Simultaneously the branding, that before was guarantee of the product quality, today is questioned. In order to meet these needs, Agri-Food companies are developing specific product lines that follow two main philosophies: ‘Back to basics’ and ‘Less is more’. However, the issue of ethical behavior does not seem to find an adequate on market offer. Most likely due to a lack of attention on the communication strategy used, very often based on market logic and rarely on ethical one. The label in its classic concept of ‘clean labeling’ can no longer be the only instrument through which to convey product information and its evolution towards a concept of ‘clear label’ is necessary to embrace ethical and transparent concepts in progress the process of democratization of the Food System. The implementation of a voluntary traceability path, relying on the technological models of the Internet of Things or Industry 4.0, would enable the Agri-Food Supply Chain to collect data that, if properly treated, could satisfy the information need of consumers. A change of approach is therefore proposed towards Agri-Food traceability that is no longer intended as a tool to be used to respond to the legislator, but rather as a promotional tool useful to tell the company in a transparent manner and then reach the slice of the market of food citizens. The use of mobile technology can also facilitate this information transfer. However, in order to guarantee maximum efficiency, an appropriate communication model based on the ethical communication principles should be used, which aims to overcome the pipeline communication model, to offer the listener a new way of telling the food product, based on real data collected through processes traceability. The Citizen Consumer is therefore placed at the center of the new model of communication in which he has the opportunity to choose what to know and how. The new label creates a virtual access point capable of telling the product according to different point of views, following the personal interests and offering the possibility to give several content modalities to support different situations and usability.Keywords: agri food traceability, agri-food transparency, clear label, food system, internet of things
Procedia PDF Downloads 1628791 Measurement and Simulation of Axial Neutron Flux Distribution in Dry Tube of KAMINI Reactor
Authors: Manish Chand, Subhrojit Bagchi, R. Kumar
Abstract:
A new dry tube (DT) has been installed in the tank of KAMINI research reactor, Kalpakkam India. This tube will be used for neutron activation analysis of small to large samples and testing of neutron detectors. DT tube is 375 cm height and 7.5 cm in diameter, located 35 cm away from the core centre. The experimental thermal flux at various axial positions inside the tube has been measured by irradiating the flux monitor (¹⁹⁷Au) at 20kW reactor power. The measured activity of ¹⁹⁸Au and the thermal cross section of ¹⁹⁷Au (n,γ) ¹⁹⁸Au reaction were used for experimental thermal flux measurement. The flux inside the tube varies from 10⁹ to 10¹⁰ and maximum flux was (1.02 ± 0.023) x10¹⁰ n cm⁻²s⁻¹ at 36 cm from the bottom of the tube. The Au and Zr foils without and with cadmium cover of 1-mm thickness were irradiated at the maximum flux position in the DT to find out the irradiation specific input parameters like sub-cadmium to epithermal neutron flux ratio (f) and the epithermal neutron flux shape factor (α). The f value was 143 ± 5, indicates about 99.3% thermal neutron component and α value was -0.2886 ± 0.0125, indicates hard epithermal neutron spectrum due to insufficient moderation. The measured flux profile has been validated using theoretical model of KAMINI reactor through Monte Carlo N-Particle Code (MCNP). In MCNP, the complex geometry of the entire reactor is modelled in 3D, ensuring minimum approximations for all the components. Continuous energy cross-section data from ENDF-B/VII.1 as well as S (α, β) thermal neutron scattering functions are considered. The neutron flux has been estimated at the corresponding axial locations of the DT using mesh tally. The thermal flux obtained from the experiment shows good agreement with the theoretically predicted values by MCNP, it was within ± 10%. It can be concluded that this MCNP model can be utilized for calculating other important parameters like neutron spectra, dose rate, etc. and multi elemental analysis can be carried out by irradiating the sample at maximum flux position using measured f and α parameters by k₀-NAA standardization.Keywords: neutron flux, neutron activation analysis, neutron flux shape factor, MCNP, Monte Carlo N-Particle Code
Procedia PDF Downloads 1678790 Exploring Bio-Inspired Catecholamine Chemistry to Design Durable Anti-Fungal Wound Dressings
Authors: Chetna Dhand, Venkatesh Mayandi, Silvia Marrero Diaz, Roger W. Beuerman, Seeram Ramakrishna, Rajamani Lakshminarayanan
Abstract:
Sturdy Insect Cuticle Sclerotization, Incredible Substrate independent Mussel’s bioadhesion, Tanning of Leather are some of catechol(amine)s mediated natural processes. Chemical contemplation spots toward a mechanism instigated with the formation of the quinone moieties from the respective catechol(amine)s, via oxidation, followed by the nucleophilic addition of the amino acids/proteins/peptides to this quinone leads to the development of highly strong, cross-linked and water-resistant proteinacious structures. Inspired with this remarkable catechol(amine)s chemistry towards amino acids/proteins/peptides, we attempted to design highly stable and water-resistant antifungal wound dressing mats with exceptional durability using collagen (protein), dopamine (catecholamine) and antifungal drugs (Amphotericin B and Caspofungin) as the key materials. Electrospinning technique has been used to fabricate desired nanofibrous mat including Collagen (COLL), COLL/Dopamine (COLL/DP) and calcium incorporated COLL/DP (COLL-DP-Ca2+). The prepared protein-based scaffolds have been studied for their microscopic investigations (SEM, TEM, and AFM), structural analysis (FT-IR), mechanical properties, water wettability characteristics and aqueous stability. Biocompatibility of these scaffolds has been analyzed for dermal fibroblast cells using MTS assay, Cell TrackerTM Green CMFDA and confocal imaging. Being the winner sample, COLL-DP-Ca2+ scaffold has been selected for incorporating two antifungal drugs namely Caspofungin (Peptide based) and Amphotericin B (Non-Peptide based). Antifungal efficiency of the designed mats has been evaluated for eight diverse fungal strains employing different microbial assays including disc diffusion, cell-viability assay, time kill kinetics etc. To confirm the durability of these mats, in term of their antifungal activity, drug leaching studies has been performed and monitored using disc diffusion assay each day. Ex-vivo fungal infection model has also been developed and utilized to validate the antifungal efficacy of the designed wound dressings. Results clearly reveal dopamine mediated crosslinking within COLL-antifungal scaffolds that leads to the generation of highly stable, mechanical tough, biocompatible wound dressings having the zone of inhabitation of ≥ 2 cm for almost all the investigated fungal strains. Leaching studies and Ex-vivo model has confirmed the durability of these wound dressing for more than 3 weeks and certified their suitability for commercialization. A model has also been proposed to enlighten the chemical mechanism involved for the development of these antifungal wound dressings with exceptional robustness.Keywords: catecholamine chemistry, electrospinning technique, antifungals, wound dressings, collagen
Procedia PDF Downloads 3798789 Wicking Bed Cultivation System as a Strategic Proposal for the Cultivation of Milpa and Mexican Medicinal Plants in Urban Spaces
Authors: David Lynch Steinicke, Citlali Aguilera Lira, Andrea León García
Abstract:
The proposal posed in this work comes from a researching-action approach. In Mexico, a dialogue of knowledge may function as a link between traditional, local, pragmatic knowledge, and technological, scientific knowledge. The advantage of generating this nexus lies on the positive impact in the environment, in society and economy. This work attempts to combine, on the one hand the traditional Mexican knowledge such as the usage of medicinal herb and the agroecosystem milpa; and on the other hand make use of a newly created agricultural ecotechnology which main function is to take advantage of the urban space and to save water. This ecotechnology is the wicking bed. In a globalized world, is relevant to have a proposal where the most important aspect is to revalorize the culture through the acquisition of traditional knowledge but at the same time adapting them to the new social and urbanized structures without threatening the environment. The methodology used in this work comes from a researching-action approach combined with a practical dimension where an experimental model made of three wickingbeds was implemented. In this model, there were cultivated medicinal herb and milpa components. The water efficiency and the social acceptance were compared with a traditional ground crop, all this practice was made in an urban social context. The implementation of agricultural ecotechnology has had great social acceptance as its irrigation involves minimal effort and it is economically feasible for low-income people. The wicking bed system raised in this project is attainable to be implemented in schools, urban and peri-urban environments, homemade gardens and public areas. The proposal managed to carry out an innovative and sustainable knowledge-based traditional Mexican agricultural technology, allowing regain Milpa agroecosystem in urban environments to strengthen food security in favour of nutritional and protein benefits for the Mexican fare.Keywords: milpa, traditional medicine, urban agriculture, wicking bed
Procedia PDF Downloads 3908788 Investigations on the Application of Avalanche Simulations: A Survey Conducted among Avalanche Experts
Authors: Korbinian Schmidtner, Rudolf Sailer, Perry Bartelt, Wolfgang Fellin, Jan-Thomas Fischer, Matthias Granig
Abstract:
This study focuses on the evaluation of snow avalanche simulations, based on a survey that has been carried out among avalanche experts. In the last decades, the application of avalanche simulation tools has gained recognition within the realm of hazard management. Traditionally, avalanche runout models were used to predict extreme avalanche runout and prepare avalanche maps. This has changed rather dramatically with the application of numerical models. For safety regulations such as road safety simulation tools are now being coupled with real-time meteorological measurements to predict frequent avalanche hazard. That places new demands on model accuracy and requires the simulation of physical processes that previously could be ignored. These simulation tools are based on a deterministic description of the avalanche movement allowing to predict certain quantities (e.g. pressure, velocities, flow heights, runout lengths etc.) of the avalanche flow. Because of the highly variable regimes of the flowing snow, no uniform rheological law describing the motion of an avalanche is known. Therefore, analogies to fluid dynamical laws of other materials are stated. To transfer these constitutional laws to snow flows, certain assumptions and adjustments have to be imposed. Besides these limitations, there exist high uncertainties regarding the initial and boundary conditions. Further challenges arise when implementing the underlying flow model equations into an algorithm executable by a computer. This implementation is constrained by the choice of adequate numerical methods and their computational feasibility. Hence, the model development is compelled to introduce further simplifications and the related uncertainties. In the light of these issues many questions arise on avalanche simulations, on their assets and drawbacks, on potentials for improvements as well as their application in practice. To address these questions a survey among experts in the field of avalanche science (e.g. researchers, practitioners, engineers) from various countries has been conducted. In the questionnaire, special attention is drawn on the expert’s opinion regarding the influence of certain variables on the simulation result, their uncertainty and the reliability of the results. Furthermore, it was tested to which degree a simulation result influences the decision making for a hazard assessment. A discrepancy could be found between a large uncertainty of the simulation input parameters as compared to a relatively high reliability of the results. This contradiction can be explained taking into account how the experts employ the simulations. The credibility of the simulations is the result of a rather thoroughly simulation study, where different assumptions are tested, comparing the results of different flow models along with the use of supplemental data such as chronicles, field observation, silent witnesses i.a. which are regarded as essential for the hazard assessment and for sanctioning simulation results. As the importance of avalanche simulations grows within the hazard management along with their further development studies focusing on the modeling fashion could contribute to a better understanding how knowledge of the avalanche process can be gained by running simulations.Keywords: expert interview, hazard management, modeling, simulation, snow avalanche
Procedia PDF Downloads 3308787 Neural Network Mechanisms Underlying the Combination Sensitivity Property in the HVC of Songbirds
Authors: Zeina Merabi, Arij Dao
Abstract:
The temporal order of information processing in the brain is an important code in many acoustic signals, including speech, music, and animal vocalizations. Despite its significance, surprisingly little is known about its underlying cellular mechanisms and network manifestations. In the songbird telencephalic nucleus HVC, a subset of neurons shows temporal combination sensitivity (TCS). These neurons show a high temporal specificity, responding differently to distinct patterns of spectral elements and their combinations. HVC neuron types include basal-ganglia-projecting HVCX, forebrain-projecting HVCRA, and interneurons (HVC¬INT), each exhibiting distinct cellular, electrophysiological and functional properties. In this work, we develop conductance-based neural network models connecting the different classes of HVC neurons via different wiring scenarios, aiming to explore possible neural mechanisms that orchestrate the combination sensitivity property exhibited by HVCX, as well as replicating in vivo firing patterns observed when TCS neurons are presented with various auditory stimuli. The ionic and synaptic currents for each class of neurons that are presented in our networks and are based on pharmacological studies, rendering our networks biologically plausible. We present for the first time several realistic scenarios in which the different types of HVC neurons can interact to produce this behavior. The different networks highlight neural mechanisms that could potentially help to explain some aspects of combination sensitivity, including 1) interplay between inhibitory interneurons’ activity and the post inhibitory firing of the HVCX neurons enabled by T-type Ca2+ and H currents, 2) temporal summation of synaptic inputs at the TCS site of opposing signals that are time-and frequency- dependent, and 3) reciprocal inhibitory and excitatory loops as a potent mechanism to encode information over many milliseconds. The result is a plausible network model characterizing auditory processing in HVC. Our next step is to test the predictions of the model.Keywords: combination sensitivity, songbirds, neural networks, spatiotemporal integration
Procedia PDF Downloads 718786 A Systematic Approach to Mitigate the Impact of Increased Temperature and Air Pollution in Urban Settings
Authors: Samain Sabrin, Joshua Pratt, Joshua Bryk, Maryam Karimi
Abstract:
Globally, extreme heat events have led to a surge in the number of heat-related moralities. These incidents are further exacerbated in high-density population centers due to the Urban Heat Island (UHI) effect. Varieties of anthropogenic activities such as unsupervised land surface modifications, expansion of impervious areas, and lack of use of vegetation are all contributors to an increase in the amount of heat flux trapped by an urban canopy which intensifies the UHI effect. This project aims to propose a systematic approach to measure the impact of air quality and increased temperature based on urban morphology in the selected metropolitan cities. This project will measure the impact of build environment for urban and regional planning using human biometeorological evaluations (mean radiant temperature, Tmrt). We utilized the Rayman model (capable of calculating short and long wave radiation fluxes affecting the human body) to estimate the Tmrt in an urban environment incorporating location and height of buildings and trees as a supplemental tool in urban planning, and street design. Our current results suggest a strong correlation between building height and increased surface temperature in megacities. This model will help with; 1. Quantify the impacts of the built environment and surface properties on surrounding temperature, 2. Identify priority urban neighborhoods by analyzing Tmrt and air quality data at pedestrian level, 3. Characterizing the need for urban green infrastructure or better urban planning- maximizing the cooling benefit from existing Urban Green Infrastructure (UGI), and 4. Developing a hierarchy of streets for new UGI integration and propose new UGI based on site characteristics and cooling potential.Keywords: air quality, heat mitigation, human-biometeorological indices, increased temperature, mean radiant temperature, radiation flux, sustainable development, thermal comfort, urban canopy, urban planning
Procedia PDF Downloads 1488785 Accessibility of Institutional Credit and Its Impact on Agricultural Output: A Case Study
Authors: Showkat Ahmad Bhat, M. S. Bhatt
Abstract:
The study evaluates the ex-post impact of institutional credit on agricultural output. It first examines the key factors that influence the accessibility of institutional credit by farm households. For quantitative analysis both program participant and non-participant respondents were drawn and cross-sectional survey data were collected from 412 households in Pulwama District of Jammu & Kashmir (India). Propensity Score Matching Method was employed to analyze the impact of the institutional credit on agricultural output. Results show that institutional credit has a positive and significant impact on the agricultural output measured in terms of farm income and crop productivity. To estimate the accessibility of credit, an examination of both demand side and supply side factors were carried out. The demand for credit was measured with respect to respondents who applied for credit. Supply side credit allocation measured in terms of the proportion of ‘credit amount’ farmers obtained. Logit and Two-limit Tobit Regression Models were used to investigate the determinants that influence the accessibility of formal credit for Demand for and supply of credit respectively. The estimated results suggested that the demand for credit is positively and significantly affected by the factors such as: age of the household head, formal education, membership, cash crop grown, farm size and saving account. All the variables were found significantly increasing the household’s likelihood to demand for and supply of credit from banks. However, the impact of these factors varies considerably across the credit markets. Factors which were found negatively and significantly influencing the accessibility of credit were: ‘square of the age’, household assets and rate of interest. The credit constraints analysis suggested that square of the age; household assets and rate of interest were the three most important factors that increased the probability of being constrained. The study finally discusses these results in detail and draws some recommendations.Keywords: institutional credit, agriculture, propensity score matching logit model, Tobit model
Procedia PDF Downloads 3168784 Predicting Food Waste and Losses Reduction for Fresh Products in Modified Atmosphere Packaging
Authors: Matar Celine, Gaucel Sebastien, Gontard Nathalie, Guilbert Stephane, Guillard Valerie
Abstract:
To increase the very short shelf life of fresh fruits and vegetable, Modified Atmosphere Packaging (MAP) allows an optimal atmosphere composition to be maintained around the product and thus prevent its decay. This technology relies on the modification of internal packaging atmosphere due to equilibrium between production/consumption of gases by the respiring product and gas permeation through the packaging material. While, to the best of our knowledge, benefit of MAP for fresh fruits and vegetable has been widely demonstrated in the literature, its effect on shelf life increase has never been quantified and formalized in a clear and simple manner leading difficult to anticipate its economic and environmental benefit, notably through the decrease of food losses. Mathematical modelling of mass transfers in the food/packaging system is the basis for a better design and dimensioning of the food packaging system. But up to now, existing models did not permit to estimate food quality nor shelf life gain reached by using MAP. However, shelf life prediction is an indispensable prerequisite for quantifying the effect of MAP on food losses reduction. The objective of this work is to propose an innovative approach to predict shelf life of MAP food product and then to link it to a reduction of food losses and wastes. In this purpose, a ‘Virtual MAP modeling tool’ was developed by coupling a new predictive deterioration model (based on visual surface prediction of deterioration encompassing colour, texture and spoilage development) with models of the literature for respiration and permeation. A major input of this modelling tool is the maximal percentage of deterioration (MAD) which was assessed from dedicated consumers’ studies. Strawberries of the variety Charlotte were selected as the model food for its high perishability, high respiration rate; 50-100 ml CO₂/h/kg produced at 20°C, allowing it to be a good representative of challenging post-harvest storage. A value of 13% was determined as a limit of acceptability for the consumers, permitting to define products’ shelf life. The ‘Virtual MAP modeling tool’ was validated in isothermal conditions (5, 10 and 20°C) and in dynamic temperature conditions mimicking commercial post-harvest storage of strawberries. RMSE values were systematically lower than 3% for respectively, O₂, CO₂ and deterioration profiles as a function of time confirming the goodness of model fitting. For the investigated temperature profile, a shelf life gain of 0.33 days was obtained in MAP compared to the conventional storage situation (no MAP condition). Shelf life gain of more than 1 day could be obtained for optimized post-harvest conditions as numerically investigated. Such shelf life gain permitted to anticipate a significant reduction of food losses at the distribution and consumer steps. This food losses' reduction as a function of shelf life gain has been quantified using a dedicated mathematical equation that has been developed for this purpose.Keywords: food losses and wastes, modified atmosphere packaging, mathematical modeling, shelf life prediction
Procedia PDF Downloads 1868783 Boosting the Chance of Organizational Change Success: The Role of Individuals’ Goal Orientation, Affectivity and Psychological Capital
Authors: P. P. L. Kwan, D. K. S. Chan
Abstract:
Organizations are constantly changing in today’s business environment. Research findings have revealed that overcoming resistance and getting employees ready for change is a crucial driver for organizational change success. Thus, change adaptability has become a more prominent selection criterion used in many organizations. Although change readiness could be situation-specific, employees’ personality, emotion, and cognition should also be crucial factors in shaping their readiness. However, relatively little research has focused on the roles of individual characteristics in organizational changes. The present study examines the relations between individual characteristics and change readiness with the aim to validate a model, which proposes three types of individual attributes as antecedents to change readiness. The three attributes considered are trait cynicism, positive affectivity, and personal valence covering personality, emotional, and cognitive aspects respectively. The model also hypothesizes that relations between the three antecedents and change readiness will be moderated by a positive mental resource known as psychological capital (PsyCap), which consists of hope, optimism, efficacy and resilience; and a learning culture within the organization. We are currently collecting data from a targeted sample size of 300 Hong Kong employees. Specifically, participants complete a questionnaire which was designed to measure their perceived change efficacy in response to three scenarios commonly happened in the workplace (i.e., business acquisition, team restructuring, and information system change) as a measure of change readiness, as well as the aforementioned individual characteristics. Preliminary analysis provides some support to the hypotheses. That is, employees who are less cynical in personality and more positive in their cognition and affectivity particularly welcome the potential changes in their organizations. Further data collection and analyses are continuously carried out for a more definitive conclusion. Our findings will shed light on employee selection; and on how strengthening positive psychological resources and promoting the culture of learning organization among employees may enhance the chance to succeed for organizations undergoing change.Keywords: learning organization, psychological capital, readiness for change, employee selection
Procedia PDF Downloads 4678782 Developing the Principal Change Leadership Non-Technical Competencies Scale: An Exploratory Factor Analysis
Authors: Tai Mei Kin, Omar Abdull Kareem
Abstract:
In light of globalization, educational reform has become a top priority for many countries. However, the task of leading change effectively requires a multidimensional set of competencies. Over the past two decades, technical competencies of principal change leadership have been extensively analysed and discussed. Comparatively, little research has been conducted in Malaysian education context on non-technical competencies or popularly known as emotional intelligence, which is equally crucial for the success of change. This article provides a validation of the Principal Change Leadership Non-Technical Competencies (PCLnTC) Scale, a tool that practitioners can easily use to assess school principals’ level of change leadership non-technical competencies that facilitate change and maximize change effectiveness. The overall coherence of the PCLnTC model was constructed by incorporating three theories: a)the change leadership theory whereby leading change is the fundamental role of a leader; b)competency theory in which leadership can be taught and learned; and c)the concept of emotional intelligence whereby it can be developed, fostered and taught. An exploratory factor analysis (EFA) was used to determine the underlying factor structure of PCLnTC model. Before conducting EFA, five important pilot test approaches were conducted to ensure the validity and reliability of the instrument: a)reviewed by academic colleagues; b)verification and comments from panel; c)evaluation on questionnaire format, syntax, design, and completion time; d)evaluation of item clarity; and e)assessment of internal consistency reliability. A total of 335 teachers from 12 High Performing Secondary School in Malaysia completed the survey. The PCLnTCS with six points Liker-type scale were subjected to Principal Components Analysis. The analysis yielded a three-factor solution namely, a)Interpersonal Sensitivity; b)Flexibility; and c)Motivation, explaining a total 74.326 per cent of the variance. Based on the results, implications for instrument revisions are discussed and specifications for future confirmatory factor analysis are delineated.Keywords: exploratory factor analysis, principal change leadership non-technical competencies (PCLnTC), interpersonal sensitivity, flexibility, motivation
Procedia PDF Downloads 4298781 Electromagnetic Simulation Based on Drift and Diffusion Currents for Real-Time Systems
Authors: Alexander Norbach
Abstract:
The script in this paper describes the use of advanced simulation environment using electronic systems (Microcontroller, Operational Amplifiers, and FPGA). The simulation may be used for all dynamic systems with the diffusion and the ionisation behaviour also. By additionally required observer structure, the system works with parallel real-time simulation based on diffusion model and the state-space representation for other dynamics. The proposed deposited model may be used for electrodynamic effects, including ionising effects and eddy current distribution also. With the script and proposed method, it is possible to calculate the spatial distribution of the electromagnetic fields in real-time. For further purpose, the spatial temperature distribution may be used also. With upon system, the uncertainties, unknown initial states and disturbances may be determined. This provides the estimation of the more precise system states for the required system, and additionally, the estimation of the ionising disturbances that occur due to radiation effects. The results have shown that a system can be also developed and adopted specifically for space systems with the real-time calculation of the radiation effects only. Electronic systems can take damage caused by impacts with charged particle flux in space or radiation environment. In order to be able to react to these processes, it must be calculated within a shorter time that ionising radiation and dose is present. All available sensors shall be used to observe the spatial distributions. By measured value of size and known location of the sensors, the entire distribution can be calculated retroactively or more accurately. With the formation, the type of ionisation and the direct effect to the systems and thus possible prevent processes can be activated up to the shutdown. The results show possibilities to perform more qualitative and faster simulations independent of kind of systems space-systems and radiation environment also. The paper gives additionally an overview of the diffusion effects and their mechanisms. For the modelling and derivation of equations, the extended current equation is used. The size K represents the proposed charge density drifting vector. The extended diffusion equation was derived and shows the quantising character and has similar law like the Klein-Gordon equation. These kinds of PDE's (Partial Differential Equations) are analytically solvable by giving initial distribution conditions (Cauchy problem) and boundary conditions (Dirichlet boundary condition). For a simpler structure, a transfer function for B- and E- fields was analytically calculated. With known discretised responses g₁(k·Ts) and g₂(k·Ts), the electric current or voltage may be calculated using a convolution; g₁ is the direct function and g₂ is a recursive function. The analytical results are good enough for calculation of fields with diffusion effects. Within the scope of this work, a proposed model of the consideration of the electromagnetic diffusion effects of arbitrary current 'waveforms' has been developed. The advantage of the proposed calculation of diffusion is the real-time capability, which is not really possible with the FEM programs available today. It makes sense in the further course of research to use these methods and to investigate them thoroughly.Keywords: advanced observer, electrodynamics, systems, diffusion, partial differential equations, solver
Procedia PDF Downloads 1348780 Concurrent Validity of Synchronous Tele-Audiology Hearing Screening
Authors: Thidilweli Denga, Bessie Malila, Lucretia Petersen
Abstract:
The Coronavirus Disease of 2019 (COVID-19) pandemic should be taken as a wake-up call on the importance of hearing health care considering amongst other things the electronic methods of communication used. The World Health Organization (WHO) estimated that by 2050, there will be more than 2.5 billion people living with hearing loss. These numbers show that more people will need rehabilitation services. Studies have shown that most people living with hearing loss reside in Low-Middle Income Countries (LIMC). Innovative technological solutions such as digital health interventions that can be used to deliver hearing health services to remote areas now exist. Tele-audiology implementation can potentially enable the delivery of hearing loss services to rural and remote areas. This study aimed to establish the concurrent validity of the tele-audiology practice in school-based hearing screening. The study employed a cross-sectional design with a within-group comparison. The portable KUDUwave Audiometer was used to conduct hearing screening from 50 participants (n=50). In phase I of the study, the audiologist conducted on-site hearing screening, while the synchronous remote hearing screening (tele-audiology) using a 5G network was done in phase II. On-site hearing screening results were obtained for the first 25 participants (aged between 5-6 years). The second half started with the synchronous tele-audiology model to avoid order-effect. Repeated sample t-tests compared threshold results obtained in the left and right ears for onsite and remote screening. There was a good correspondence between the two methods with a threshold average within ±5 dB (decibels). The synchronous tele-audiology model has the potential to reduce the audiologists' case overload, while at the same time reaching populations that lack access due to distance, and shortage of hearing professionals in their areas of reach. With reliable and broadband connectivity, tele-audiology delivers the same service quality as the conventional method while reducing the travel costs of audiologists.Keywords: hearing screening, low-resource communities, portable audiometer, tele-audiology
Procedia PDF Downloads 1248779 Ethnic Identity as an Asset: Linking Ethnic Identity, Perceived Social Support, and Mental Health among Indigenous Adults in Taiwan
Authors: A.H.Y. Lai, C. Teyra
Abstract:
In Taiwan, there are 16 official indigenous groups, accounting for 2.3% of the total population. Like other indigenous populations worldwide, indigenous peoples in Taiwan have poorer mental health because of their history of oppression and colonisation. Amid the negative narratives, the ethnic identity of cultural minorities is their unique psychological and cultural asset. Moreover, positive socialisation is found to be related to strong ethnic identity. Based on Phinney’s theory on ethnic identity development and social support theory, this study adopted a strength-based approach conceptualising ethnic identity as the central organising principle that linked perceived social support and mental health among indigenous adults in Taiwan. Aims. Overall aim is to examine the effect of ethnic identity and social support on mental health. Specific aims were to examine : (1) the association between ethnic identity and mental health; (2) the association between perceived social support and mental health ; (3) the indirect effect of ethnic identity linking perceived social support and mental health. Methods. Participants were indigenous adults in Taiwan (n=200; mean age=29.51; Female=31%, Male=61%, Others=8%). A cross-sectional quantitative design was implemented using data collected in the year 2020. Respondent-driven sampling was used. Standardised measurements were: Ethnic Identity Scale(6-item); Social Support Questionnaire-SF(6 items); Patient Health Questionnaire(9-item); and Generalised Anxiety Disorder(7-item). Covariates were age, gender and economic satisfaction. A four-stage structural equation modelling (SEM) with robust maximin likelihood estimation was employed using Mplus8.0. Step 1: A measurement model was built and tested using confirmatory factor analysis (CFA). Step 2: Factor covariates were re-specified as direct effects in the SEM. Covariates were added. The direct effects of (1) ethnic identity and social support on depression and anxiety and (2) social support on ethnic identity were tested. The indirect effect of ethnic identity was examined with the bootstrapping technique. Results. The CFA model showed satisfactory fit statistics: x^2(df)=869.69(608), p<.05; Comparative ft index (CFI)/ Tucker-Lewis fit index (TLI)=0.95/0.94; root mean square error of approximation (RMSEA)=0.05; Standardized Root Mean Squared Residual (SRMR)=0.05. Ethnic identity is represented by two latent factors: ethnic identity-commitment and ethnic identity-exploration. Depression, anxiety and social support are single-factor latent variables. For the SEM, model fit statistics were: x^2(df)=779.26(527), p<.05; CFI/TLI=0.94/0.93; RMSEA=0.05; SRMR=0.05. Ethnic identity-commitment (b=-0.30) and social support (b=-0.33) had direct negative effects on depression, but ethnic identity-exploration did not. Ethnic identity-commitment (b=-0.43) and social support (b=-0.31) had direct negative effects on anxiety, while identity-exploration (b=0.24) demonstrated a positive effect. Social support had direct positive effects on ethnic identity-exploration (b=0.26) and ethnic identity-commitment (b=0.31). Mediation analysis demonstrated the indirect effect of ethnic identity-commitment linking social support and depression (b=0.22). Implications: Results underscore the role of social support in preventing depression via ethnic identity commitment among indigenous adults in Taiwan. Adopting the strength-based approach, mental health practitioners can mobilise indigenous peoples’ commitment to their group to promote their well-being.Keywords: ethnic identity, indigenous population, mental health, perceived social support
Procedia PDF Downloads 1068778 Exploring Fluoroquinolone-Resistance Dynamics Using a Distinct in Vitro Fermentation Chicken Caeca Model
Authors: Bello Gonzalez T. D. J., Setten Van M., Essen Van A., Brouwer M., Veldman K. T.
Abstract:
Resistance to fluoroquinolones (FQ) has evolved increasingly over the years, posing a significant challenge for the treatment of human infections, particularly gastrointestinal tract infections caused by zoonotic bacteria transmitted through the food chain and environment. In broiler chickens, a relatively high proportion of FQ resistance has been observed in Escherichia coli indicator, Salmonella and Campylobacter isolates. We hypothesize that flumequine (Flu), used as a secondary choice for the treatment of poultry infections, could potentially be associated with a high proportion of FQ resistance. To evaluate this hypothesis, we used an in vitro fermentation chicken caeca model. Two continuous single-stage fermenters were used to simulate in real time the physiological conditions of the chicken caeca microbial content (temperature, pH, caecal content mixing, and anoxic environment). A pool of chicken caecal content containing FQ-resistant E. coli obtained from chickens at slaughter age was used as inoculum along with a spiked FQ-susceptible Campylobacter jejuni strain isolated from broilers. Flu was added to one of the fermenters (Flu-fermenter) every 24 hours for two days to evaluate the selection and maintenance of FQ resistance over time, while the other served as a control (C-Fermenter). The experiment duration was 5 days. Samples were collected at three different time points: before, during and after Flu administration. Serial dilutions were plated on Butzler culture media with and without Flu (8mg/L) and enrofloxacin (4mg/L) and on MacConkey culture media with and without Flu (4mg/L) and enrofloxacin (1mg/L) to determine the proportion of resistant strains over time. Positive cultures were identified by mass spectrometry and matrix-assisted laser desorption/ionization (MALDI). A subset of the obtained isolates were used for Whole Genome Sequencing analysis. Over time, E. coli exhibited positive growth in both fermenters, while C. jejuni growth was detected up to day 3. The proportion of Flu-resistant E. coli strains recovered remained consistent over time after antibiotic selective pressure, while in the C-fermenter, a decrease was observed at day 5; a similar pattern was observed in the enrofloxacin-resistant E. coli strains. This suggests that Flu might play a role in the selection and persistence of enrofloxacin resistance, compared to C-fermenter, where enrofloxacin-resistant E. coli strains appear at a later time. Furthermore, positive growth was detected from both fermenters only on Butzler plates without antibiotics. A subset of C. jejuni strains from the Flu-fermenter revealed that those strains were susceptible to ciprofloxacin (MIC < 0.12 μg/mL). A selection of E. coli strains from both fermenters revealed the presence of plasmid-mediated quinolone resistance (PMQR) (qnr-B19) in only one strain from the C-fermenter belonging to sequence type (ST) 48, and in all from Flu-fermenter belonged to ST189. Our results showed that Flu selective impact on PMQR-positive E. coli strains, while no effect was observed in C. jejuni. Maintenance of Flu-resistance was correlated with antibiotic selective pressure. Further studies into antibiotic resistance gene transfer among commensal and zoonotic bacteria in the chicken caeca content may help to elucidate the resistance spread mechanisms.Keywords: fluoroquinolone-resistance, escherichia coli, campylobacter jejuni, in vitro model
Procedia PDF Downloads 678777 Effectiveness of Control Measures for Ambient Fine Particulate Matters Concentration Improvement in Taiwan
Authors: Jiun-Horng Tsai, Shi-Jie, Nieh
Abstract:
Fine particulate matter (PM₂.₅) has become an important issue all over the world over the last decade. Annual mean PM₂.₅ concentration has been over the ambient air quality standard of PM₂.₅ (annual average concentration as 15μg/m³) which adapted by Taiwan Environmental Protection Administration (TEPA). TEPA, therefore, has developed a number of air pollution control measures to improve the ambient concentration by reducing the emissions of primary fine particulate matter and the precursors of secondary PM₂.₅. This study investigated the potential improvement of ambient PM₂.₅ concentration by the TEPA program and the other scenario for further emission reduction on various sources. Four scenarios had been evaluated in this study, including a basic case and three reduction scenarios (A to C). The ambient PM₂.₅ concentration was evaluated by Community Multi-scale Air Quality modelling system (CMAQ) ver. 4.7.1 along with the Weather Research and Forecasting Model (WRF) ver. 3.4.1. The grid resolutions in the modelling work are 81 km × 81 km for domain 1 (covers East Asia), 27 km × 27 km for domain 2 (covers Southeast China and Taiwan), and 9 km × 9 km for domain 3 (covers Taiwan). The result of PM₂.₅ concentration simulation in different regions of Taiwan shows that the annual average concentration of basic case is 24.9 μg/m³, and are 22.6, 18.8, and 11.3 μg/m³, respectively, for scenarios A to C. The annual average concentration of PM₂.₅ would be reduced by 9-55 % for those control scenarios. The result of scenario C (the emissions of precursors reduce to allowance levels) could improve effectively the airborne PM₂.₅ concentration to attain the air quality standard. According to the results of unit precursor reduction contribution, the allowance emissions of PM₂.₅, SOₓ, and NOₓ are 16.8, 39, and 62 thousand tons per year, respectively. In the Kao-Ping air basin, the priority for reducing precursor emissions is PM₂.₅ > NOₓ > SOₓ, whereas the priority for reducing precursor emissions is PM₂.₅ > SOₓ > NOₓ in others area. The result indicates that the target pollutants that need to be reduced in different air basin are different, and the control measures need to be adapted to local conditions.Keywords: airborne PM₂.₅, community multi-scale air quality modelling system, control measures, weather research and forecasting model
Procedia PDF Downloads 1418776 Modelling Retirement Outcomes: An Australian Case Study
Authors: Colin O’Hare, Zili Zho, Thomas Sneddon
Abstract:
The Australian superannuation system has received high praise for its participation rates and level of funding in retirement yet it is only 25 years old. In recent years, with increasing longevity and persistent lower rates of investment return, how adequate will the funds accumulated through a superannuation system be? In this paper we take Australia as a case study and build a stochastic model of accumulation and decummulation of funds and determine the expected number of years a fund may last an individual in retirement.Keywords: component, mortality, stochastic models, superannuation
Procedia PDF Downloads 2498775 Synthesis, Characterization and Bioactivity of Methotrexate Conjugated Fluorescent Carbon Nanoparticles in vitro Model System Using Human Lung Carcinoma Cell Lines
Authors: Abdul Matin, Muhammad Ajmal, Uzma Yunus, Noaman-ul Haq, Hafiz M. Shohaib, Ambreen G. Muazzam
Abstract:
Carbon nanoparticles (CNPs) have unique properties that are useful for the diagnosis and treatment of cancer due to their precise properties like small size (ideal for delivery within the body) stability in solvent and tunable surface chemistry for targeted delivery. Here, highly fluorescent, monodispersed and water-soluble CNPs were synthesized directly from a suitable carbohydrate source (glucose and sucrose) by one-step acid assisted ultrasonic treatment at 35 KHz for 4 hours. This method is green, simple, rapid and economical and can be used for large scale production and applications. The average particle sizes of CNPs are less than 10nm and they emit bright and colorful green-blue fluorescence under the irradiation of UV-light at 365nm. The CNPs were characterized by scanning electron microscopy, fluorescent spectrophotometry, Fourier transform infrared spectrophotometry, ultraviolet-visible spectrophotometry and TGA analysis. Fluorescent CNPs were used as fluorescent probe and nano-carriers for anticancer drug. Functionalized CNPs (with ethylene diamine) were attached with anticancer drug-Methotrexate. In vitro bioactivity and biocompatibility of CNPs-drug conjugates was evaluated by LDH assay and Sulforhodamine B assay using human lung carcinoma cell lines (H157). Our results reveled that CNPs showed biocompatibility and CNPs-anticancer drug conjugates have shown potent cytotoxic effects and high antitumor activities in lung cancer cell lines. CNPs are proved to be excellent substitute for conventional drug delivery cargo systems and anticancer therapeutics in vitro. Our future studies will be more focused on using the same nanoparticles in vivo model system.Keywords: carbon nanoparticles, carbon nanoparticles-methotrexate conjugates, human lung carcinoma cell lines, lactate dehydrogenase, methotrexate
Procedia PDF Downloads 3098774 Analysis and the Fair Distribution Modeling of Urban Facilities in Kabul City
Authors: Ansari Mohammad Reza, Hiroko Ono, Fakhrullah Sarwari
Abstract:
Our world is fast heading toward being a predominantly urban planet. This can be a double-edged sword reality where it is as much frightening as it seems interesting. Moreover, a look to the current predictions and taking into the consideration the fact that about 90 percent of the coming urbanization is going to be absorbed by the towns and the cities of the developing countries of Asia and Africa, directly provide us the clues to assume a much more tragic ending to this story than to the happy one. Likewise, in a situation wherein most of these countries are still severely struggling to find the proper answer to their very first initial questions of urbanization—e.g. how to provide the essential structure for their cities, define the regulation, or even design the proper pattern on how the cities should be expanded—thus it is not weird to claim that most of the coming urbanization of the world is going to happen informally. This reality could not only bring the feature, landscape or the picture of the cities of the future under the doubt but at the same time provide the ground for the rise of a bunch of other essential questions of how the facilities would be distributed in these cities, or how fair will this pattern of distribution be. Kabul the capital of Afghanistan, as a city located in the developing world that its process of urbanization has been starting since 2001 and currently hold the position to be the fifth fastest growing city in the world, contained to a considerable slum ratio of 0.7—that means about 70 percent of its population is living in the informal areas—subsequently could be a very good case study to put this questions into the research and find out how the informal development of a city can lead to the unfair and unbalanced distribution of its facilities. Likewise, in this study we tried our best to first propose the ideal model for the fair distribution of the facilities in the Kabul city—where all the citizens have the same equal chance of access to the facilities—and then evaluate the situation of the city based on how fair the facilities are currently distributed therein. We subsequently did it by the comparative analysis between the existing facility rate in the formal and informal areas of the city to the one that was proposed as the fair ideal model.Keywords: Afghanistan, facility distribution, formal settlements, informal settlements, Kabul
Procedia PDF Downloads 1238773 Simulation of the FDA Centrifugal Blood Pump Using High Performance Computing
Authors: Mehdi Behbahani, Sebastian Rible, Charles Moulinec, Yvan Fournier, Mike Nicolai, Paolo Crosetto
Abstract:
Computational Fluid Dynamics blood-flow simulations are increasingly used to develop and validate blood-contacting medical devices. This study shows that numerical simulations can provide additional and accurate estimates of relevant hemodynamic indicators (e.g., recirculation zones or wall shear stresses), which may be difficult and expensive to obtain from in-vivo or in-vitro experiments. The most recent FDA (Food and Drug Administration) benchmark consisted of a simplified centrifugal blood pump model that contains fluid flow features as they are commonly found in these devices with a clear focus on highly turbulent phenomena. The FDA centrifugal blood pump study is composed of six test cases with different volumetric flow rates ranging from 2.5 to 7.0 liters per minute, pump speeds, and Reynolds numbers ranging from 210,000 to 293,000. Within the frame of this study different turbulence models were tested including RANS models, e.g. k-omega, k-epsilon and a Reynolds Stress Model (RSM) and, LES. The partitioners Hilbert, METIS, ParMETIS and SCOTCH were used to create an unstructured mesh of 76 million elements and compared in their efficiency. Computations were performed on the JUQUEEN BG/Q architecture applying the highly parallel flow solver Code SATURNE and typically using 32768 or more processors in parallel. Visualisations were performed by means of PARAVIEW. Different turbulence models including all six flow situations could be successfully analysed and validated against analytical considerations and from comparison to other data-bases. It showed that an RSM represents an appropriate choice with respect to modeling high-Reynolds number flow cases. Especially, the Rij-SSG (Speziale, Sarkar, Gatzki) variant turned out to be a good approach. Visualisation of complex flow features could be obtained and the flow situation inside the pump could be characterized.Keywords: blood flow, centrifugal blood pump, high performance computing, scalability, turbulence
Procedia PDF Downloads 3838772 Innovative Activity and Firm Performance: The Case of Eurozone Periphery
Authors: Ilias A. Makris
Abstract:
In this work, we attempt to analyse the contribution of innovative activities to firm performance and growth. We examine economic data from some of the economies that were heavily affected by current economic crisis: the countries of southern Europe (Portugal, Italy, Greece, and Spain) and Ireland. Following literature, an appropriate econometric model is developed and several indicators are tested in order to disclose possible relation with innovative activity. Findings confirm the crucial effect of innovative process in economic activity, in firm and country level.Keywords: Eurozone periphery, firm performance, innovative activity, R&D
Procedia PDF Downloads 5058771 Distant Speech Recognition Using Laser Doppler Vibrometer
Authors: Yunbin Deng
Abstract:
Most existing applications of automatic speech recognition relies on cooperative subjects at a short distance to a microphone. Standoff speech recognition using microphone arrays can extend the subject to sensor distance somewhat, but it is still limited to only a few feet. As such, most deployed applications of standoff speech recognitions are limited to indoor use at short range. Moreover, these applications require air passway between the subject and the sensor to achieve reasonable signal to noise ratio. This study reports long range (50 feet) automatic speech recognition experiments using a Laser Doppler Vibrometer (LDV) sensor. This study shows that the LDV sensor modality can extend the speech acquisition standoff distance far beyond microphone arrays to hundreds of feet. In addition, LDV enables 'listening' through the windows for uncooperative subjects. This enables new capabilities in automatic audio and speech intelligence, surveillance, and reconnaissance (ISR) for law enforcement, homeland security and counter terrorism applications. The Polytec LDV model OFV-505 is used in this study. To investigate the impact of different vibrating materials, five parallel LDV speech corpora, each consisting of 630 speakers, are collected from the vibrations of a glass window, a metal plate, a plastic box, a wood slate, and a concrete wall. These are the common materials the application could encounter in a daily life. These data were compared with the microphone counterpart to manifest the impact of various materials on the spectrum of the LDV speech signal. State of the art deep neural network modeling approaches is used to conduct continuous speaker independent speech recognition on these LDV speech datasets. Preliminary phoneme recognition results using time-delay neural network, bi-directional long short term memory, and model fusion shows great promise of using LDV for long range speech recognition. To author’s best knowledge, this is the first time an LDV is reported for long distance speech recognition application.Keywords: covert speech acquisition, distant speech recognition, DSR, laser Doppler vibrometer, LDV, speech intelligence surveillance and reconnaissance, ISR
Procedia PDF Downloads 1818770 Categorical Metadata Encoding Schemes for Arteriovenous Fistula Blood Flow Sound Classification: Scaling Numerical Representations Leads to Improved Performance
Authors: George Zhou, Yunchan Chen, Candace Chien
Abstract:
Kidney replacement therapy is the current standard of care for end-stage renal diseases. In-center or home hemodialysis remains an integral component of the therapeutic regimen. Arteriovenous fistulas (AVF) make up the vascular circuit through which blood is filtered and returned. Naturally, AVF patency determines whether adequate clearance and filtration can be achieved and directly influences clinical outcomes. Our aim was to build a deep learning model for automated AVF stenosis screening based on the sound of blood flow through the AVF. A total of 311 patients with AVF were enrolled in this study. Blood flow sounds were collected using a digital stethoscope. For each patient, blood flow sounds were collected at 6 different locations along the patient’s AVF. The 6 locations are artery, anastomosis, distal vein, middle vein, proximal vein, and venous arch. A total of 1866 sounds were collected. The blood flow sounds are labeled as “patent” (normal) or “stenotic” (abnormal). The labels are validated from concurrent ultrasound. Our dataset included 1527 “patent” and 339 “stenotic” sounds. We show that blood flow sounds vary significantly along the AVF. For example, the blood flow sound is loudest at the anastomosis site and softest at the cephalic arch. Contextualizing the sound with location metadata significantly improves classification performance. How to encode and incorporate categorical metadata is an active area of research1. Herein, we study ordinal (i.e., integer) encoding schemes. The numerical representation is concatenated to the flattened feature vector. We train a vision transformer (ViT) on spectrogram image representations of the sound and demonstrate that using scalar multiples of our integer encodings improves classification performance. Models are evaluated using a 10-fold cross-validation procedure. The baseline performance of our ViT without any location metadata achieves an AuROC and AuPRC of 0.68 ± 0.05 and 0.28 ± 0.09, respectively. Using the following encodings of Artery:0; Arch: 1; Proximal: 2; Middle: 3; Distal 4: Anastomosis: 5, the ViT achieves an AuROC and AuPRC of 0.69 ± 0.06 and 0.30 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 10; Proximal: 20; Middle: 30; Distal 40: Anastomosis: 50, the ViT achieves an AuROC and AuPRC of 0.74 ± 0.06 and 0.38 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 100; Proximal: 200; Middle: 300; Distal 400: Anastomosis: 500, the ViT achieves an AuROC and AuPRC of 0.78 ± 0.06 and 0.43 ± 0.11. respectively. Interestingly, we see that using increasing scalar multiples of our integer encoding scheme (i.e., encoding “venous arch” as 1,10,100) results in progressively improved performance. In theory, the integer values do not matter since we are optimizing the same loss function; the model can learn to increase or decrease the weights associated with location encodings and converge on the same solution. However, in the setting of limited data and computation resources, increasing the importance at initialization either leads to faster convergence or helps the model escape a local minimum.Keywords: arteriovenous fistula, blood flow sounds, metadata encoding, deep learning
Procedia PDF Downloads 93