Search results for: gap distribution function
535 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System
Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko
Abstract:
Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic
Procedia PDF Downloads 61534 Influence of Counter-Face Roughness on the Friction of Bionic Microstructures
Authors: Haytam Kasem
Abstract:
The problem of quick and easy reversible attachment has become of great importance in different fields of technology. For the reason, during the last decade, a new emerging field of adhesion science has been developed. Essentially inspired by some animals and insects, which during their natural evolution have developed fantastic biological attachment systems allowing them to adhere and run on walls and ceilings of uneven surfaces. Potential applications of engineering bio-inspired solutions include climbing robots, handling systems for wafers in nanofabrication facilities, and mobile sensor platforms, to name a few. However, despite the efforts provided to apply bio-inspired patterned adhesive-surfaces to the biomedical field, they are still in the early stages compared with their conventional uses in other industries mentioned above. In fact, there are some critical issues that still need to be addressed for the wide usage of the bio-inspired patterned surfaces as advanced biomedical platforms. For example, surface durability and long-term stability of surfaces with high adhesive capacity should be improved, but also the friction and adhesion capacities of these bio-inspired microstructures when contacting rough surfaces. One of the well-known prototypes for bio-inspired attachment systems is biomimetic wall-shaped hierarchical microstructure for gecko-like attachments. Although physical background of these attachment systems is widely understood, the influence of counter-face roughness and its relationship with the friction force generated when sliding against wall-shaped hierarchical microstructure have yet to be fully analyzed and understood. To elucidate the effect of the counter-face roughness on the friction of biomimetic wall-shaped hierarchical microstructure we have replicated the isotropic topography of 12 different surfaces using replicas made of the same epoxy material. The different counter-faces were fully characterized under 3D optical profilometer to measure roughness parameters. The friction forces generated by spatula-shaped microstructure in contact with the tested counter-faces were measured on a home-made tribometer and compared with the friction forces generated by the spatulae in contact with a smooth reference. It was found that classical roughness parameters, such as average roughness Ra and others, could not be utilized to explain topography-related variation in friction force. This has led us to the development of an integrated roughness parameter obtained by combining different parameters which are the mean asperity radius of curvature (R), the asperity density (η), the deviation of asperities high (σ) and the mean asperities angle (SDQ). This new integrated parameter is capable of explaining the variation of results of friction measurements. Based on the experimental results, we developed and validated an analytical model to predict the variation of the friction force as a function of roughness parameters of the counter-face and the applied normal load, as well.Keywords: friction, bio-mimetic micro-structure, counter-face roughness, analytical model
Procedia PDF Downloads 239533 Employing Remotely Sensed Soil and Vegetation Indices and Predicting by Long Short-Term Memory to Irrigation Scheduling Analysis
Authors: Elham Koohikerade, Silvio Jose Gumiere
Abstract:
In this research, irrigation is highlighted as crucial for improving both the yield and quality of potatoes due to their high sensitivity to soil moisture changes. The study presents a hybrid Long Short-Term Memory (LSTM) model aimed at optimizing irrigation scheduling in potato fields in Quebec City, Canada. This model integrates model-based and satellite-derived datasets to simulate soil moisture content, addressing the limitations of field data. Developed under the guidance of the Food and Agriculture Organization (FAO), the simulation approach compensates for the lack of direct soil sensor data, enhancing the LSTM model's predictions. The model was calibrated using indices like Surface Soil Moisture (SSM), Normalized Vegetation Difference Index (NDVI), Enhanced Vegetation Index (EVI), and Normalized Multi-band Drought Index (NMDI) to effectively forecast soil moisture reductions. Understanding soil moisture and plant development is crucial for assessing drought conditions and determining irrigation needs. This study validated the spectral characteristics of vegetation and soil using ECMWF Reanalysis v5 (ERA5) and Moderate Resolution Imaging Spectrometer (MODIS) data from 2019 to 2023, collected from agricultural areas in Dolbeau and Peribonka, Quebec. Parameters such as surface volumetric soil moisture (0-7 cm), NDVI, EVI, and NMDI were extracted from these images. A regional four-year dataset of soil and vegetation moisture was developed using a machine learning approach combining model-based and satellite-based datasets. The LSTM model predicts soil moisture dynamics hourly across different locations and times, with its accuracy verified through cross-validation and comparison with existing soil moisture datasets. The model effectively captures temporal dynamics, making it valuable for applications requiring soil moisture monitoring over time, such as anomaly detection and memory analysis. By identifying typical peak soil moisture values and observing distribution shapes, irrigation can be scheduled to maintain soil moisture within Volumetric Soil Moisture (VSM) values of 0.25 to 0.30 m²/m², avoiding under and over-watering. The strong correlations between parcels suggest that a uniform irrigation strategy might be effective across multiple parcels, with adjustments based on specific parcel characteristics and historical data trends. The application of the LSTM model to predict soil moisture and vegetation indices yielded mixed results. While the model effectively captures the central tendency and temporal dynamics of soil moisture, it struggles with accurately predicting EVI, NDVI, and NMDI.Keywords: irrigation scheduling, LSTM neural network, remotely sensed indices, soil and vegetation monitoring
Procedia PDF Downloads 41532 Biophysical Analysis of the Interaction of Polymeric Nanoparticles with Biomimetic Models of the Lung Surfactant
Authors: Weiam Daear, Patrick Lai, Elmar Prenner
Abstract:
The human body offers many avenues that could be used for drug delivery. The pulmonary route, which is delivered through the lungs, presents many advantages that have sparked interested in the field. These advantages include; 1) direct access to the lungs and the large surface area it provides, and 2) close proximity to the blood circulation. The air-blood barrier of the alveoli is about 500 nm thick. The air-blood barrier consist of a monolayer of lipids and few proteins called the lung surfactant and cells. This monolayer consists of ~90% lipids and ~10% proteins that are produced by the alveolar epithelial cells. The two major lipid classes constitutes of various saturation and chain length of phosphatidylcholine (PC) and phosphatidylglycerol (PG) representing 80% of total lipid component. The major role of the lung surfactant monolayer is to reduce surface tension experienced during breathing cycles in order to prevent lung collapse. In terms of the pulmonary drug delivery route, drugs pass through various parts of the respiratory system before reaching the alveoli. It is at this location that the lung surfactant functions as the air-blood barrier for drugs. As the field of nanomedicine advances, the use of nanoparticles (NPs) as drug delivery vehicles is becoming very important. This is due to the advantages NPs provide with their large surface area and potential specific targeting. Therefore, studying the interaction of NPs with lung surfactant and whether they affect its stability becomes very essential. The aim of this research is to develop a biomimetic model of the human lung surfactant followed by a biophysical analysis of the interaction of polymeric NPs. This biomimetic model will function as a fast initial mode of testing for whether NPs affect the stability of the human lung surfactant. The model developed thus far is an 8-component lipid system that contains major PC and PG lipids. Recently, a custom made 16:0/16:1 PC and PG lipids were added to the model system. In the human lung surfactant, these lipids constitute 16% of the total lipid component. According to the author’s knowledge, there is not much monolayer data on the biophysical analysis of the 16:0/16:1 lipids, therefore more analysis will be discussed here. Biophysical techniques such as the Langmuir Trough is used for stability measurements which monitors changes to a monolayer's surface pressure upon NP interaction. Furthermore, Brewster Angle Microscopy (BAM) employed to visualize changes to the lateral domain organization. Results show preferential interactions of NPs with different lipid groups that is also dependent on the monolayer fluidity. Furthermore, results show that the film stability upon compression is unaffected, but there are significant changes in the lateral domain organization of the lung surfactant upon NP addition. This research is significant in the field of pulmonary drug delivery. It is shown that NPs within a certain size range are safe for the pulmonary route, but little is known about the mode of interaction of those polymeric NPs. Moreover, this work will provide additional information about the nanotoxicology of NPs tested.Keywords: Brewster angle microscopy, lipids, lung surfactant, nanoparticles
Procedia PDF Downloads 178531 A Comparison of Biosorption of Radionuclides Tl-201 on Different Biosorbents and Their Empirical Modelling
Authors: Sinan Yapici, Hayrettin Eroglu
Abstract:
The discharge of the aqueous radionuclides wastes used for the diagnoses of diseases and treatments of patients in nuclear medicine can cause fatal health problems when the radionuclides and its stable daughter component mix with underground water. Tl-201, which is one of the radionuclides commonly used in the nuclear medicine, is a toxic substance and is converted to its stable daughter component Hg-201, which is also a poisonous heavy metal: Tl201 → Hg201 + Gamma Ray [135-167 Kev (12%)] + X Ray [69-83 Kev (88%)]; t1/2 = 73,1 h. The purpose of the present work was to remove Tl-201 radionuclides from aqueous solution by biosorption on the solid bio wastes of food and cosmetic industry as bio sorbents of prina from an olive oil plant, rose residue from a rose oil plant and tea residue from a tea plant, and to make a comparison of the biosorption efficiencies. The effects of the biosorption temperature, initial pH of the aqueous solution, bio sorbent dose, particle size and stirring speed on the biosorption yield were investigated in a batch process. It was observed that the biosorption is a rapid process with an equilibrium time less than 10 minutes for all the bio sorbents. The efficiencies were found to be close to each other and measured maximum efficiencies were 93,30 percent for rose residue, 94,1 for prina and 98,4 for tea residue. In a temperature range of 283 and 313 K, the adsorption decreased with increasing temperature almost in a similar way. In a pH range of 2-10, increasing pH enhanced biosorption efficiency up to pH=7 and then the efficiency remained constant in a similar path for all the biosorbents. Increasing stirring speed from 360 to 720 rpm enhanced slightly the biosorption efficiency almost at the same ratio for all bio sorbents. Increasing particle size decreased the efficiency for all biosorbent; however the most negatively effected biosorbent was prina with a decrease in biosorption efficiency from about 84 percent to 40 with an increase in the nominal particle size 0,181 mm to 1,05 while the least effected one, tea residue, went down from about 97 percent to 87,5. The biosorption efficiencies of all the bio sorbents increased with increasing biosorbent dose in the range of 1,5 to 15,0 g/L in a similar manner. The fit of the experimental results to the adsorption isotherms proved that the biosorption process for all the bio sorbents can be represented best by Freundlich model. The kinetic analysis showed that all the processes fit very well to pseudo second order rate model. The thermodynamics calculations gave ∆G values between -8636 J mol-1 and -5378 for tea residue, -5313 and -3343 for rose residue, and -5701 and -3642 for prina with a ∆H values of -39516 J mol-1, -23660 and -26190, and ∆S values of -108.8 J mol-1 K-1, -64,0, -72,0 respectively, showing spontaneous and exothermic character of the processes. An empirical biosorption model in the following form was derived for each biosorbent as function of the parameters and time, taking into account the form of kinetic model, with regression coefficients over 0.9990 where At is biosorbtion efficiency at any time and Ae is the equilibrium efficiency, t is adsorption period as s, ko a constant, pH the initial acidity of biosorption medium, w the stirring speed as s-1, S the biosorbent dose as g L-1, D the particle size as m, and a, b, c, and e are the powers of the parameters, respectively, E a constant containing activation energy and T the temperature as K.Keywords: radiation, diosorption, thallium, empirical modelling
Procedia PDF Downloads 265530 Internet Memes as Meaning-Making Tools within Subcultures: A Case Study of Lolita Fashion
Authors: Victoria Esteves
Abstract:
Online memes have not only impacted different aspects of culture, but they have also left their mark on particular subcultures, where memes have reflected issues and debates surrounding specific spheres of interest. This is the first study that outlines how memes can address cultural intersections within the Lolita fashion community, which are much more specific and which fall outside of the broad focus of politics and/or social commentary. This is done by looking at the way online memes are used in this particular subculture as a form of meaning-making and group identity reinforcement, demonstrating not only the adaptability of online memes to specific cultural groups but also how subcultures tailor these digital objects to discuss both community-centered topics and more broad societal aspects. As part of an online ethnography, this study focuses on qualitative content analysis by taking a look at some of the meme communication that has permeated Lolita fashion communities. Examples of memes used in this context are picked apart in order to understand this specific layered phenomenon of communication, as well as to gain insights into how memes can operate as visual shorthand for the remix of meaning-making. There are existing parallels between internet culture and cultural behaviors surrounding Lolita fashion: not only is the latter strongly influenced by the former (due to its highly globalized dispersion and lack of physical shops, Lolita fashion is almost entirely reliant on the internet for its existence), both also emphasize curatorial roles through a careful collaborative process of documenting significant aspects of their culture (e.g., Know Your Meme and Lolibrary). Further similarities appear when looking at ideas of inclusion and exclusion that permeate both cultures, where memes and language are used in order to both solidify group identity and to police those who do not ascribe to these cultural tropes correctly, creating a feedback loop that reinforces subcultural ideals. Memes function as excellent forms of communication within the Lolita community because they reinforce its coded ideas and allows a kind of participation that echoes other cultural groups that are online-heavy such as fandoms. Furthermore, whilst the international Lolita community was mostly self-contained within its LiveJournal birthplace, it has become increasingly dispersed through an array of different social media groups that have fragmented this subculture significantly. The use of memes is key in maintaining a sense of connection throughout this now fragmentary experience of fashion. Memes are also used in the Lolita fashion community to bridge the gap between Lolita fashion related community issues and wider global topics; these reflect not only an ability to make use of a broader online language to address specific issues of the community (which in turn provide a very community-specific engagement with remix practices) but also memes’ ability to be tailored to accommodate overlapping cultural and political concerns and discussions between subcultures and broader societal groups. Ultimately, online memes provide the necessary elasticity to allow their adaption and adoption by subcultural groups, who in turn use memes to extend their meaning-making processes.Keywords: internet culture, Lolita fashion, memes, online community, remix
Procedia PDF Downloads 168529 Examination of Indoor Air Quality of Naturally Ventilated Dwellings During Winters in Mega-City Kolkata
Authors: Tanya Kaur Bedi, Shankha Pratim Bhattacharya
Abstract:
The US Environmental Protection Agency defines indoor air quality as “The air quality within and around buildings, especially as it relates to the health and comfort of building occupants”. According to the 2021 report by the Energy Policy Institute at Chicago, Indian residents, a country which is home to the highest levels of air pollution in the world, lose about 5.9 years from life expectancy due to poor air quality and yet has numerous dwellings dependent on natural ventilation. Currently the urban population spends 90% of the time indoors, this scenario raises a concern for occupant health and well-being. The built environment can affect health directly and indirectly through immediate or long-term exposure to indoor air pollutants. Health effects associated with indoor air pollutants include eye/nose/throat irritation, respiratory diseases, heart disease, and even cancer. This study attempts to demonstrate the causal relationship between the indoor air quality and its determining aspects. Detailed indoor air quality audits were conducted in residential buildings located in Kolkata, India in the months of December and January 2021. According to the air pollution knowledge assessment city program in India, Kolkata is also the second most polluted mega-city after Delhi. Although the air pollution levels are alarming year-long, the winter months are most crucial due to the unfavorable environmental conditions. While emissions remain typically constant throughout the year, cold air is denser and moves slower than warm air, trapping the pollution in place for much longer and consequently is breathed in at a higher rate than the summers. The air pollution monitoring period was selected considering environmental factors and major pollution contributors like traffic and road dust. This study focuses on the relationship between the built environment and the spatial-temporal distribution of air pollutants in and around it. The measured parameters include, temperature, relative humidity, air velocity, particulate matter, volatile organic compounds, formaldehyde, and benzene. A total of 56 rooms were audited, selectively targeting the most dominant middle-income group. The data-collection was conducted using a set of instruments positioned in the human breathing-zone. The study assesses indoor air quality based on factors determining natural ventilation and air pollution dispersion such as surrounding environment, dominant wind, openable window to floor area ratio, windward or leeward side openings, and natural ventilation type in the room: single side or cross-ventilation, floor height, residents cleaning habits, etc.Keywords: indoor air quality, occupant health, urban housing, air pollution, natural ventilation, architecture, urban issues
Procedia PDF Downloads 122528 Emotion Regulation and Executive Functioning Scale for Children and Adolescents (REMEX): Scale Development
Authors: Cristina Costescu, Carmen David, Adrian Roșan
Abstract:
Executive functions (EF) and emotion regulation strategies are processes that allow individuals to function in an adaptative way and to be goal-oriented, which is essential for success in daily living activities, at school, or in social contexts. The Emotion Regulation and Executive Functioning Scale for Children and Adolescents (REMEX) represents an empirically based tool (based on the model of EF developed by Diamond) for evaluating significant dimensions of child and adolescent EFs and emotion regulation strategies, mainly in school contexts. The instrument measures the following dimensions: working memory, inhibition, cognitive flexibility, executive attention, planning, emotional control, and emotion regulation strategies. Building the instrument involved not only a top-down process, as we selected the content in accordance with prominent models of FE, but also a bottom-up one, as we were able to identify valid contexts in which FE and ER are put to use. For the construction of the instrument, we implemented three focus groups with teachers and other professionals since the aim was to develop an accurate, objective, and ecological instrument. We used the focus group method in order to address each dimension and to yield a bank of items to be further tested. Each dimension is addressed through a task that the examiner will apply and through several items derived from the main task. For the validation of the instrument, we plan to use item response theory (IRT), also known as the latent response theory, that attempts to explain the relationship between latent traits (unobservable cognitive processes) and their manifestations (i.e., observed outcomes, responses, or performance). REMEX represents an ecological scale that integrates a current scientific understanding of emotion regulation and EF and is directly applicable to school contexts, and it can be very useful for developing intervention protocols. We plan to test his convergent validity with the Childhood Executive Functioning Inventory (CHEXI) and Emotion Dysregulation Inventory (EDI) and divergent validity between a group of typically developing children and children with neurodevelopmental disorders, aged between 6 and 9 years old. In a previous pilot study, we enrolled a sample of 40 children with autism spectrum disorders and attention-deficit/hyperactivity disorder aged 6 to 12 years old, and we applied the above-mentioned scales (CHEXI and EDI). Our results showed that deficits in planning, bebavior regulation, inhibition, and working memory predict high levels of emotional reactivity, leading to emotional and behavioural problems. Considering previous results, we expect our findings to provide support for the validity and reliability of the REMEX version as an ecological instrument for assessing emotion regulation and EF in children and for key features of its uses in intervention protocols.Keywords: executive functions, emotion regulation, children, item response theory, focus group
Procedia PDF Downloads 100527 Influencing Factors on Stability of Shale with Silt Layers at Slopes
Authors: A. K. M. Badrul Alam, Yoshiaki Fujii, Nahid Hasan Dipu, Shakil Ahmed Razo
Abstract:
Shale rockmasses often include silt layers, impacting slope stability in construction and mining. Analyzing their interaction is crucial for long-term stability. A study used an elastoplastic model, incorporating the stress transfer method and Coulomb's criterion, to assess a shale rock mass with silt layers. It computed stress distribution, assessed failure potential, and identified vulnerable regions where nodal forces were calculated for a comprehensive analysis. A shale rock mass ranging from 14.75 to 16.75 meters thick, with silt layers varying from 0.36 to 0.5 meters, was considered in the model. It examined four silt layer conditions: horizontal (SiHL), vertical (SiVL), inclined against slope (SiIincAGS), and along slope (SilincALO). Mechanical parameters like uniaxial compressive strength (UCS), tensile strength (TS), Young’s modulus (E), Poisson’s ratio, and density were adjusted for varied scenarios: UCS (0.5 to 5 MPa), TS (0.1 to 1 MPa), and E (6 to 60 MPa). In elastic analysis of shale rock masses, stress distributions vary based on layer properties. When shale and silt layers have the same elasticity modulus (E), stress concentrates at corners. If the silt layer has a lower E than shale, marginal changes in maximum stress (σmax) occur for SilHL. A decrease in σmax is evident at SilVL. Slight variations in σmax are observed for SilincAGS and SilincALO. In the elastoplastic analysis, the overall decrease of 20%, 40%, 60%, 80%, and 90% was considered. For SilHL:(i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: strength decrease led to shear (S), tension then shear (T then S) failure; noticeable failure at 60% decrease, significant at 80%, collapse at 90%. (ii) Lower E for silt layer, same strength as shale: No significant differences. (iii) Lower E and UCS, silt layer strength 1/10: No significant differences. For SilVL: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Similar effects as SilHL. (ii) Lower E for silt layer, same strength as shale: Slip occurred. (iii) Lower E and UCS, silt layer strength 1/10: Bitension failure also observed with larger slip. For SilincAGS: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Effects similar to SilHL. (ii) Lower E for silt layer, same strength as shale: Slip occurred. (iii) Lower E and UCS, silt layer strength 1/10: Tension failure also observed with larger slip. For SilincALO: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Similar to SilHL with tension failure. (ii) Lower E for silt layer, same strength as shale: No significant differences; failure diverged. (iii) Lower E and UCS, silt layer strength 1/10: Bitension failure also observed with larger slip; failure diverged. Toppling failure was observed for lower E cases of SilVL and SilincAGS. The presence of silt interlayers in shale greatly impacts slope stability. Designing slopes requires careful consideration of both the silt and shale's mechanical properties. The temporal degradation of strength in these layers is a major concern. Thus, slope design must comprehensively analyze the immediate and long-term mechanical behavior of interlayer silt and shale to effectively mitigate instability.Keywords: shale rock masses, silt layers, slope stability, elasto-plastic model, temporal degradation
Procedia PDF Downloads 56526 Research on Reminiscence Therapy Game Design
Authors: Web Huei Chou, Li Yi Chun, Wenwe Yu, Han Teng Weng, H. Yuan, T. Yang
Abstract:
The prevalence of dementia is estimated to rise to 78 million by 2030 and 139 million by 2050. Among those affected, Alzheimer's disease is the most common form of dementia, contributing to 60–70% of cases. Addressing this growing challenge is crucial, especially considering the impact on older individuals and their caregivers. To reduce the behavioral and psychological symptoms of dementia, people with dementia use a variety of pharmaceutical and non-pharmacological treatments, and some studies have found the use of non-pharmacological interventions. Treatment of depression, cognitive function, and social activities has potential benefits. Butler developed reminiscence therapy as a method of treating dementia. Through ‘life review,’ individuals can recall their past events, activities, and experiences, which can reduce the depression of the elderly and improve their Quality of life to help give meaning to their lives and help them live independently. The life review process uses a variety of memory triggers, such as household items, past objects, photos, and music, and can be conducted collectively or individually and structured or unstructured. However, despite the advantages of nostalgia therapy, past research has always pointed out that current research lacks rigorous experimental evaluation and cannot describe clear research results and generalizability. Therefore, this study aims to study physiological sensing experiments to find a feasible experimental and verification method to provide clearer design and design specifications for reminiscence therapy and to provide a more widespread application for healthy aging. This study is an ongoing research project, a collaboration between the School of Design at Yunlin University of Science and Technology in Taiwan and the Department of Medical Engineering at Chiba University in Japan. We use traditional rice dishes from Taiwan and Japan as nostalgic content to construct a narrative structure for the elderly in the two countries respectively for life review activities, providing an easy-to-carry nostalgic therapy game with an intuitive interactive design. This experiment is expected to be completed in 36 months. The design team constructed and designed the game after conducting literary and historical data surveys and interviews with elders to confirm the nostalgic historical data in Taiwan and Japan. The Japanese team planned the Electrodermal Activity (EDA) and Blood Volume Pulse (BVP) experimental environments and Data calculation model, and then after conducting experiments on elderly people in two places, the research results were analyzed and discussed together. The research has completed the first 24 months of pre-study, design work, and pre-study and has entered the project acceptance stage.Keywords: reminiscence therapy, aging health, design research, life review
Procedia PDF Downloads 32525 Identification of Electric Energy Storage Acceptance Types: Empirical Findings from the German Manufacturing Industry
Authors: Dominik Halstrup, Marlene Schriever
Abstract:
The industry, as one of the main energy consumer, is of critical importance along the way of transforming the energy system to Renewable Energies. The distributed character of the Energy Transition demands for further flexibility being introduced to the grid. In order to shed further light on the acceptance of Electric Energy Storage (ESS) from an industrial point of view, this study therefore examines the German manufacturing industry. The analysis in this paper uses data composed of a survey amongst 101 manufacturing companies in Germany. Being part of a two-stage research design, both qualitative and quantitative data was collected. Based on a literature review an acceptance concept was developed in the paper and four user-types identified: (Dedicated) User, Impeded User, Forced User and (Dedicated) Non-User and incorporated in the questionnaire. Both descriptive and bivariate analysis is deployed to identify the level of acceptance in the different organizations. After a factor analysis has been conducted, variables were grouped to form independent acceptance factors. Out of the 22 organizations that do show a positive attitude towards ESS, 5 have already implemented ESS and show a positive attitude towards ESS. They can be therefore considered ‘Dedicated Users’. The remaining 17 organizations have a positive attitude but have not implemented ESS yet. The results suggest that profitability plays an important role as well as load-management systems that are already in place. Surprisingly, 2 organizations have implemented ESS even though they have a negative attitude towards it. This is an example for a ‘Forced User’ where reasons of overriding importance or supporters with overriding authority might have forced the company to implement ESS. By far the biggest subset of the sample shows (critical) distance and can therefore be considered ‘(Dedicated) Non-Users’. The results indicate that the majority of the respondents have not thought ESS in their own organization through yet. For the majority of the sample one can therefore not speak of critical distance but rather a distance due to insufficient information and the perceived unprofitability. This paper identifies the relative state of acceptance of ESS in the manufacturing industry as well as current reasons for hindrance and perspectives for future growth of ESS in an industrial setting from a policy level. The interest that is currently generated by the media could be channeled and taken into a more substantial and individual discussion about ESS in an industrial setting. If the current perception of profitability could be addressed and communicated accordingly, ESS and their use in for instance cooperative business models could become a topic for more organizations in Germany and other parts of the world. As price mechanisms tend to favor existing technologies, policy makers need to further access the use of ESS and acknowledge the positive effects when integrated in an energy system. The subfields of generation, transmission and distribution become increasingly intertwined. New technologies and business models, such as ESS or cooperative arrangements entering the market, increase the number of stakeholders. Organizations need to find their place within this array of stakeholders.Keywords: acceptance, energy storage solutions, German energy transition, manufacturing industry
Procedia PDF Downloads 225524 Interface Fracture of Sandwich Composite Influenced by Multiwalled Carbon Nanotube
Authors: Alak Kumar Patra, Nilanjan Mitra
Abstract:
Higher strength to weight ratio is the main advantage of sandwich composite structures. Interfacial delamination between the face sheet and core is a major problem in these structures. Many research works are devoted to improve the interfacial fracture toughness of composites majorities of which are on nano and laminated composites. Work on influence of multiwalled carbon nano-tubes (MWCNT) dispersed resin system on interface fracture of glass-epoxy PVC core sandwich composite is extremely limited. Finite element study is followed by experimental investigation on interface fracture toughness of glass-epoxy (G/E) PVC core sandwich composite with and without MWCNT. Results demonstrate an improvement in interface fracture toughness values (Gc) of samples with a certain percentages of MWCNT. In addition, dispersion of MWCNT in epoxy resin through sonication followed by mixing of hardener and vacuum resin infusion (VRI) technology used in this study is an easy and cost effective methodology in comparison to previously adopted other methods limited to laminated composites. The study also identifies the optimum weight percentage of MWCNT addition in the resin system for maximum performance gain in interfacial fracture toughness. The results agree with finite element study, high-resolution transmission electron microscope (HRTEM) analysis and fracture micrograph of field emission scanning electron microscope (FESEM) investigation. Interface fracture toughness (GC) of the DCB sandwich samples is calculated using the compliance calibration (CC) method considering the modification due to shear. Compliance (C) vs. crack length (a) data of modified sandwich DCB specimen is fitted to a power function of crack length. The calculated mean value of the exponent n from the plots of experimental results is 2.22 and is different from the value (n=3) prescribed in ASTM D5528-01for mode 1 fracture toughness of laminate composites (which is the basis for modified compliance calibration method). Differentiating C with respect to crack length (a) and substituting it in the expression GC provides its value. The research demonstrates improvement of 14.4% in peak load carrying capacity and 34.34% in interface fracture toughness GC for samples with 1.5 wt% MWCNT (weight % being taken with respect to weight of resin) in comparison to samples without MWCNT. The paper focuses on significant improvement in experimentally determined interface fracture toughness of sandwich samples with MWCNT over the samples without MWCNT using much simpler method of sonication. Good dispersion of MWCNT was observed in HRTEM with 1.5 wt% MWCNT addition in comparison to other percentages of MWCNT. FESEM studies have also demonstrated good dispersion and fiber bridging of MWCNT in resin system. Ductility is also observed to be higher for samples with MWCNT in comparison to samples without.Keywords: carbon nanotube, epoxy resin, foam, glass fibers, interfacial fracture, sandwich composite
Procedia PDF Downloads 303523 Piled Critical Size Bone-Biomimetic and Biominerizable Nanocomposites: Formation of Bioreactor-Induced Stem Cell Gradients under Perfusion and Compression
Authors: W. Baumgartner, M. Welti, N. Hild, S. C. Hess, W. J. Stark, G. Meier Bürgisser, P. Giovanoli, J. Buschmann
Abstract:
Perfusion bioreactors are used to solve problems in tissue engineering in terms of sufficient nutrient and oxygen supply. Such problems especially occur in critical size grafts because vascularization is often too slow after implantation ending up in necrotic cores. Biominerizable and biocompatible nanocomposite materials are attractive and suitable scaffold materials for bone tissue engineering because they offer mineral components in organic carriers – mimicking natural bone tissue. In addition, human adipose derived stem cells (ASCs) can potentially be used to increase bone healing as they are capable of differentiating towards osteoblasts or endothelial cells among others. In the present study, electrospun nanocomposite disks of poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/a-CaP) were seeded with human ASCs and eight disks were stacked in a bioreactor running with normal culture medium (no differentiation supplements). Under continuous perfusion and uniaxial cyclic compression, load-displacement curves as a function of time were assessed. Stiffness and energy dissipation were recorded. Moreover, stem cell densities in the layers of the piled scaffold were determined as well as their morphologies and differentiation status (endothelial cell differentiation, chondrogenesis and osteogenesis). While the stiffness of the cell free constructs increased over time caused by the transformation of the a-CaP nanoparticles into flake-like apatite, ASC-seeded constructs showed a constant stiffness. Stem cell density gradients were histologically determined with a linear increase in the flow direction from the bottom to the top of the 3.5 mm high pile (r2 > 0.95). Cell morphology was influenced by the flow rate, with stem cells getting more roundish at higher flow rates. Less than 1 % osteogenesis was found upon osteopontin immunostaining at the end of the experiment (9 days), while no endothelial cell differentiation and no chondrogenesis was triggered under these conditions. All ASCs had mainly remained in their original pluripotent status within this time frame. In summary, we have fabricated a critical size bone graft based on a biominerizable bone-biomimetic nanocomposite with preserved stiffness when seeded with human ASCs. The special feature of this bone graft was that ASC densities inside the piled construct varied with a linear gradient, which is a good starting point for tissue engineering interfaces such as bone-cartilage where the bone tissue is cell rich while the cartilage exhibits low cell densities. As such, this tissue-engineered graft may act as a bone-cartilage interface after the corresponding differentiation of the ASCs.Keywords: bioreactor, bone, cartilage, nanocomposite, stem cell gradient
Procedia PDF Downloads 308522 Antimicrobial Efficacy of Some Antibiotics Combinations Tested against Some Molecular Characterized Multiresistant Staphylococcus Clinical Isolates, in Egypt
Authors: Nourhan Hussein Fanaki, Hoda Mohamed Gamal El-Din Omar, Nihal Kadry Moussa, Eva Adel Edward Farid
Abstract:
The resistance of staphylococci to various antibiotics has become a major concern for health care professionals. The efficacy of the combinations of selected glycopeptides (vancomycin and teicoplanin) with gentamicin or rifampicin, as well as that of gentamicin/rifampicin combination, was studied against selected pathogenic staphylococcus isolated from Egypt. The molecular distribution of genes conferring resistance to these four antibiotics was detected among tested clinical isolates. Antibiotic combinations were studied using the checkerboard technique and the time-kill assay (in both the stationary and log phases). Induction of resistance to glycopeptides in staphylococci was tried in the absence and presence of diclofenac sodium as inducer. Transmission electron microscopy was used to study the effect of glycopeptides on the ultrastructure of the cell wall of staphylococci. Attempts were made to cure gentamicin resistance plasmids and to study the transfer of these plasmids by conjugation. Trials for the transformation of the successfully isolated gentamicin resistance plasmid to competent cells were carried out. The detection of genes conferring resistance to the tested antibiotics was performed using the polymerase chain reaction. The studied antibiotic combinations proved their efficacy, especially when tested during the log phase. Induction of resistance to glycopeptides in staphylococci was more promising in presence of diclofenac sodium, compared to its absence. Transmission electron microscopy revealed the thickening of bacterial cell wall in staphylococcus clinical isolates due to the presence of tested glycopeptides. Curing of gentamicin resistance plasmids was only successful in 2 out of 9 tested isolates, with a curing rate of 1 percent for each. Both isolates, when used as donors in conjugation experiments, yielded promising conjugation frequencies ranging between 5.4 X 10-2 and 7.48 X 10-2 colony forming unit/donor cells. Plasmid isolation was only successful in one out of the two tested isolates. However, low transformation efficiency (59.7 transformants/microgram plasmid DNA) of such plasmids was obtained. Negative regulators of autolysis, such as arlR, lytR and lrgB, as well as cell-wall associated genes, such as pbp4 and/or pbp2, were detected in staphylococcus isolates with reduced susceptibility to the tested glycopeptides. Concerning rifampicin resistance genes, rpoBstaph was detected in 75 percent of the tested staphylococcus isolates. It could be concluded that in vitro studies emphasized the usefulness of the combination of vancomycin or teicoplanin with gentamicin or rifampicin, as well as that of gentamicin with rifampicin, against staphylococci showing varying resistance patterns. However, further in vivo studies are required to ensure the safety and efficacy of such combinations. Diclofenac sodium can act as an inducer of resistance to glycopeptides in staphylococci. Cell-wall thickness is a major contributor to such resistance among them. Gentamicin resistance in these strains could be chromosomally or plasmid mediated. Multiple mutations in the rpoB gene could mediate staphylococcus resistance to rifampicin.Keywords: glycopeptides, combinations, induction, diclofenac, transmission electron microscopy, polymerase chain reaction
Procedia PDF Downloads 292521 Design, Development and Testing of Polymer-Glass Microfluidic Chips for Electrophoretic Analysis of Biological Sample
Authors: Yana Posmitnaya, Galina Rudnitskaya, Tatyana Lukashenko, Anton Bukatin, Anatoly Evstrapov
Abstract:
An important area of biological and medical research is the study of genetic mutations and polymorphisms that can alter gene function and cause inherited diseases and other diseases. The following methods to analyse DNA fragments are used: capillary electrophoresis and electrophoresis on microfluidic chip (MFC), mass spectrometry with electrophoresis on MFC, hybridization assay on microarray. Electrophoresis on MFC allows to analyse small volumes of samples with high speed and throughput. A soft lithography in polydimethylsiloxane (PDMS) was chosen for operative fabrication of MFCs. A master-form from silicon and photoresist SU-8 2025 (MicroChem Corp.) was created for the formation of micro-sized structures in PDMS. A universal topology which combines T-injector and simple cross was selected for the electrophoretic separation of the sample. Glass K8 and PDMS Sylgard® 184 (Dow Corning Corp.) were used for fabrication of MFCs. Electroosmotic flow (EOF) plays an important role in the electrophoretic separation of the sample. Therefore, the estimate of the quantity of EOF and the ways of its regulation are of interest for the development of the new methods of the electrophoretic separation of biomolecules. The following methods of surface modification were chosen to change EOF: high-frequency (13.56 MHz) plasma treatment in oxygen and argon at low pressure (1 mbar); 1% aqueous solution of polyvinyl alcohol; 3% aqueous solution of Kolliphor® P 188 (Sigma-Aldrich Corp.). The electroosmotic mobility was evaluated by the method of Huang X. et al., wherein the borate buffer was used. The influence of physical and chemical methods of treatment on the wetting properties of the PDMS surface was controlled by the sessile drop method. The most effective way of surface modification of MFCs, from the standpoint of obtaining the smallest value of the contact angle and the smallest value of the EOF, was the processing with aqueous solution of Kolliphor® P 188. This method of modification has been selected for the treatment of channels of MFCs, which are used for the separation of mixture of oligonucleotides fluorescently labeled with the length of chain with 10, 20, 30, 40 and 50 nucleotides. Electrophoresis was performed on the device MFAS-01 (IAI RAS, Russia) at the separation voltage of 1500 V. 6% solution of polydimethylacrylamide with the addition of 7M carbamide was used as the separation medium. The separation time of components of the mixture was determined from electropherograms. The time for untreated MFC was ~275 s, and for the ones treated with solution of Kolliphor® P 188 – ~ 220 s. Research of physical-chemical methods of surface modification of MFCs allowed to choose the most effective way for reducing EOF – the modification with aqueous solution of Kolliphor® P 188. In this case, the separation time of the mixture of oligonucleotides decreased about 20%. The further optimization of method of modification of channels of MFCs will allow decreasing the separation time of sample and increasing the throughput of analysis.Keywords: electrophoresis, microfluidic chip, modification, nucleic acid, polydimethylsiloxane, soft lithography
Procedia PDF Downloads 413520 Music Genre Classification Based on Non-Negative Matrix Factorization Features
Authors: Soyon Kim, Edward Kim
Abstract:
In order to retrieve information from the massive stream of songs in the music industry, music search by title, lyrics, artist, mood, and genre has become more important. Despite the subjectivity and controversy over the definition of music genres across different nations and cultures, automatic genre classification systems that facilitate the process of music categorization have been developed. Manual genre selection by music producers is being provided as statistical data for designing automatic genre classification systems. In this paper, an automatic music genre classification system utilizing non-negative matrix factorization (NMF) is proposed. Short-term characteristics of the music signal can be captured based on the timbre features such as mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC), and octave band sum (OBS). Long-term time-varying characteristics of the music signal can be summarized with (1) the statistical features such as mean, variance, minimum, and maximum of the timbre features and (2) the modulation spectrum features such as spectral flatness measure, spectral crest measure, spectral peak, spectral valley, and spectral contrast of the timbre features. Not only these conventional basic long-term feature vectors, but also NMF based feature vectors are proposed to be used together for genre classification. In the training stage, NMF basis vectors were extracted for each genre class. The NMF features were calculated in the log spectral magnitude domain (NMF-LSM) as well as in the basic feature vector domain (NMF-BFV). For NMF-LSM, an entire full band spectrum was used. However, for NMF-BFV, only low band spectrum was used since high frequency modulation spectrum of the basic feature vectors did not contain important information for genre classification. In the test stage, using the set of pre-trained NMF basis vectors, the genre classification system extracted the NMF weighting values of each genre as the NMF feature vectors. A support vector machine (SVM) was used as a classifier. The GTZAN multi-genre music database was used for training and testing. It is composed of 10 genres and 100 songs for each genre. To increase the reliability of the experiments, 10-fold cross validation was used. For a given input song, an extracted NMF-LSM feature vector was composed of 10 weighting values that corresponded to the classification probabilities for 10 genres. An NMF-BFV feature vector also had a dimensionality of 10. Combined with the basic long-term features such as statistical features and modulation spectrum features, the NMF features provided the increased accuracy with a slight increase in feature dimensionality. The conventional basic features by themselves yielded 84.0% accuracy, but the basic features with NMF-LSM and NMF-BFV provided 85.1% and 84.2% accuracy, respectively. The basic features required dimensionality of 460, but NMF-LSM and NMF-BFV required dimensionalities of 10 and 10, respectively. Combining the basic features, NMF-LSM and NMF-BFV together with the SVM with a radial basis function (RBF) kernel produced the significantly higher classification accuracy of 88.3% with a feature dimensionality of 480.Keywords: mel-frequency cepstral coefficient (MFCC), music genre classification, non-negative matrix factorization (NMF), support vector machine (SVM)
Procedia PDF Downloads 303519 The Power of in situ Characterization Techniques in Heterogeneous Catalysis: A Case Study of Deacon Reaction
Authors: Ramzi Farra, Detre Teschner, Marc Willinger, Robert Schlögl
Abstract:
Introduction: The conventional approach of characterizing solid catalysts under static conditions, i.e., before and after reaction, does not provide sufficient knowledge on the physicochemical processes occurring under dynamic conditions at the molecular level. Hence, the necessity of improving new in situ characterizing techniques with the potential of being used under real catalytic reaction conditions is highly desirable. In situ Prompt Gamma Activation Analysis (PGAA) is a rapidly developing chemical analytical technique that enables us experimentally to assess the coverage of surface species under catalytic turnover and correlate these with the reactivity. The catalytic HCl oxidation (Deacon reaction) over bulk ceria will serve as our example. Furthermore, the in situ Transmission Electron Microscopy is a powerful technique that can contribute to the study of atmosphere and temperature induced morphological or compositional changes of a catalyst at atomic resolution. The application of such techniques (PGAA and TEM) will pave the way to a greater and deeper understanding of the dynamic nature of active catalysts. Experimental/Methodology: In situ Prompt Gamma Activation Analysis (PGAA) experiments were carried out to determine the Cl uptake and the degree of surface chlorination under reaction conditions by varying p(O2), p(HCl), p(Cl2), and the reaction temperature. The abundance and dynamic evolution of OH groups on working catalyst under various steady-state conditions were studied by means of in situ FTIR with a specially designed homemade transmission cell. For real in situ TEM we use a commercial in situ holder with a home built gas feeding system and gas analytics. Conclusions: Two complimentary in situ techniques, namely in situ PGAA and in situ FTIR were utilities to investigate the surface coverage of the two most abundant species (Cl and OH). The OH density and Cl uptake were followed under multiple steady-state conditions as a function of p(O2), p(HCl), p(Cl2), and temperature. These experiments have shown that, the OH density positively correlates with the reactivity whereas Cl negatively. The p(HCl) experiments give rise to increased activity accompanied by Cl-coverage increase (opposite trend to p(O2) and T). Cl2 strongly inhibits the reaction, but no measurable increase of the Cl uptake was found. After considering all previous observations we conclude that only a minority of the available adsorption sites contribute to the reactivity. In addition, the mechanism of the catalysed reaction was proposed. The chlorine-oxygen competition for the available active sites renders re-oxidation as the rate-determining step of the catalysed reaction. Further investigations using in situ TEM are planned and will be conducted in the near future. Such experiments allow us to monitor active catalysts at the atomic scale under the most realistic conditions of temperature and pressure. The talk will shed a light on the potential and limitations of in situ PGAA and in situ TEM in the study of catalyst dynamics.Keywords: CeO2, deacon process, in situ PGAA, in situ TEM, in situ FTIR
Procedia PDF Downloads 291518 Hydrogen Production from Auto-Thermal Reforming of Ethanol Catalyzed by Tri-Metallic Catalyst
Authors: Patrizia Frontera, Anastasia Macario, Sebastiano Candamano, Fortunato Crea, Pierluigi Antonucci
Abstract:
The increasing of the world energy demand makes today biomass an attractive energy source, based on the minimizing of CO2 emission and on the global warming reduction purposes. Recently, COP-21, the international meeting on global climate change, defined the roadmap for sustainable worldwide development, based on low-carbon containing fuel. Hydrogen is an energy vector able to substitute the conventional fuels from petroleum. Ethanol for hydrogen production represents a valid alternative to the fossil sources due to its low toxicity, low production costs, high biodegradability, high H2 content and renewability. Ethanol conversion to generate hydrogen by a combination of partial oxidation and steam reforming reactions is generally called auto-thermal reforming (ATR). The ATR process is advantageous due to the low energy requirements and to the reduced carbonaceous deposits formation. Catalyst plays a pivotal role in the ATR process, especially towards the process selectivity and the carbonaceous deposits formation. Bimetallic or trimetallic catalysts, as well as catalysts with doped-promoters supports, may exhibit high activity, selectivity and deactivation resistance with respect to the corresponding monometallic ones. In this work, NiMoCo/GDC, NiMoCu/GDC and NiMoRe/GDC (where GDC is Gadolinia Doped Ceria support and the metal composition is 60:30:10 for all catalyst) have been prepared by impregnation method. The support, Gadolinia 0.2 Doped Ceria 0.8, was impregnated by metal precursors solubilized in aqueous ethanol solution (50%) at room temperature for 6 hours. After this, the catalysts were dried at 100°C for 8 hours and, subsequently, calcined at 600°C in order to have the metal oxides. Finally, active catalysts were obtained by reduction procedure (H2 atmosphere at 500°C for 6 hours). All sample were characterized by different analytical techniques (XRD, SEM-EDX, XPS, CHNS, H2-TPR and Raman Spectorscopy). Catalytic experiments (auto-thermal reforming of ethanol) were carried out in the temperature range 500-800°C under atmospheric pressure, using a continuous fixed-bed microreactor. Effluent gases from the reactor were analyzed by two Varian CP4900 chromarographs with a TCD detector. The analytical investigation focused on the preventing of the coke deposition, the metals sintering effect and the sulfur poisoning. Hydrogen productivity, ethanol conversion and products distribution were measured and analyzed. At 600°C, all tri-metallic catalysts show the best performance: H2 + CO reaching almost the 77 vol.% in the final gases. While NiMoCo/GDC catalyst shows the best selectivity to hydrogen whit respect to the other tri-metallic catalysts (41 vol.% at 600°C). On the other hand, NiMoCu/GDC and NiMoRe/GDC demonstrated high sulfur poisoning resistance (up to 200 cc/min) with respect to the NiMoCo/GDC catalyst. The correlation among catalytic results and surface properties of the catalysts will be discussed.Keywords: catalysts, ceria, ethanol, gadolinia, hydrogen, Nickel
Procedia PDF Downloads 154517 A Qualitative Study Investigating the Relationship Between External Context and the Mechanism of Change for the Implementation of Goal-oriented Primary Care
Authors: Ine Huybrechts, Anja Declercq, Emily Verté, Peter Raeymaeckers, Sibyl Anthierens
Abstract:
Goal-oriented care is a concept gaining increased interest as an approach to go towards more coordinated and integrated primary care. It places patients’ personal life goals at the core of health care support, hereby shifting the focus from “what’s the matter with this patient” to “what matters to this patient.” In Flanders/Belgium, various primary care providers, health and social care organizations and governmental bodies have picked up this concept and have initiated actions to facilitate this approach. The implementation of goal-oriented care not only happens on the micro-level, but it also requires efforts on the meso- and macro-level. Within implementation research, there is a growing recognition that the context in which an intervention takes place strongly relates to its implementation outcomes. However, when investigating contextual variables, the external context and its impact on implementation processes is often overlooked. This study aims to explore how we can better identify and understand the external context and how it relates to the mechanism of change within the implementation process of goal-oriented care in Flanders/Belgium. Results can be used to support and guide initiatives to introduce innovative approaches such as goal-oriented care inside an organization or in the broader primary care landscape. We have conducted qualitative research, performing in-depth interviews with n=23 respondents who have affinity with the implementation of goal-oriented care within their professional function. This lead to in-depth insights from a wide range of actors, with meso-level and/or macro-level perspectives on the implementation of goal-oriented care. This means that we have interviewed actors that are not only involved with initiatives to implement goal-oriented care, but also actors that actively give form to the external context in which goal-oriented care is implemented. Data were collected using a semi-structured interview guide, audio recorded, and analyzed first inductively and then deductively using various theories and concepts that derive from organizational research. Our preliminary findings suggest t Our findings can contribute to further define actions needed for sustainable implementation of goal-oriented primary care. It gives insights in the dynamics between contextual variables and implementation efforts, hereby indicating towards those contextual variables that can be further shaped to facilitate the implementation of an innovation such as goal-oriented care. hat organizational theories can help understand the mechanism of change of implementation processes with a macro-level perspective. Institutional theories, contingency theories, resources dependency theories and others can expose the mechanism of change for an innovation such as goal-oriented care. Our findings can contribute to further define actions needed for sustainable implementation of goal-oriented primary care. It gives insights in the dynamics between contextual variables and implementation efforts, hereby indicating towards those contextual variables that can be further shaped to facilitate the implementation of an innovation such as goal-oriented care.Keywords: goal-oriented care, implementation processes, organizational theories, person-centered care, implementation research
Procedia PDF Downloads 81516 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study
Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari
Abstract:
The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two well known scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a case-study. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means of TRNSYS, which allows to simulate the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With TRNSYS it is possible to obtain quite accurate and reliable results, that allow to identify effective combinations building-HVAC system. The second step has consisted of using output data obtained with TRNSYS as input to the calculation model RETScreen, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing to determine the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while RETScreen provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model RETScreen for different design options. For example, the analysis performed on the building, taken as a case study, found that the most suitable plant solution, taking into account technical, economic and environmental aspects, is the one based on a CCHP system (Combined Cooling, Heating, and Power) using an internal combustion engine.Keywords: energy, system, building, cooling, electrical
Procedia PDF Downloads 573515 Performing Arts and Performance Art: Interspaces and Flexible Transitions
Authors: Helmi Vent
Abstract:
This four-year artistic research project has set the goal of exploring the adaptable transitions within the realms between the two genres. This paper will single out one research question from the entire project for its focus, namely on how and under what circumstances such transitions between a reinterpretation and a new creation can take place during the performative process. The film documentation that accompany the project were produced at the Mozarteum University in Salzburg, Austria, as well as on diverse everyday stages at various locations. The model institution that hosted the project is the LIA – Lab Inter Arts, under the direction of Helmi Vent. LIA combines artistic research with performative applications. The project participants are students from various artistic fields of study. The film documentation forms a central platform for the entire project. They function as audiovisual records of performative performative origins and development processes, while serving as the basis for analysis and evaluation, including the self-evaluation of the recorded material and they also serve as illustrative and discussion material in relation to the topic of this paper. Regarding the “interspaces” and variable 'transitions': The performing arts in the western cultures generally orient themselves toward existing original compositions – most often in the interconnected fields of music, dance and theater – with the goal of reinterpreting and rehearsing a pre-existing score, choreographed work, libretto or script and presenting that respective piece to an audience. The essential tool in this reinterpretation process is generally the artistic ‘language’ performers learn over the course of their main studies. Thus, speaking is combined with singing, playing an instrument is combined with dancing, or with pictorial or sculpturally formed works, in addition to many other variations. If the Performing Arts would rid themselves of their designations from time to time and initially follow the emerging, diffusely gliding transitions into the unknown, the artistic language the performer has learned then becomes a creative resource. The illustrative film excerpts depicting the realms between Performing Arts and Performance Art present insights into the ways the project participants embrace unknown and explorative processes, thus allowing the genesis of new performative designs or concepts to be invented between the participants’ acquired cultural and artistic skills and their own creations – according to their own ideas and issues, sometimes with their direct involvement, fragmentary, provisional, left as a rough draft or fully composed. All in all, it is an evolutionary process and its key parameters cannot be distilled down to their essence. Rather, they stem from a subtle inner perception, from deep-seated emotions, imaginations, and non-discursive decisions, which ultimately result in an artistic statement rising to the visible and audible surface. Within these realms between performing arts and performance art and their extremely flexible transitions, exceptional opportunities can be found to grasp and realise art itself as a research process.Keywords: art as research method, Lab Inter Arts ( LIA ), performing arts, performance art
Procedia PDF Downloads 270514 Strategic Interventions to Address Health Workforce and Current Disease Trends, Nakuru, Kenya
Authors: Paul Moses Ndegwa, Teresia Kabucho, Lucy Wanjiru, Esther Wanjiru, Brian Githaiga, Jecinta Wambui
Abstract:
Health outcome has improved in the country since 2013 following the adoption of the new constitution in Kenya with devolved governance with administration and health planning functions transferred to county governments. 2018-2022 development agenda prioritized universal healthcare coverage, food security, and nutrition, however, the emergence of Covid-19 and the increase of non-communicable diseases pose a challenge and constrain in an already overwhelmed health system. A study was conducted July-November 2021 to establish key challenges in achieving universal healthcare coverage within the county and best practices for improved non-communicable disease control. 14 health workers ranging from nurses, doctors, public health officers, clinical officers, and pharmaceutical technologists were purposely engaged to provide critical information through questionnaires by a trained duo observing ethical procedures on confidentiality. Data analysis. Communicable diseases are major causes of morbidity and mortality. Non-communicable diseases contribute to approximately 39% of deaths. More than 45% of the population does not have access to safe drinking water. Study noted geographic inequality with respect to distribution and use of health resources including competing non-health priorities. 56% of health workers are nurses, 13% clinical officers, 7% doctors, 9%public health workers, 2% are pharmaceutical technologists. Poor-quality data limits the validity of disease-burdened estimates and research activities. Risk factors include unsafe water, sanitation, hand washing, unsafe sex, and malnutrition. Key challenge in achieving universal healthcare coverage is the rise in the relative contribution of non-communicable diseases. Improve targeted disease control with effective and equitable resource allocation. Develop high infectious disease control mechanisms. Improvement of quality data for decision making. Strengthen electronic data-capture systems. Increase investments in the health workforce to improve health service provision and achievement of universal health coverage. Create a favorable environment to retain health workers. Fill in staffing gaps resulting in shortages of doctors (7%). Develop a multi-sectional approach to health workforce planning and management. Need to invest in mechanisms that generate contextual evidence on current and future health workforce needs. Ensure retention of qualified, skilled, and motivated health workforce. Deliver integrated people-centered health services.Keywords: multi-sectional approach, equity, people-centered, health workforce retention
Procedia PDF Downloads 113513 Evaluation of Cryoablation Procedures in Treatment of Atrial Fibrillation from 3 Years' Experiences in a Single Heart Center
Authors: J. Yan, B. Pieper, B. Bucsky, B. Nasseri, S. Klotz, H. H. Sievers, S. Mohamed
Abstract:
Cryoablation is evermore applied for interventional treatment of paroxysmal (PAAF) or persistent atrial fibrillation (PEAF). In the cardiac surgery, this procedure is often combined with coronary arterial bypass graft (CABG) and valve operations. Three different methods are feasible in this sense in respect to practicing extents and mechanisms such as lone left atrial cryoablation, Cox-Maze IV and III in our heart center. 415 patients (68 ± 0.8ys, male 68.2%) with predisposed atrial fibrillation who initially required either coronary or valve operations were enrolled and divided into 3 matched groups according to deployed procedures: CryoLA-group (cryoablation of lone left atrium, n=94); Cox-Maze-IV-group (n=93) and Cox-Maze-III-group (n=8). All patients additionally received closure of the left atrial appendage (LAA) and regularly underwent three-year ambulant follow-up assessments (3, 6, 9, 12, 18, 24, 30 and 36 months). Burdens of atrial fibrillation were assessed directly by means of cardiac monitor (Reveal XT, Medtronic) or of 3-day Holter electrocardiogram. Herewith, attacks frequencies of AF and their circadian patterns were systemically analyzed. Furthermore, anticoagulants and regular rate-/rhythm-controlling medications were evaluated and listed in terms of anti-rate and anti-rhythm regimens. Concerning PAAF treatment, Cox Maze IV procedure provided therapeutically acceptable effect as lone left atrium (LA) cryoablation did (5.25 ± 5.25% vs. 10.39 ± 9.96% AF-burden, p > 0.05). Interestingly, Cox Maze III method presented a better short-term effect in the PEAF therapy in comparison to lone cryoablation of LA and Cox Maze IV (0.25 ± 0.23% vs. 15.31 ± 5.99% and 9.10 ± 3.73% AF-burden within the first year, p < 0.05). But this therapeutic advantage went lost during ongoing follow-ups (26.65 ± 24.50% vs. 8.33 ± 8.06% and 15.73 ± 5.88% in 3rd follow-up year). In this way, lone LA-cryoablation established its antiarrhythmic efficacy and 69.5% patients were released from the Vit-K-antagonists, while Cox Maze IV liberated 67.2% patients from continuous anticoagulant medication. The AF-recurrences mostly performed such attacks property as less than 60min duration for all 3 procedures (p > 0.05). In the sense of the circadian distribution of the recurrence attacks, weighted by ongoing follow-ups, lone LA cryoablation achieved and stabilized the antiarrhythmic effects over time, which was especially observed in the treatment of PEAF, while Cox Maze IV and III had their antiarrhythmic effects weakened progressively. This phenomenon was likewise evaluable in the therapy of circadian rhythm of reverting AF-attacks. Furthermore, the strategy of rate control was much more often applied to support and maintain therapeutic successes obtained than the one of rhythm control. Derived from experiences in our heart center, lone LA cryoablation presented equivalent effects in the treatment of AF in comparison to Cox Maze IV and III procedures. These therapeutic successes were especially investigable in the patients suffering from persistent AF (PEAF). Additional supportive strategies such as rate control regime should be initialized and implemented to improve the therapeutic effects of the cryoablations according to appropriate criteria.Keywords: AF-burden, atrial fibrillation, cardiac monitor, COX MAZE, cryoablation, Holter, LAA
Procedia PDF Downloads 204512 Reconstruction of Signal in Plastic Scintillator of PET Using Tikhonov Regularization
Authors: L. Raczynski, P. Moskal, P. Kowalski, W. Wislicki, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, L. Kaplon, A. Kochanowski, G. Korcyl, J. Kowal, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, Z. Rudy, O. Rundel, P. Salabura, N.G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, M. Zielinski, N. Zon
Abstract:
The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The J-PET detector improves the TOF resolution due to the use of fast plastic scintillators. Since registration of the waveform of signals with duration times of few nanoseconds is not feasible, a novel front-end electronics allowing for sampling in a voltage domain at four thresholds was developed. To take fully advantage of these fast signals a novel scheme of recovery of the waveform of the signal, based on ideas from the Tikhonov regularization (TR) and Compressive Sensing methods, is presented. The prior distribution of sparse representation is evaluated based on the linear transformation of the training set of waveform of the signals by using the Principal Component Analysis (PCA) decomposition. Beside the advantage of including the additional information from training signals, a further benefit of the TR approach is that the problem of signal recovery has an optimal solution which can be determined explicitly. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This step is crucial to introduce and prove the formula for calculations of the signal recovery error. It has been proven that an average recovery error is approximately inversely proportional to the number of samples at voltage levels. The method is tested using signals registered by means of the single detection module of the J-PET detector built out from the 30 cm long BC-420 plastic scintillator strip. It is demonstrated that the experimental and theoretical functions describing the recovery errors in the J-PET scenario are largely consistent. The specificity and limitations of the signal recovery method in this application are discussed. It is shown that the PCA basis offers high level of information compression and an accurate recovery with just eight samples, from four voltage levels, for each signal waveform. Moreover, it is demonstrated that using the recovered waveform of the signals, instead of samples at four voltage levels alone, improves the spatial resolution of the hit position reconstruction. The experiment shows that spatial resolution evaluated based on information from four voltage levels, without a recovery of the waveform of the signal, is equal to 1.05 cm. After the application of an information from four voltage levels to the recovery of the signal waveform, the spatial resolution is improved to 0.94 cm. Moreover, the obtained result is only slightly worse than the one evaluated using the original raw-signal. The spatial resolution calculated under these conditions is equal to 0.93 cm. It is very important information since, limiting the number of threshold levels in the electronic devices to four, leads to significant reduction of the overall cost of the scanner. The developed recovery scheme is general and may be incorporated in any other investigation where a prior knowledge about the signals of interest may be utilized.Keywords: plastic scintillators, positron emission tomography, statistical analysis, tikhonov regularization
Procedia PDF Downloads 445511 Functional Switching of Serratia marcescens Transcriptional Regulator from Activator to Inhibitor of Quorum Sensing by Exogenous Addition
Authors: Norihiro Kato, Yuriko Takayama
Abstract:
Some gram-negative bacteria enable the simultaneous activation of gene expression involved in N-acylhomoserine lactone (AHL) dependent cell-to-cell communication system. Such regulatory system for the bacterial group behavior is termed as quorum sensing (QS) because a diffusible AHL signal can accumulate around the cell during the increase of the cell density and trigger activation of the sequential QS process. By blocking the QS, the expression of diverse genes related to infection, antibiotic production, and biofilm formation is inhibited. Conditioning of QS by regulation of the DNA-receptor-AHL interaction is a potential target for enhancing host defenses against pathogenicity. We focused on engineered application of transcriptional regulator SpnR produced in opportunistic human pathogen Serratia marcescens. The SpnR can interact with AHL signals at an N-terminal domain and also with a promoter region of a QS target gene at a C-terminal domain. As the initial process of the QS activation, the SpnR forms a complex with the AHL to enhance the expression of pig cluster; the SpnR normally acts as an activator for the expression of the QS-dependent gene. In this research, we attempt to artificially control QS by changing the role of SpnR. The QS-dependent prodigiosin production is expected to inhibit by externally added SpnR in the culture broth of AS-1 strain because the AHL concentration was kept below the threshold by AHL-SpnR complex formation. Maltose-binding protein (MBP)-tagged SpnR (MBP-SpnR) was overexpressed in Escherichia coli and purified using an affinity chromatography equipped with an amylose resin column. The specific interaction between AHL and MBP-SpnR was demonstrated by quartz crystal microbalance (QCM) sensor. AHL with amino end-group was coupled with COOH-terminated self-assembled monolayer prepared on a gold electrode of 27-MHz quartz crystal sensor using water-soluble carbodiimide. After the injection of MBP-SpnR into a cup-type sensor cell filled with the buffer solution, time course of resonant frequency change (ΔFs) was determined. A decrease of ΔFs clearly showed the uptake of MBP-SpnR onto the AHL-immobilized electrode. Furthermore, no binding affinity was observed after the heat-inactivation of MBP-SpnR at 80ºC. These results suggest that MBP-SpnR possesses a specific affinity for AHL. MBP-SpnR was added to the culture medium as an AHL trap to study inhibitory effects on intracellularly accumulated prodigiosin. With approximately 2 µM MBP-SpnR, the amount of prodigiosin induced was half that of the control without any additives. In conclusion, the function of SpnR could be switched by adding it to the cell culture. Exogenously added MBP-SpnR possesses high affinity for AHL derived from cells and acts as an inhibitor of AHL-mediated QS.Keywords: intracellular signaling, microbial biotechnology, quorum sensing, transcriptional regulator
Procedia PDF Downloads 267510 Spatial and Temporal Variability of Meteorological Drought Including Atmospheric Circulation in Central Europe
Authors: Andrzej Wałęga, Marta Cebulska, Agnieszka Ziernicka-Wojtaszek, Wojciech Młocek, Agnieszka Wałęga, Tommaso Caloiero
Abstract:
Drought is one of the natural phenomena influencing many aspects of human activities like food production, agriculture, industry, and the ecological conditions of the environment. In the area of the Polish Carpathians, there are periods with a deficit of rainwater and an increasing frequency in dry months, especially in the cold half of the year. The aim of this work is a spatial and temporal analysis of drought, expressed as SPI in a heterogenous area of the Polish Carpathian and of the highland Region in the Central part of Europe based on long-term precipitation data. Also, to our best knowledge, for the first time in this work, drought characteristics analyzed via the SPI were discussed based on the atmospheric circulation calendar. The study region is the Upper Vistula Basin, located in the southern and south-eastern part of Poland. In this work, monthly precipitation from 56 rainfall stations was analysed from 1961 to 2022. The 3-, 6-, 9-, and 12-month Standardized Precipitation Index (SPI) were used as indicators of meteorological drought. For the 3-month SPI, the main climatic mechanisms determining extreme droughts were defined based on the calendar of synoptic circulations. The Mann-Kendall test was used to detect the trend of extreme droughts. Statistically significant trends of SPI were observed on 52.7% of all analyzed stations, and in most cases, a positive trend was observed. Statistically significant trends were more frequently observed in stations located in the western part of the analyzed region. Long-term droughts, represented by the 12-month SPI, occurred in all stations but not in all years. Short-term droughts (3-month SPI) were most frequent in the winter season, 6 and 9-month SPI in winter and spring, and 12-month SPI in winter and autumn, respectively. The spatial distribution of drought was highly diverse. The most intensive drought occurred in 1984, with the 6-month SPI covering 98% of the analyzed region and the 9 and 12-month SPI covering 90% of the entire region. Droughts exhibit a seasonal pattern, with a dominant 10-year periodicity for all analyzed variants of SPI. Additionally, Fourier analysis revealed a 2-year periodicity for the 3-, 6-, and 9-month SPI and a 31-year periodicity for the 12-month SPI. The results provide insights into the typical climatic conditions in Poland, with strong seasonality in precipitation. The study highlighted that short-term extreme droughts, represented by the 3-month SPI, are often caused by anticyclonic situations with high-pressure wedges Ka and Wa, and anticyclonic West as observed in 52.3% of cases. These findings are crucial for understanding the spatial and temporal variability of short and long-term extreme droughts in Central Europe, particularly for the agriculture sector dominant in the northern part of the analyzed region, where drought frequency is highest.Keywords: atmospheric circulation, drought, precipitation, SPI, the Upper Vistula Basin
Procedia PDF Downloads 74509 Inflation and Deflation of Aircraft's Tire with Intelligent Tire Pressure Regulation System
Authors: Masoud Mirzaee, Ghobad Behzadi Pour
Abstract:
An aircraft tire is designed to tolerate extremely heavy loads for a short duration. The number of tires increases with the weight of the aircraft, as it is needed to be distributed more evenly. Generally, aircraft tires work at high pressure, up to 200 psi (14 bar; 1,400 kPa) for airliners and higher for business jets. Tire assemblies for most aircraft categories provide a recommendation of compressed nitrogen that supports the aircraft’s weight on the ground, including a mechanism for controlling the aircraft during taxi, takeoff; landing; and traction for braking. Accurate tire pressure is a key factor that enables tire assemblies to perform reliably under high static and dynamic loads. Concerning ambient temperature change, considering the condition in which the temperature between the origin and destination airport was different, tire pressure should be adjusted and inflated to the specified operating pressure at the colder airport. This adjustment superseding the normal tire over an inflation limit of 5 percent at constant ambient temperature is required because the inflation pressure remains constant to support the load of a specified aircraft configuration. On the other hand, without this adjustment, a tire assembly would be significantly under/over-inflated at the destination. Due to an increase of human errors in the aviation industry, exorbitant costs are imposed on the airlines for providing consumable parts such as aircraft tires. The existence of an intelligent system to adjust the aircraft tire pressure based on weight, load, temperature, and weather conditions of origin and destination airports, could have a significant effect on reducing the aircraft maintenance costs, aircraft fuel and further improving the environmental issues related to the air pollution. An intelligent tire pressure regulation system (ITPRS) contains a processing computer, a nitrogen bottle with 1800 psi, and distribution lines. Nitrogen bottle’s inlet and outlet valves are installed in the main wheel landing gear’s area and are connected through nitrogen lines to main wheels and nose wheels assy. Controlling and monitoring of nitrogen will be performed by a computer, which is adjusted according to the calculations of received parameters, including the temperature of origin and destination airport, the weight of cargo loads and passengers, fuel quantity, and wind direction. Correct tire inflation and deflation are essential in assuring that tires can withstand the centrifugal forces and heat of normal operations, with an adequate margin of safety for unusual operating conditions such as rejected takeoff and hard landings. ITPRS will increase the performance of the aircraft in all phases of takeoff, landing, and taxi. Moreover, this system will reduce human errors, consumption materials, and stresses imposed on the aircraft body.Keywords: avionic system, improve efficiency, ITPRS, human error, reduced cost, tire pressure
Procedia PDF Downloads 249508 The Joy of Painless Maternity: The Reproductive Policy of the Bolsheviks in the 1930s
Authors: Almira Sharafeeva
Abstract:
In the Soviet Union of the 1930s, motherhood was seen as a natural need of women. The masculine Bolshevik state did not see the emancipated woman as free from her maternal burden. In order to support the idea of "joyful motherhood," a medical discourse on the anesthesia of childbirth emerges. In March 1935 at the IX Congress of obstetricians and gynecologists the People's Commissar of Public Health of the RSFSR G.N. Kaminsky raised the issue of anesthesia of childbirth. It was also from that year that medical, literary and artistic editions with enviable frequency began to publish articles, studies devoted to the issue, the goal - to anesthetize all childbirths in the USSR - was proclaimed. These publications were often filled with anti-German and anti-capitalist propaganda, through which the advantages of socialism over Capitalism and Nazism were demonstrated. At congresses, in journals, and at institute meetings, doctors' discussions around obstetric anesthesia were accompanied by discussions of shortening the duration of the childbirth process, the prevention and prevention of disease, the admission of nurses to the procedure, and the proper behavior of women during the childbirth process. With the help of articles from medical periodicals of the 1930s., brochures, as well as documents from the funds of the Institute of Obstetrics and Gynecology of the Academy of Medical Sciences of the USSR (TsGANTD SPb) and the Department of Obstetrics and Gynecology of the NKZ USSR (GARF) in this paper we will show, how the advantages of the Soviet system and the socialist way of life were constructed through the problem of childbirth pain relief, and we will also show how childbirth pain relief in the USSR was related to the foreign policy situation and how projects of labor pain relief were related to the anti-abortion policy of the state. This study also attempts to answer the question of why anesthesia of childbirth in the USSR did not become widespread and how, through this medical procedure, the Soviet authorities tried to take control of a female function (childbirth) that was not available to men. Considering this subject from the perspective of gender studies and the social history of medicine, it is productive to use the term "biopolitics. Michel Foucault and Antonio Negri, wrote that biopolitics takes under its wing the control and management of hygiene, nutrition, fertility, sexuality, contraception. The central issue of biopolitics is population reproduction. It includes strategies for intervening in collective existence in the name of life and health, ways of subjectivation by which individuals are forced to work on themselves. The Soviet state, through intervention in the reproductive lives of its citizens, sought to realize its goals of population growth, which was necessary to demonstrate the benefits of living in the Soviet Union and to train a pool of builders of socialism. The woman's body was seen as the object over which the socialist experiment of reproductive policy was being conducted.Keywords: labor anesthesia, biopolitics of stalinism, childbirth pain relief, reproductive policy
Procedia PDF Downloads 70507 Ascidian Styela rustica Proteins’ Structural Domains Predicted to Participate in the Tunic Formation
Authors: M. I. Tyletc, O. I. Podgornya, T. G. Shaposhnikova, S. V. Shabelnikov, A. G. Mittenberg, M. A. Daugavet
Abstract:
Ascidiacea is the most numerous class of the Tunicata subtype. These chordates' distinctive feature of the anatomical structure is a tunic consisting of cellulose fibrils, protein molecules, and single cells. The mechanisms of the tunic formation are not known in detail; tunic formation could be used as the model system for studying the interaction of cells with the extracellular matrix. Our model species is the ascidian Styela rustica, which is prevalent in benthic communities of the White Sea. As previously shown, the tunic formation involves morula blood cells, which contain the major 48 kDa protein p48. P48 participation in the tunic formation was proved using antibodies against the protein. The nature of the protein and its function remains unknown. The current research aims to determine the amino acid sequence of p48, as well as to clarify its role in the tunic formation. The peptides that make up the p48 amino acid sequence were determined by mass spectrometry. A search for peptides in protein sequence databases identified sequences homologous to p48 in Styela clava, Styela plicata, and Styela canopus. Based on sequence alignment, their level of similarity was determined as 81-87%. The correspondent sequence of ascidian Styela canopus was used for further analysis. The Styela rustica p48 sequence begins with a signal peptide, which could indicate that the protein is secretory. This is consistent with experimentally obtained data: the contents of morula cells secreted in the tunic matrix. The isoelectric point of p48 is 9.77, which is consistent with the experimental results of acid electrophoresis of morula cell proteins. However, the molecular weight of the amino acid sequence of ascidian Styela canopus is 103 kDa, so p48 of Styela rustica is a shorter homolog. The search for conservative functional domains revealed the presence of two Ca-binding EGF-like domains, thrombospondin (TSP1) and tyrosinase domains. The p48 peptides determined by mass spectrometry fall into the region of the sequence corresponding to the last two domains and have amino acid substitutions as compared to Styela canopus homolog. The tyrosinase domain (pfam00264) is known to be part of the phenoloxidase enzyme, which participates in melanization processes and the immune response. The thrombospondin domain (smart00209) interacts with a wide range of proteins, and is involved in several biological processes, including coagulation, cell adhesion, modulation of intercellular and cell-matrix interactions, angiogenesis, wound healing and tissue remodeling. It can be assumed that the tyrosinase domain in p48 plays the role of the phenoloxidase enzyme, and TSP1 provides a link between the extracellular matrix and cell surface receptors, and may also be responsible for the repair of the tunic. The results obtained are consistent with experimental data on p48. The domain organization of protein suggests that p48 is an enzyme involved in the tunic tunning and is an important regulator of the organization of the extracellular matrix.Keywords: ascidian, p48, thrombospondin, tyrosinase, tunic, tunning
Procedia PDF Downloads 115506 Achieving Sustainable Agriculture with Treated Municipal Wastewater
Authors: Reshu Yadav, Himanshu Joshi, S. K. Tripathi
Abstract:
Fresh water is a scarce resource which is essential for humans and ecosystems, but its distribution is uneven. Agricultural production accounts for 70% of all surface water supplies. It is projected that against the expansion in the area equipped for irrigation by 0.6% per year, the global potential irrigation water demand would rise by 9.5% during 2021-25. This would, on one hand, have to compete against the sharply rising urban water demand. On the other, it would also have to face the fear of climate change, as temperatures rise and crop yields could drop from 10-30% in many large areas. The huge demand for irrigation combined with fresh water scarcity encourages to explore the reuse of wastewater as a resource. However, the use of such wastewater is often linked to the safety issues when used non judiciously or with poor safeguards while irrigating food crops. Paddy is one of the major crops globally and amongst the most important in South Asia and Africa. In many parts of the world, use of municipal wastewater has been promoted as a viable option in this regard. In developing and fast growing countries like India, regularly increasing wastewater generation rates may allow this option to be considered quite seriously. In view of this, a pilot field study was conducted at the Jagjeetpur Municipal Sewage treatment plant situated in the Haridwar town of Uttarakhand state, India. The objectives of the present study were to study the effect of treated wastewater on the production of various paddy varieties (Sharbati, PR-114, PB-1, Menaka, PB1121 and PB 1509) and emission of GHG gases (CO2, CH4 and N2O) as compared to the same varieties grown in the control plots irrigated with fresh water. Of late, the concept of water footprint assessment has emerged, which explains enumeration of various types of water footprints of an agricultural entity from its production to processing stages. Paddy, the most water demanding staple crop of Uttarakhand state, displayed a high green water footprint value of 2966.538 m3/ton. Most of the wastewater irrigated varieties displayed upto 6% increase in production, except Menaka and PB-1121, which showed a reduction in production (6% and 3% respectively), due to pest and insect infestation. The treated wastewater was observed to be rich in Nitrogen (55.94 mg/ml Nitrate), Phosphorus (54.24 mg/ml) and Potassium (9.78 mg/ml), thus rejuvenating the soil quality and not requiring any external nutritional supplements. Percentage increase of GHG gases on irrigation with treated municipal waste water as compared to control plots was observed as 0.4% - 8.6% (CH4), 1.1% - 9.2% (CO2), and 0.07% - 5.8% (N2O). The variety, Sharbati, displayed maximum production (5.5 ton/ha) and emerged as the most resistant variety against pests and insects. The emission values of CH4 ,CO2 and N2O were 729.31 mg/m2/d, 322.10 mg/m2/d and 400.21 mg/m2/d in water stagnant condition. This study highlighted a successful possibility of reuse of wastewater for non-potable purposes offering the potential for exploiting this resource that can replace or reduce existing use of fresh water sources in agricultural sector.Keywords: greenhouse gases, nutrients, water footprint, wastewater irrigation
Procedia PDF Downloads 321