Search results for: wound rotor induction machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4069

Search results for: wound rotor induction machine

3199 Automatic Aggregation and Embedding of Microservices for Optimized Deployments

Authors: Pablo Chico De Guzman, Cesar Sanchez

Abstract:

Microservices are a software development methodology in which applications are built by composing a set of independently deploy-able, small, modular services. Each service runs a unique process and it gets instantiated and deployed in one or more machines (we assume that different microservices are deployed into different machines). Microservices are becoming the de facto standard for developing distributed cloud applications due to their reduced release cycles. In principle, the responsibility of a microservice can be as simple as implementing a single function, which can lead to the following issues: - Resource fragmentation due to the virtual machine boundary. - Poor communication performance between microservices. Two composition techniques can be used to optimize resource fragmentation and communication performance: aggregation and embedding of microservices. Aggregation allows the deployment of a set of microservices on the same machine using a proxy server. Aggregation helps to reduce resource fragmentation, and is particularly useful when the aggregated services have a similar scalability behavior. Embedding deals with communication performance by deploying on the same virtual machine those microservices that require a communication channel (localhost bandwidth is reported to be about 40 times faster than cloud vendor local networks and it offers better reliability). Embedding can also reduce dependencies on load balancer services since the communication takes place on a single virtual machine. For example, assume that microservice A has two instances, a1 and a2, and it communicates with microservice B, which also has two instances, b1 and b2. One embedding can deploy a1 and b1 on machine m1, and a2 and b2 are deployed on a different machine m2. This deployment configuration allows each pair (a1-b1), (a2-b2) to communicate using the localhost interface without the need of a load balancer between microservices A and B. Aggregation and embedding techniques are complex since different microservices might have incompatible runtime dependencies which forbid them from being installed on the same machine. There is also a security concern since the attack surface between microservices can be larger. Luckily, container technology allows to run several processes on the same machine in an isolated manner, solving the incompatibility of running dependencies and the previous security concern, thus greatly simplifying aggregation/embedding implementations by just deploying a microservice container on the same machine as the aggregated/embedded microservice container. Therefore, a wide variety of deployment configurations can be described by combining aggregation and embedding to create an efficient and robust microservice architecture. This paper presents a formal method that receives a declarative definition of a microservice architecture and proposes different optimized deployment configurations by aggregating/embedding microservices. The first prototype is based on i2kit, a deployment tool also submitted to ICWS 2018. The proposed prototype optimizes the following parameters: network/system performance, resource usage, resource costs and failure tolerance.

Keywords: aggregation, deployment, embedding, resource allocation

Procedia PDF Downloads 202
3198 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection

Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang

Abstract:

To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detections is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15um/10m and the accuracy of the machine tool is significant improved.

Keywords: thermal expansion error of grating scale, error compensation, machine tools, integral method

Procedia PDF Downloads 363
3197 Comparison of Monte Carlo Simulations and Experimental Results for the Measurement of Complex DNA Damage Induced by Ionizing Radiations of Different Quality

Authors: Ifigeneia V. Mavragani, Zacharenia Nikitaki, George Kalantzis, George Iliakis, Alexandros G. Georgakilas

Abstract:

Complex DNA damage consisting of a combination of DNA lesions, such as Double Strand Breaks (DSBs) and non-DSB base lesions occurring in a small volume is considered as one of the most important biological endpoints regarding ionizing radiation (IR) exposure. Strong theoretical (Monte Carlo simulations) and experimental evidence suggests an increment of the complexity of DNA damage and therefore repair resistance with increasing linear energy transfer (LET). Experimental detection of complex (clustered) DNA damage is often associated with technical deficiencies limiting its measurement, especially in cellular or tissue systems. Our groups have recently made significant improvements towards the identification of key parameters relating to the efficient detection of complex DSBs and non-DSBs in human cellular systems exposed to IR of varying quality (γ-, X-rays 0.3-1 keV/μm, α-particles 116 keV/μm and 36Ar ions 270 keV/μm). The induction and processing of DSB and non-DSB-oxidative clusters were measured using adaptations of immunofluorescence (γH2AX or 53PB1 foci staining as DSB probes and human repair enzymes OGG1 or APE1 as probes for oxidized purines and abasic sites respectively). In the current study, Relative Biological Effectiveness (RBE) values for DSB and non-DSB induction have been measured in different human normal (FEP18-11-T1) and cancerous cell lines (MCF7, HepG2, A549, MO59K/J). The experimental results are compared to simulation data obtained using a validated microdosimetric fast Monte Carlo DNA Damage Simulation code (MCDS). Moreover, this simulation approach is implemented in two realistic clinical cases, i.e. prostate cancer treatment using X-rays generated by a linear accelerator and a pediatric osteosarcoma case using a 200.6 MeV proton pencil beam. RBE values for complex DNA damage induction are calculated for the tumor areas. These results reveal a disparity between theory and experiment and underline the necessity for implementing highly precise and more efficient experimental and simulation approaches.

Keywords: complex DNA damage, DNA damage simulation, protons, radiotherapy

Procedia PDF Downloads 324
3196 Regression Model Evaluation on Depth Camera Data for Gaze Estimation

Authors: James Purnama, Riri Fitri Sari

Abstract:

We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.

Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python

Procedia PDF Downloads 536
3195 In vitro and vivo Studies for Assessing the Anti-Proliferative, Anti-Migration and Apoptotic Activity of A. squamosa L. Leaves Extract

Authors: Rawan Al-Nemari, Abdulrahman Al-Senaidy, Abdelhabib Semlali

Abstract:

Background and objectives: The most common cause of death in women worldwide is breast cancer. Regarding all chemotherapy disadvantages and side effects, it’s becoming necessary to identify natural products that target cancer cells with lesser harmful side effects on non-targeted cells and biological environment. Different parts of A. squamosa L., commonly known as custard apple, show varied therapeutic effects. The objective of this study is to investigate in vitro and in vivo, the anti-cancer activity of A. squamosa leaves extract. Methods: The physiological responses using MTT, nucleus staining, and LDH assays were used to evaluate cell survival and proliferation in both ER+ and ER- cells when they were exposed to extract. Monolayer wound repair assay was used to investigate the effect of extracts on cell migration. Apoptotic gene’s expression was investigated by real-time polymerase chain reaction. To study the effect of the extract on the size of tumor, breast cancer induced rats were used. Results: A. squamosa leaves extract showed high anti-proliferative and cytotoxicity effects against different breast cancer cell lines with high concentration, 100 ug/ml. The extracts have reduced the cells wound closure. Polymerase chain reaction revealed downregulation of Bcl-2 and upregulation of Bax. In breast cancer model animal developed in our laboratory, after 4 weeks treatment, treated groups have shown smaller tumor size in comparison with control group (n=4). Conclusion: These results suggest that A. squamosa leaves extract has anti-cancer activity against breast cancer in both in vitro and in vivo, and it may be developed as a potential novel agent to treat breast cancer.

Keywords: apoptosis, breast cancer, migration, proliferation

Procedia PDF Downloads 146
3194 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 52
3193 Use of Misoprostol in Pregnancy Termination in the Third Trimester: Oral versus Vaginal Route

Authors: Saimir Cenameri, Arjana Tereziu, Kastriot Dallaku

Abstract:

Introduction: Intra-uterine death is a common problem in obstetrical practice, and can lead to complications if left to resolve spontaneously. The cervix is unprepared, making inducing of labor difficult. Misoprostol is a synthetic prostaglandin E1 analogue, inexpensive, and is presented valid thanks to its ability to bring about changes in the cervix that lead to the induction of uterine contractions. Misoprostol is quickly absorbed when taken orally, resulting in high initial peak serum concentrations compared with the vaginal route. The vaginal misoprostol peak serum concentration is not as high and demonstrates a more gradual serum concentration decline. This is associated with many benefits for the patient; fast induction of labor; smaller doses; and fewer side effects (dose-depended). Mostly it has been used the regime of 50 μg/4 hour, with a high percentage of success and limited side effects. Objective: Evaluation of the efficiency of the use of oral and vaginal misoprostol in inducing labor, and comparing it with its use not by a previously defined protocol. Methods: Participants in this study included patients at U.H.O.G. 'Koco Gliozheni', Tirana from April 2004-July 2006, presenting with an indication for inducing labor in the third trimester for pregnancy termination. A total of 37 patients were randomly admitted for birth inducing activity, according to protocol (26), oral or vaginal protocol (10 vs. 16), and a control group (11), not subject to the protocol, was created. Oral or vaginal misoprostol was administered at a dose of 50 μg/4 h, while the fourth group participants were treated individually by the members of the medical staff. The main result of interest was the time between induction of labor to birth. Kruskal-Wallis test was used to compare the average age, parity, women weight, gestational age, Bishop's score, the size of the uterus and weight of the fetus between the four groups in the study. The Fisher exact test was used to compare day-stay and causes in the four groups. Mann-Whitney test was used to compare the time of the expulsion and the number of doses between oral and vaginal group. For all statistical tests used, the value of P ≤ 0.05 was considered statistically significant. Results: The four groups were comparable with regard to woman age and weight, parity, abortion indication, Bishop's score, fetal weight and the gestational age. There was significant difference in the percentage of deliveries within 24 hours. The average time from induction to birth per route (vaginal, oral, according to protocol and not according to the protocol) was respectively; 10.43h; 21.10h; 15.77h, 21.57h. There was no difference in maternal complications in groups. Conclusions: Use of vaginal misoprostol for inducing labor in the third trimester for termination of pregnancy appears to be more effective than the oral route, and even more to uses not according to the protocols approved before, where complications are greater and unjustified.

Keywords: inducing labor, misoprostol, pregnancy termination, third trimester

Procedia PDF Downloads 184
3192 Comparing Deep Architectures for Selecting Optimal Machine Translation

Authors: Despoina Mouratidis, Katia Lida Kermanidis

Abstract:

Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.

Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification

Procedia PDF Downloads 130
3191 Improvement of Microstructure, Wear and Mechanical Properties of Modified G38NiCrMo8-4-4 Steel Used in Mining Industry

Authors: Mustafa Col, Funda Gul Koc, Merve Yangaz, Eylem Subasi, Can Akbasoglu

Abstract:

G38NiCrMo8-4-4 steel is widely used in mining industries, machine parts, gears due to its high strength and toughness properties. In this study, microstructure, wear and mechanical properties of G38NiCrMo8-4-4 steel modified with boron used in the mining industry were investigated. For this purpose, cast materials were alloyed by melting in an induction furnace to include boron with the rates of 0 ppm, 15 ppm, and 50 ppm (wt.) and were formed in the dimensions of 150x200x150 mm by casting into the sand mould. Homogenization heat treatment was applied to the specimens at 1150˚C for 7 hours. Then all specimens were austenitized at 930˚C for 1 hour, quenched in the polymer solution and tempered at 650˚C for 1 hour. Microstructures of the specimens were investigated by using light microscope and SEM to determine the effect of boron and heat treatment conditions. Changes in microstructure properties and material hardness were obtained due to increasing boron content and heat treatment conditions after microstructure investigations and hardness tests. Wear tests were carried out using a pin-on-disc tribometer under dry sliding conditions. Charpy V notch impact test was performed to determine the toughness properties of the specimens. Fracture and worn surfaces were investigated with scanning electron microscope (SEM). The results show that boron element has a positive effect on the hardness and wear properties of G38NiCrMo8-4-4 steel.

Keywords: G38NiCrMo8-4-4 steel, boron, heat treatment, microstructure, wear, mechanical properties

Procedia PDF Downloads 195
3190 Assessment of Ultra-High Cycle Fatigue Behavior of EN-GJL-250 Cast Iron Using Ultrasonic Fatigue Testing Machine

Authors: Saeedeh Bakhtiari, Johannes Depessemier, Stijn Hertelé, Wim De Waele

Abstract:

High cycle fatigue comprising up to 107 load cycles has been the subject of many studies, and the behavior of many materials was recorded adequately in this regime. However, many applications involve larger numbers of load cycles during the lifetime of machine components. In this ultra-high cycle regime, other failure mechanisms play, and the concept of a fatigue endurance limit (assumed for materials such as steel) is often an oversimplification of reality. When machine component design demands a high geometrical complexity, cast iron grades become interesting candidate materials. Grey cast iron is known for its low cost, high compressive strength, and good damping properties. However, the ultra-high cycle fatigue behavior of cast iron is poorly documented. The current work focuses on the ultra-high cycle fatigue behavior of EN-GJL-250 (GG25) grey cast iron by developing an ultrasonic (20 kHz) fatigue testing system. Moreover, the testing machine is instrumented to measure the temperature and the displacement of  the specimen, and to control the temperature. The high resonance frequency allowed to assess the  behavior of the cast iron of interest within a matter of days for ultra-high numbers of cycles, and repeat the tests to quantify the natural scatter in fatigue resistance.

Keywords: GG25, cast iron, ultra-high cycle fatigue, ultrasonic test

Procedia PDF Downloads 173
3189 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.

Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine

Procedia PDF Downloads 5
3188 Machine Learning for Targeting of Conditional Cash Transfers: Improving the Effectiveness of Proxy Means Tests to Identify Future School Dropouts and the Poor

Authors: Cristian Crespo

Abstract:

Conditional cash transfers (CCTs) have been targeted towards the poor. Thus, their targeting assessments check whether these schemes have been allocated to low-income households or individuals. However, CCTs have more than one goal and target group. An additional goal of CCTs is to increase school enrolment. Hence, students at risk of dropping out of school also are a target group. This paper analyses whether one of the most common targeting mechanisms of CCTs, a proxy means test (PMT), is suitable to identify the poor and future school dropouts. The PMT is compared with alternative approaches that use the outputs of a predictive model of school dropout. This model was built using machine learning algorithms and rich administrative datasets from Chile. The paper shows that using machine learning outputs in conjunction with the PMT increases targeting effectiveness by identifying more students who are either poor or future dropouts. This joint targeting approach increases effectiveness in different scenarios except when the social valuation of the two target groups largely differs. In these cases, the most likely optimal approach is to solely adopt the targeting mechanism designed to find the highly valued group.

Keywords: conditional cash transfers, machine learning, poverty, proxy means tests, school dropout prediction, targeting

Procedia PDF Downloads 203
3187 The Type II Immune Response in Acute and Chronic Pancreatitis Mediated by STAT6 in Murine

Authors: Hager Elsheikh

Abstract:

Context: Pancreatitis is a condition characterized by inflammation in the pancreas, which can lead to serious complications if untreated. Both acute and chronic pancreatitis are associated with immune reactions and fibrosis, which further damage the pancreas. The type 2 immune response, primarily driven by alternative activated macrophages (AAMs), plays a significant role in the development of fibrosis. The IL-4/STAT6 pathway is a crucial signaling pathway for the activation of M2 macrophages. Pancreatic fibrosis is induced by dysregulated inflammatory responses and can result in the autodigestion and necrosis of pancreatic acinar cells. Research Aim: The aim of this study is to investigate the impact of STAT6, a crucial molecule in the IL-4/STAT6 pathway, on the severity and development of fibrosis during acute and chronic pancreatitis. The research also aims to understand the influence of the JAK/STAT6 signaling pathway on the balance between fibrosis and regeneration in the presence of different macrophage populations. Methodology: The research utilizes murine models of acute and chronic pancreatitis induced by cerulean injection. Animal models will be employed to study the effect of STAT6 knockout on disease severity and fibrosis. Isolation of acinar cells and cell culture techniques will be used to assess the impact of different macrophage populations on wound healing and regeneration. Various techniques such as PCR, histology, immunofluorescence, and transcriptomics will be employed to analyze the tissues and cells. Findings: The research aims to provide insights into the mechanisms underlying tissue fibrosis and wound healing during acute and chronic pancreatitis. By investigating the influence of the JAK/STAT6 signaling pathway and different macrophage populations, the study aims to understand their impact on tissue fibrosis, disease severity, and pancreatic regeneration. Theoretical Importance: This research contributes to our understanding of the role of specific signaling pathways, macrophage polarization, and the type 2 immune response in pancreatitis. It provides insights into the molecular mechanisms underlying tissue fibrosis and the potential for targeted therapies. Data Collection and Analysis Procedures: Data will be collected through the use of murine models, isolation and culture of acinar cells, and various experimental techniques such as PCR, histology, immunofluorescence, and transcriptomics. Data will be analyzed using appropriate statistical methods and techniques, and the findings will be interpreted in the context of the research objectives. Conclusion: By investigating the mechanisms of tissue fibrosis and wound healing during acute and chronic pancreatitis, this research aims to enhance our understanding of the disease progression and potential therapeutic targets. The findings have theoretical importance in expanding our knowledge of pancreatic fibrosis and the role of macrophage polarization in the context of the type 2 immune response.

Keywords: immunity in chronic diseases, pancreatitis, macrophages, immune response

Procedia PDF Downloads 33
3186 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management

Authors: Thewodros K. Geberemariam

Abstract:

The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.

Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space

Procedia PDF Downloads 150
3185 Design of Fuzzy Logic Based Global Power System Stabilizer for Dynamic Stability Enhancement in Multi-Machine Power System

Authors: N. P. Patidar, J. Earnest, Laxmikant Nagar, Akshay Sharma

Abstract:

This paper describes the diligence of a new input signal based fuzzy power system stabilizer in multi-machine power system. Instead of conventional input pairs like speed deviation (∆ω) and derivative of speed deviation i.e. acceleration (∆ω ̇) or speed deviation and accelerating power deviation of each machine, in this paper, deviation of active power through the tie line colligating two areas is used as one of the inputs to the fuzzy logic controller in concurrence with the speed deviation. Fuzzy Logic has the features of simple concept, easy effectuation, and computationally efficient. The advantage of this input is that, the same signal can be fed to each of the fuzzy logic controller connected with each machine. The simulated system comprises of two fully symmetrical areas coupled together by two 230 kV lines. Each area is equipped with two superposable generators rated 20 kV/900MVA and area-1 is exporting 413 MW to area-2. The effectiveness of the proposed control scheme has been assessed by performing small signal stability assessment and transient stability assessment. The proposed control scheme has been compared with a conventional PSS. Digital simulation is used to demonstrate the performance of fuzzy logic controller.

Keywords: Power System Stabilizer (PSS), small signal stability, inter-area oscillation, fuzzy logic controller, membership function, rule base

Procedia PDF Downloads 530
3184 Landing Performance Improvement Using Genetic Algorithm for Electric Vertical Take Off and Landing Aircrafts

Authors: Willian C. De Brito, Hernan D. C. Munoz, Erlan V. C. Carvalho, Helder L. C. De Oliveira

Abstract:

In order to improve commute time for small distance trips and relieve large cities traffic, a new transport category has been the subject of research and new designs worldwide. The air taxi travel market promises to change the way people live and commute by using the concept of vehicles with the ability to take-off and land vertically and to provide passenger’s transport equivalent to a car, with mobility within large cities and between cities. Today’s civil air transport remains costly and accounts for 2% of the man-made CO₂ emissions. Taking advantage of this scenario, many companies have developed their own Vertical Take Off and Landing (VTOL) design, seeking to meet comfort, safety, low cost and flight time requirements in a sustainable way. Thus, the use of green power supplies, especially batteries, and fully electric power plants is the most common choice for these arising aircrafts. However, it is still a challenge finding a feasible way to handle with the use of batteries rather than conventional petroleum-based fuels. The batteries are heavy and have an energy density still below from those of gasoline, diesel or kerosene. Therefore, despite all the clear advantages, all electric aircrafts (AEA) still have low flight autonomy and high operational cost, since the batteries must be recharged or replaced. In this sense, this paper addresses a way to optimize the energy consumption in a typical mission of an aerial taxi aircraft. The approach and landing procedure was chosen to be the subject of an optimization genetic algorithm, while final programming can be adapted for take-off and flight level changes as well. A real tilt rotor aircraft with fully electric power plant data was used to fit the derived dynamic equations of motion. Although a tilt rotor design is used as a proof of concept, it is possible to change the optimization to be applied for other design concepts, even those with independent motors for hover and cruise flight phases. For a given trajectory, the best set of control variables are calculated to provide the time history response for aircraft´s attitude, rotors RPM and thrust direction (or vertical and horizontal thrust, for independent motors designs) that, if followed, results in the minimum electric power consumption through that landing path. Safety, comfort and design constraints are assumed to give representativeness to the solution. Results are highly dependent on these constraints. For the tested cases, performance improvement ranged from 5 to 10% changing initial airspeed, altitude, flight path angle, and attitude.

Keywords: air taxi travel, all electric aircraft, batteries, energy consumption, genetic algorithm, landing performance, optimization, performance improvement, tilt rotor, VTOL design

Procedia PDF Downloads 113
3183 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation

Authors: Giuseppina Settanni, Antonio Panarese, Raffaele Vaira, Maurizio Galiano

Abstract:

Nowdays, artificial intelligence is used successfully in academia and industry for its ability to learn from a large amount of data. In particular, in recent years the use of machine learning algorithms in the field of e-commerce has spread worldwide. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a chatbot and a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. The recommendation systems perform the important function of automatically filtering and personalizing information, thus allowing to manage with the IT overload to which the user is exposed on a daily basis. Recently, international research has experimented with the use of machine learning technologies with the aim to increase the potential of traditional recommendation systems. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Artificial intelligence algorithms have been implemented and trained on historical data collected from user browsing. Finally, the testing phase allowed to validate the implemented model, which will be further tested by letting customers use it.

Keywords: machine learning, recommender system, software platform, support vector machine

Procedia PDF Downloads 133
3182 Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance

Authors: Yash Bingi, Yiqiao Yin

Abstract:

Reduction of child mortality is an ongoing struggle and a commonly used factor in determining progress in the medical field. The under-5 mortality number is around 5 million around the world, with many of the deaths being preventable. In light of this issue, Cardiotocograms (CTGs) have emerged as a leading tool to determine fetal health. By using ultrasound pulses and reading the responses, CTGs help healthcare professionals assess the overall health of the fetus to determine the risk of child mortality. However, interpreting the results of the CTGs is time-consuming and inefficient, especially in underdeveloped areas where an expert obstetrician is hard to come by. Using a support vector machine (SVM) and oversampling, this paper proposed a model that classifies fetal health with an accuracy of 99.59%. To further explain the CTG measurements, an algorithm based on Randomized Input Sampling for Explanation ((RISE) of Black-box Models was created, called Feature Alteration for explanation of Black Box Models (FAB), and compared the findings to Shapley Additive Explanations (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). This allows doctors and medical professionals to classify fetal health with high accuracy and determine which features were most influential in the process.

Keywords: machine learning, fetal health, gradient boosting, support vector machine, Shapley values, local interpretable model agnostic explanations

Procedia PDF Downloads 143
3181 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes

Authors: Stefan Papastefanou

Abstract:

Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.

Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability

Procedia PDF Downloads 107
3180 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population

Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath

Abstract:

Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.

Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics

Procedia PDF Downloads 160
3179 Hybrid Approach for Country’s Performance Evaluation

Authors: C. Slim

Abstract:

This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.

Keywords: Artificial Neural Networks (ANN), Support vector machine (SVM), Data Envelopment Analysis (DEA), Aggregations, indicators of performance

Procedia PDF Downloads 337
3178 Alternator Fault Detection Using Wigner-Ville Distribution

Authors: Amin Ranjbar, Amir Arsalan Jalili Zolfaghari, Amir Abolfazl Suratgar, Mehrdad Khajavi

Abstract:

This paper describes two stages of learning-based fault detection procedure in alternators. The procedure consists of three states of machine condition namely shortened brush, high impedance relay and maintaining a healthy condition in the alternator. The fault detection algorithm uses Wigner-Ville distribution as a feature extractor and also appropriate feature classifier. In this work, ANN (Artificial Neural Network) and also SVM (support vector machine) were compared to determine more suitable performance evaluated by the mean squared of errors criteria. Modules work together to detect possible faulty conditions of machines working. To test the method performance, a signal database is prepared by making different conditions on a laboratory setup. Therefore, it seems by implementing this method, satisfactory results are achieved.

Keywords: alternator, artificial neural network, support vector machine, time-frequency analysis, Wigner-Ville distribution

Procedia PDF Downloads 370
3177 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: decision tree, water quality, water pollution, machine learning

Procedia PDF Downloads 78
3176 Advancing Urban Sustainability through Data-Driven Machine Learning Solutions

Authors: Nasim Eslamirad, Mahdi Rasoulinezhad, Francesco De Luca, Sadok Ben Yahia, Kimmo Sakari Lylykangas, Francesco Pilla

Abstract:

With the ongoing urbanization, cities face increasing environmental challenges impacting human well-being. To tackle these issues, data-driven approaches in urban analysis have gained prominence, leveraging urban data to promote sustainability. Integrating Machine Learning techniques enables researchers to analyze and predict complex environmental phenomena like Urban Heat Island occurrences in urban areas. This paper demonstrates the implementation of data-driven approach and interpretable Machine Learning algorithms with interpretability techniques to conduct comprehensive data analyses for sustainable urban design. The developed framework and algorithms are demonstrated for Tallinn, Estonia to develop sustainable urban strategies to mitigate urban heat waves. Geospatial data, preprocessed and labeled with UHI levels, are used to train various ML models, with Logistic Regression emerging as the best-performing model based on evaluation metrics to derive a mathematical equation representing the area with UHI or without UHI effects, providing insights into UHI occurrences based on buildings and urban features. The derived formula highlights the importance of building volume, height, area, and shape length to create an urban environment with UHI impact. The data-driven approach and derived equation inform mitigation strategies and sustainable urban development in Tallinn and offer valuable guidance for other locations with varying climates.

Keywords: data-driven approach, machine learning transparent models, interpretable machine learning models, urban heat island effect

Procedia PDF Downloads 37
3175 Automatic Lead Qualification with Opinion Mining in Customer Relationship Management Projects

Authors: Victor Radich, Tania Basso, Regina Moraes

Abstract:

Lead qualification is one of the main procedures in Customer Relationship Management (CRM) projects. Its main goal is to identify potential consumers who have the ideal characteristics to establish a profitable and long-term relationship with a certain organization. Social networks can be an important source of data for identifying and qualifying leads since interest in specific products or services can be identified from the users’ expressed feelings of (dis)satisfaction. In this context, this work proposes the use of machine learning techniques and sentiment analysis as an extra step in the lead qualification process in order to improve it. In addition to machine learning models, sentiment analysis or opinion mining can be used to understand the evaluation that the user makes of a particular service, product, or brand. The results obtained so far have shown that it is possible to extract data from social networks and combine the techniques for a more complete classification.

Keywords: lead qualification, sentiment analysis, opinion mining, machine learning, CRM, lead scoring

Procedia PDF Downloads 84
3174 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions

Authors: Erva Akin

Abstract:

– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.

Keywords: artificial intelligence, copyright, data governance, machine learning

Procedia PDF Downloads 83
3173 Tracing Back the Bot Master

Authors: Sneha Leslie

Abstract:

The current situation in the cyber world is that crimes performed by Botnets are increasing and the masterminds (botmaster) are not detectable easily. The botmaster in the botnet compromises the legitimate host machines in the network and make them bots or zombies to initiate the cyber-attacks. This paper will focus on the live detection of the botmaster in the network by using the strong framework 'metasploit', when distributed denial of service (DDOS) attack is performed by the botnet. The affected victim machine will be continuously monitoring its incoming packets. Once the victim machine gets to know about the excessive count of packets from any IP, that particular IP is noted and details of the noted systems are gathered. Using the vulnerabilities present in the zombie machines (already compromised by botmaster), the victim machine will compromise them. By gaining access to the compromised systems, applications are run remotely. By analyzing the incoming packets of the zombies, the victim comes to know the address of the botmaster. This is an effective and a simple system where no specific features of communication protocol are considered.

Keywords: bonet, DDoS attack, network security, detection system, metasploit framework

Procedia PDF Downloads 252
3172 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction

Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé

Abstract:

One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.

Keywords: input variable disposition, machine learning, optimization, performance, time series prediction

Procedia PDF Downloads 109
3171 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes

Authors: L. S. Chathurika

Abstract:

Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.

Keywords: algorithm, classification, evaluation, features, testing, training

Procedia PDF Downloads 118
3170 Robust Fuzzy PID Stabilizer: Modified Shuffled Frog Leaping Algorithm

Authors: Oveis Abedinia, Noradin Ghadimi, Nasser Mikaeilvand, Roza Poursoleiman, Asghar Poorfaraj

Abstract:

In this paper a robust Fuzzy Proportional Integral Differential (PID) controller is applied to multi-machine power system based on Modified Shuffled Frog Leaping (MSFL) algorithm. This newly proposed controller is more efficient because it copes with oscillations and different operating points. In this strategy the gains of the PID controller is optimized using the proposed technique. The nonlinear problem is formulated as an optimization problem for wide ranges of operating conditions using the MSFL algorithm. The simulation results demonstrate the effectiveness, good robustness and validity of the proposed method through some performance indices such as ITAE and FD under wide ranges operating conditions in comparison with TS and GSA techniques. The single-machine infinite bus system and New England 10-unit 39-bus standard power system are employed to illustrate the performance of the proposed method.

Keywords: fuzzy PID, MSFL, multi-machine, low frequency oscillation

Procedia PDF Downloads 428