Search results for: vector space models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10612

Search results for: vector space models

9742 Classifications of Sleep Apnea (Obstructive, Central, Mixed) and Hypopnea Events Using Wavelet Packet Transform and Support Vector Machines (VSM)

Authors: Benghenia Hadj Abd El Kader

Abstract:

Sleep apnea events as obstructive, central, mixed or hypopnea are characterized by frequent breathing cessations or reduction in upper airflow during sleep. An advanced method for analyzing the patterning of biomedical signals to recognize obstructive sleep apnea and hypopnea is presented. In the aim to extract characteristic parameters, which will be used for classifying the above stated (obstructive, central, mixed) sleep apnea and hypopnea, the proposed method is based first on the analysis of polysomnography signals such as electrocardiogram signal (ECG) and electromyogram (EMG), then classification of the (obstructive, central, mixed) sleep apnea and hypopnea. The analysis is carried out using the wavelet transform technique in order to extract characteristic parameters whereas classification is carried out by applying the SVM (support vector machine) technique. The obtained results show good recognition rates using characteristic parameters.

Keywords: obstructive, central, mixed, sleep apnea, hypopnea, ECG, EMG, wavelet transform, SVM classifier

Procedia PDF Downloads 353
9741 Classification of Business Models of Italian Bancassurance by Balance Sheet Indicators

Authors: Andrea Bellucci, Martina Tofi

Abstract:

The aim of paper is to analyze business models of bancassurance in Italy for life business. The life insurance business is very developed in the Italian market and banks branches have 80% of the market share. Given its maturity, the life insurance market needs to consolidate its organizational form to allow for the development of non-life business, which nowadays collects few premiums but represents a great opportunity to enlarge the market share of bancassurance using its strength in the distribution channel while the market share of independent agents is decreasing. Starting with the main business model of bancassurance for life business, this paper will analyze the performances of life companies in the Italian market by balance sheet indicators and by main discriminant variables of business models. The study will observe trends from 2013 to 2015 for the Italian market by exploiting a database managed by Associazione Nazionale delle Imprese di Assicurazione (ANIA). The applied approach is based on a bottom-up analysis starting with variables and indicators to define business models’ classification. The statistical classification algorithm proposed by Ward is employed to design business models’ profiles. Results from the analysis will be a representation of the main business models built by their profile related to indicators. In that way, an unsupervised analysis is developed that has the limit of its judgmental dimension based on research opinion, but it is possible to obtain a design of effective business models.

Keywords: bancassurance, business model, non life bancassurance, insurance business value drivers

Procedia PDF Downloads 280
9740 Reducing Uncertainty in Climate Projections over Uganda by Numerical Models Using Bias Correction

Authors: Isaac Mugume

Abstract:

Since the beginning of the 21st century, climate change has been an issue due to the reported rise in global temperature and changes in the frequency as well as severity of extreme weather and climatic events. The changing climate has been attributed to rising concentrations of greenhouse gases, including environmental changes such as ecosystems and land-uses. Climatic projections have been carried out under the auspices of the intergovernmental panel on climate change where a couple of models have been run to inform us about the likelihood of future climates. Since one of the major forcings informing the changing climate is emission of greenhouse gases, different scenarios have been proposed and future climates for different periods presented. The global climate models project different areas to experience different impacts. While regional modeling is being carried out for high impact studies, bias correction is less documented. Yet, the regional climate models suffer bias which introduces uncertainty. This is addressed in this study by bias correcting the regional models. This study uses the Weather Research and Forecasting model under different representative concentration pathways and correcting the products of these models using observed climatic data. This study notes that bias correction (e.g., the running-mean bias correction; the best easy systematic estimator method; the simple linear regression method, nearest neighborhood, weighted mean) improves the climatic projection skill and therefore reduce the uncertainty inherent in the climatic projections.

Keywords: bias correction, climatic projections, numerical models, representative concentration pathways

Procedia PDF Downloads 100
9739 A Family of Distributions on Learnable Problems without Uniform Convergence

Authors: César Garza

Abstract:

In supervised binary classification and regression problems, it is well-known that learnability is equivalent to a uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.

Keywords: statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization

Procedia PDF Downloads 108
9738 Discrimination and Classification of Vestibular Neuritis Using Combined Fisher and Support Vector Machine Model

Authors: Amine Ben Slama, Aymen Mouelhi, Sondes Manoubi, Chiraz Mbarek, Hedi Trabelsi, Mounir Sayadi, Farhat Fnaiech

Abstract:

Vertigo is a sensation of feeling off balance; the cause of this symptom is very difficult to interpret and needs a complementary exam. Generally, vertigo is caused by an ear problem. Some of the most common causes include: benign paroxysmal positional vertigo (BPPV), Meniere's disease and vestibular neuritis (VN). In clinical practice, different tests of videonystagmographic (VNG) technique are used to detect the presence of vestibular neuritis (VN). The topographical diagnosis of this disease presents a large diversity in its characteristics that confirm a mixture of problems for usual etiological analysis methods. In this study, a vestibular neuritis analysis method is proposed with videonystagmography (VNG) applications using an estimation of pupil movements in the case of an uncontrolled motion to obtain an efficient and reliable diagnosis results. First, an estimation of the pupil displacement vectors using with Hough Transform (HT) is performed to approximate the location of pupil region. Then, temporal and frequency features are computed from the rotation angle variation of the pupil motion. Finally, optimized features are selected using Fisher criterion evaluation for discrimination and classification of the VN disease.Experimental results are analyzed using two categories: normal and pathologic. By classifying the reduced features using the Support Vector Machine (SVM), 94% is achieved as classification accuracy. Compared to recent studies, the proposed expert system is extremely helpful and highly effective to resolve the problem of VNG analysis and provide an accurate diagnostic for medical devices.

Keywords: nystagmus, vestibular neuritis, videonystagmographic system, VNG, Fisher criterion, support vector machine, SVM

Procedia PDF Downloads 125
9737 Content-Based Image Retrieval Using HSV Color Space Features

Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari

Abstract:

In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.

Keywords: content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation

Procedia PDF Downloads 229
9736 Application of Building Information Modeling in Energy Management of Individual Departments Occupying University Facilities

Authors: Kung-Jen Tu, Danny Vernatha

Abstract:

To assist individual departments within universities in their energy management tasks, this study explores the application of Building Information Modeling in establishing the ‘BIM based Energy Management Support System’ (BIM-EMSS). The BIM-EMSS consists of six components: (1) sensors installed for each occupant and each equipment, (2) electricity sub-meters (constantly logging lighting, HVAC, and socket electricity consumptions of each room), (3) BIM models of all rooms within individual departments’ facilities, (4) data warehouse (for storing occupancy status and logged electricity consumption data), (5) building energy management system that provides energy managers with various energy management functions, and (6) energy simulation tool (such as eQuest) that generates real time 'standard energy consumptions' data against which 'actual energy consumptions' data are compared and energy efficiency evaluated. Through the building energy management system, the energy manager is able to (a) have 3D visualization (BIM model) of each room, in which the occupancy and equipment status detected by the sensors and the electricity consumptions data logged are displayed constantly; (b) perform real time energy consumption analysis to compare the actual and standard energy consumption profiles of a space; (c) obtain energy consumption anomaly detection warnings on certain rooms so that energy management corrective actions can be further taken (data mining technique is employed to analyze the relation between space occupancy pattern with current space equipment setting to indicate an anomaly, such as when appliances turn on without occupancy); and (d) perform historical energy consumption analysis to review monthly and annually energy consumption profiles and compare them against historical energy profiles. The BIM-EMSS was further implemented in a research lab in the Department of Architecture of NTUST in Taiwan and implementation results presented to illustrate how it can be used to assist individual departments within universities in their energy management tasks.

Keywords: database, electricity sub-meters, energy anomaly detection, sensor

Procedia PDF Downloads 289
9735 Models of State Organization and Influence over Collective Identity and Nationalism in Spain

Authors: Muñoz-Sanchez, Victor Manuel, Perez-Flores, Antonio Manuel

Abstract:

The main objective of this paper is to establish the relationship between models of state organization and the various types of collective identity expressed by the Spanish. The question of nationalism and identity ascription in Spain has always been a topic of special importance due to the presence in that country of territories where the population emits very different opinions of nationalist sentiment than the rest of Spain. The current situation of sovereignty challenge of Catalonia to the central government exemplifies the importance of the subject matter. In order to analyze this process of interrelation, we use a secondary data mining by applying the multiple correspondence analysis technique (MCA). As a main result a typology of four types of expression of collective identity based on models of State organization are shown, which are connected with the party position on this issue.

Keywords: models of organization of the state, nationalism, collective identity, Spain, political parties

Procedia PDF Downloads 422
9734 Enhancing Signal Reception in a Mobile Radio Network Using Adaptive Beamforming Antenna Arrays Technology

Authors: Ugwu O. C., Mamah R. O., Awudu W. S.

Abstract:

This work is aimed at enhancing signal reception on a mobile radio network and minimizing outage probability in a mobile radio network using adaptive beamforming antenna arrays. In this research work, an empirical real-time drive measurement was done in a cellular network of Globalcom Nigeria Limited located at Ikeja, the headquarters of Lagos State, Nigeria, with reference base station number KJA 004. The empirical measurement includes Received Signal Strength and Bit Error Rate which were recorded for exact prediction of the signal strength of the network as at the time of carrying out this research work. The Received Signal Strength and Bit Error Rate were measured with a spectrum monitoring Van with the help of a Ray Tracer at an interval of 100 meters up to 700 meters from the transmitting base station. The distance and angular location measurements from the reference network were done with the help Global Positioning System (GPS). The other equipment used were transmitting equipment measurements software (Temsoftware), Laptops and log files, which showed received signal strength with distance from the base station. Results obtained were about 11% from the real-time experiment, which showed that mobile radio networks are prone to signal failure and can be minimized using an Adaptive Beamforming Antenna Array in terms of a significant reduction in Bit Error Rate, which implies improved performance of the mobile radio network. In addition, this work did not only include experiments done through empirical measurement but also enhanced mathematical models that were developed and implemented as a reference model for accurate prediction. The proposed signal models were based on the analysis of continuous time and discrete space, and some other assumptions. These developed (proposed) enhanced models were validated using MATLAB (version 7.6.3.35) program and compared with the conventional antenna for accuracy. These outage models were used to manage the blocked call experience in the mobile radio network. 20% improvement was obtained when the adaptive beamforming antenna arrays were implemented on the wireless mobile radio network.

Keywords: beamforming algorithm, adaptive beamforming, simulink, reception

Procedia PDF Downloads 16
9733 Mosaic Augmentation: Insights and Limitations

Authors: Olivia A. Kjorlien, Maryam Asghari, Farshid Alizadeh-Shabdiz

Abstract:

The goal of this paper is to investigate the impact of mosaic augmentation on the performance of object detection solutions. To carry out the study, YOLOv4 and YOLOv4-Tiny models have been selected, which are popular, advanced object detection models. These models are also representatives of two classes of complex and simple models. The study also has been carried out on two categories of objects, simple and complex. For this study, YOLOv4 and YOLOv4 Tiny are trained with and without mosaic augmentation for two sets of objects. While mosaic augmentation improves the performance of simple object detection, it deteriorates the performance of complex object detection, specifically having the largest negative impact on the false positive rate in a complex object detection case.

Keywords: accuracy, false positives, mosaic augmentation, object detection, YOLOV4, YOLOV4-Tiny

Procedia PDF Downloads 111
9732 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection

Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu

Abstract:

In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.

Keywords: space-based detection, aerial targets, optical system design, detectability characterization

Procedia PDF Downloads 154
9731 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters

Authors: S. A. Al-Qallaf, S. A. Al-Mawsawi, A. Haider

Abstract:

In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.

Keywords: UPFC, decoupled model, load flow, control parameters

Procedia PDF Downloads 532
9730 A Study on Characteristics of Hedonic Price Models in Korea Based on Meta-Regression Analysis

Authors: Minseo Jo

Abstract:

The purpose of this paper is to examine the factors in the hedonic price models, that has significance impact in determining the price of apartments. There are many variables employed in the hedonic price models and their effectiveness vary differently according to the researchers and the regions they are analysing. In order to consider various conditions, the meta-regression analysis has been selected for the study. In this paper, four meta-independent variables, from the 65 hedonic price models to analysis. The factors that influence the prices of apartments, as well as including factors that influence the prices of apartments, regions, which are divided into two of the research performed, years of research performed, the coefficients of the functions employed. The covariance between the four meta-variables and p-value of the coefficients and the four meta-variables and number of data used in the 65 hedonic price models have been analyzed in this study. The six factors that are most important in deciding the prices of apartments are positioning of apartments, the noise of the apartments, points of the compass and views from the apartments, proximity to the public transportations, companies that have constructed the apartments, social environments (such as schools etc.).

Keywords: hedonic price model, housing price, meta-regression analysis, characteristics

Procedia PDF Downloads 384
9729 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer

Authors: Surita Maini, Sanjay Dhanka

Abstract:

Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.

Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning

Procedia PDF Downloads 56
9728 Bivariate Generalization of q-α-Bernstein Polynomials

Authors: Tarul Garg, P. N. Agrawal

Abstract:

We propose to define the q-analogue of the α-Bernstein Kantorovich operators and then introduce the q-bivariate generalization of these operators to study the approximation of functions of two variables. We obtain the rate of convergence of these bivariate operators by means of the total modulus of continuity, partial modulus of continuity and the Peetre’s K-functional for continuous functions. Further, in order to study the approximation of functions of two variables in a space bigger than the space of continuous functions, i.e. Bögel space; the GBS (Generalized Boolean Sum) of the q-bivariate operators is considered and degree of approximation is discussed for the Bögel continuous and Bögel differentiable functions with the aid of the Lipschitz class and the mixed modulus of smoothness.

Keywords: Bögel continuous, Bögel differentiable, generalized Boolean sum, K-functional, mixed modulus of smoothness

Procedia PDF Downloads 368
9727 Convolutional Neural Networks Architecture Analysis for Image Captioning

Authors: Jun Seung Woo, Shin Dong Ho

Abstract:

The Image Captioning models with Attention technology have developed significantly compared to previous models, but it is still unsatisfactory in recognizing images. We perform an extensive search over seven interesting Convolutional Neural Networks(CNN) architectures to analyze the behavior of different models for image captioning. We compared seven different CNN Architectures, according to batch size, using on public benchmarks: MS-COCO datasets. In our experimental results, DenseNet and InceptionV3 got about 14% loss and about 160sec training time per epoch. It was the most satisfactory result among the seven CNN architectures after training 50 epochs on GPU.

Keywords: deep learning, image captioning, CNN architectures, densenet, inceptionV3

Procedia PDF Downloads 111
9726 Models and Metamodels for Computer-Assisted Natural Language Grammar Learning

Authors: Evgeny Pyshkin, Maxim Mozgovoy, Vladislav Volkov

Abstract:

The paper follows a discourse on computer-assisted language learning. We examine problems of foreign language teaching and learning and introduce a metamodel that can be used to define learning models of language grammar structures in order to support teacher/student interaction. Special attention is paid to the concept of a virtual language lab. Our approach to language education assumes to encourage learners to experiment with a language and to learn by discovering patterns of grammatically correct structures created and managed by a language expert.

Keywords: computer-assisted instruction, language learning, natural language grammar models, HCI

Procedia PDF Downloads 501
9725 A Comparative Analysis of the Indoor Thermal Environment of a Room with and without Transitional Space or Threshold in Traditional Row Houses Adjacent to a Narrow Alley 'Rupchan Lane' in Old Dhaka, Bangladesh

Authors: Fatema Tasmia, Brishti Majumder, Atiqur Rahman

Abstract:

Attaining appropriate thermal comfort conditions in a place where the climate is hot and humid can be perplexing. Especially, when it resides at a congested place like old Dhaka Bangladesh, the provision of giving cross ventilation and building with proper orientation is quite difficult. This paper aims to investigate the indoor thermal environment of a room with and without transitional space or threshold in traditional row houses adjacent to a narrow alley of old Dhaka through field measurements. Transitional spaces are the part of buildings which are used for semi-outdoor household activities, social gathering and it is also proved to provide an indoor thermal effect. The field study was conducted by collecting thermal data (temperature, humidity and airflow) respectively, among the outdoor narrow alley, transitional space and adjacent indoor. This east-west elongated alley has an average width of 2.13 meter (varies from 1.5 to 2.6 meter) holding row houses on both sides. Among different aspects of thermal environment, the study of this paper is based on the analysis of temperature of corresponding cases. Other aspects and their variables were considered as constant (especially material) for accuracy and avoidance of confusion. This study focuses on the outcome that can ultimately contribute to the configuration of row houses with transitional spaces and in its relation to the adjacent outdoor space while achieving thermal comfort.

Keywords: alley, Old-Dhaka, row houses, temperature, thermal comfort, threshold, transitional space

Procedia PDF Downloads 168
9724 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models

Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri

Abstract:

Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.

Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation

Procedia PDF Downloads 52
9723 Continuum-Based Modelling Approaches for Cell Mechanics

Authors: Yogesh D. Bansod, Jiri Bursa

Abstract:

The quantitative study of cell mechanics is of paramount interest since it regulates the behavior of the living cells in response to the myriad of extracellular and intracellular mechanical stimuli. The novel experimental techniques together with robust computational approaches have given rise to new theories and models, which describe cell mechanics as a combination of biomechanical and biochemical processes. This review paper encapsulates the existing continuum-based computational approaches that have been developed for interpreting the mechanical responses of living cells under different loading and boundary conditions. The salient features and drawbacks of each model are discussed from both structural and biological points of view. This discussion can contribute to the development of even more precise and realistic computational models of cell mechanics based on continuum approaches or on their combination with microstructural approaches, which in turn may provide a better understanding of mechanotransduction in living cells.

Keywords: cell mechanics, computational models, continuum approach, mechanical models

Procedia PDF Downloads 345
9722 Art, Space and Nature in Design: Analysing the Perception of Landscape Architecture Students

Authors: M. Danial Ismail, Turkan Sultan Yasar Ismail, Mehmet Cetin

Abstract:

Eco-design issues are seldom addressed as a major importance in most projects in Turkey. Cities undergo a rapid urban expansion with less awareness and focus on green spaces. The aim of this paper is firstly to analyse the graduating landscape architecture students of Kastamonu University’s perception on the new course content that discusses the relationship of art, space and nature in the context of landscape architectural design using the perception analysis methodology. Secondly, this paper also addresses how these elements synthesize together in an artistic perception in concept and form. In this study, a new coursework subject was introduced as a part of the curriculum for the 4th year students of the undergraduate program and project proposals dealing with the concept of art, space and nature were discussed and graded. Simulations of contemporary art installations in gallery spaces are built upon the concept of critical awareness to ecological problems. These concepts and simulations are important as they will influence future developments and projects. This paper will give an insight to scholars and professionals regarding new concepts of multidisciplinary education strategies and its positive effects on critical and creative design thinking within the scope of ecological design.

Keywords: art, ecological design, landscape architecture curriculum, space and nature

Procedia PDF Downloads 320
9721 Unpredictable Territorial Interiority: Learning the Spatiality from the Early Space Learners

Authors: M. Mirza Y. Harahap

Abstract:

This paper explores the interiority of children’s territorialisation in domestic space context by looking at their affective relations with their surroundings. Examining its spatiality, the research focuses on the interactions that developed between the children and the things which exist in their house, specifically those which left traces, indicating the very arena of their territory. As early learners, the children whose mind and body are still in the development stage are hypothetically distinct in the way they territorialise the space. Rule, common sense and other form of common acceptances among the adults might not be relevant with their way on territorialising the space. Unpredictability-ness, inappropriateness, and unimaginableness hypothetically characterise their unique endeavour when territorialising the space. The purpose might even be insignificant, expressing their very development which unrestricted. This indicates how the interiority of children’s territorialisation in a domestic space context actually is. It would also implicate on a new way of seeing territory since territorialisation act has natural purpose: to aim the space and regard them as his/her own. Aiming to disclose the above territorialisation characteristics, this paper addresses a qualitative study which covers a comprehensive analysis as follow: 1) Collecting various territorial traces left from the children activities within their respective houses. Further within this stage, the data is categorised based on the territorial strategy and tactic. This stage would particularly result in the overall map of the children’s territorial interiority which expresses its focuses, range and ways; 2) Examining the interactions occurred between the children and the spatial elements within the house. Stressing on the affective relations, this stage revealed the immaterial aspect of the children’s territorialisation, thus disclosed the unseen spatial aspect of territorialisation; and 3) Synthesising the previous two stages. Correlating the results from the two stages would then help us to understand the children’s unpredictable, inappropriate and unimaginable territorial interiority. This would also help us to justify how the children learn the space through territorialisation act, its importance and its position in interiority conception. The discussed relation between the children and the houses that cover both its physical and imaginary entity as part of their overall dwelling space would also help us to have a better understanding towards specific spatial elements which are significant and undeniably important for children’s spatial learning process. Particularly for this last finding, it would also help us to determine what kind of spatial elements which are necessary to be existed in a house, thus help for design development purpose. Overall, the study in this paper would help us to broaden our mindset regarding the territory, dwelling, interiority and the overall interior architecture conception, promising a chance for further research within interior architecture field.

Keywords: children, interiority, relation, territory

Procedia PDF Downloads 124
9720 Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches

Authors: Bin Liu

Abstract:

As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors.

Keywords: protein remote homology detection, protein fold recognition, top frequency profile, support vector machines

Procedia PDF Downloads 106
9719 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine

Procedia PDF Downloads 159
9718 Sustainability in Space: Implementation of Circular Economy and Material Efficiency Strategies in Space Missions

Authors: Hamda M. Al-Ali

Abstract:

The ultimate aim of space exploration has been centralized around the possibility of life on other planets in the solar system. This aim is driven by the detrimental effects that climate change could potentially have on human survival on Earth in the future. This drives humans to search for feasible solutions to increase environmental and economical sustainability on Earth and to evaluate and explore the ability of human survival on other planets such as Mars. To do that, frequent space missions are required to meet the ambitious human goals. This means that reliable and affordable access to space is required, which could be largely achieved through the use of reusable spacecrafts. Therefore, materials and resources must be used wisely to meet the increasing demand. Space missions are currently extremely expensive to operate. However, reusing materials hence spacecrafts, can potentially reduce overall mission costs as well as the negative impact on both space and Earth environments. This is because reusing materials leads to less waste generated per mission, and therefore fewer landfill sites are required. Reusing materials reduces resource consumption, material production, and the need for processing new and replacement spacecraft and launch vehicle parts. Consequently, this will ease and facilitate human access to outer space as it will reduce the demand for scarce resources, which will boost material efficiency in the space industry. Material efficiency expresses the extent to which resources are consumed in the production cycle and how the waste produced by the industrial process is minimized. The strategies proposed in this paper to boost material efficiency in the space sector are the introduction of key performance indicators that are able to measure material efficiency as well as the introduction of clearly defined policies and legislation that can be easily implemented within the general practices in the space industry. Another strategy to improve material efficiency is by amplifying energy and resource efficiency through reusing materials. The circularity of various spacecraft materials such as Kevlar, steel, and aluminum alloys could be maximized through reusing them directly or after galvanizing them with another layer of material to act as a protective coat. This research paper has an aim to investigate and discuss how to improve material efficiency in space missions considering circular economy concepts so that space and Earth become more economically and environmentally sustainable. The circular economy is a transition from a make-use-waste linear model to a closed-loop socio-economic model, which is regenerative and restorative in nature. The implementation of a circular economy will reduce waste and pollution through maximizing material efficiency, ensuring that businesses can thrive and sustain. Further research into the extent to which reusable launch vehicles reduce space mission costs have been discussed, along with the environmental and economic implications it could have on the space sector and the environment. This has been examined through research and in-depth literature review of published reports, books, scientific articles, and journals. Keywords such as material efficiency, circular economy, reusable launch vehicles and spacecraft materials were used to search for relevant literature.

Keywords: circular economy, key performance indicator, material efficiency, reusable launch vehicles, spacecraft materials

Procedia PDF Downloads 106
9717 Subacute Thyroiditis Triggered by Sinovac and Oxford-AstraZeneca Vaccine

Authors: Ratchaneewan Salao, Steven W. Edwards, Kiatichai Faksri, Kanin Salao

Abstract:

Background: A two-dose regimen of COVID-19 vaccination (inactivated whole virion SARS-CoV-2 and adenoviral vector) has been widely used. Side effects are very low, but several adverse effects have been reported. Methods: A 40-year-old female patient, with a previous history of thyroid goitre, developed severe neck pain, headache, nausea and fatigue 7-days after receiving second vaccination with Vaxzevria® (Oxford-AstraZeneca). Clinical and laboratory findings, including thyroid function tests and ultrasound of thyroid glands, were performed. Results: Her left thyroid gland was multinodular enlarged, and severely tender on palpation. She had difficulty in swallowing and had tachycardia but no signs of hyperthyroidism. Laboratory results supported a diagnosis of subacute thyroiditis. She was prescribed NSAID (Ibuprofen 400 mg) and dexamethasone for 3-days and her symptoms resolved. Conclusions: Although this is an extremely rare event, physicians may encounter more cases of this condition due to the extensive vaccination program using this combination of vaccines.

Keywords: SARS-CoV-2, adenoviral vector vaccines, vaccination, subacute thyroiditis

Procedia PDF Downloads 53
9716 Comparative Vector Susceptibility for Dengue Virus and Their Co-Infection in A. aegypti and A. albopictus

Authors: Monika Soni, Chandra Bhattacharya, Siraj Ahmed Ahmed, Prafulla Dutta

Abstract:

Dengue is now a globally important arboviral disease. Extensive vector surveillance has already established A.aegypti as a primary vector, but A.albopictus is now accelerating the situation through gradual adaptation to human surroundings. Global destabilization and gradual climatic shift with rising in temperature have significantly expanded the geographic range of these species These versatile vectors also host Chikungunya, Zika, and yellow fever virus. Biggest challenge faced by endemic countries now is upsurge in co-infection reported with multiple serotypes and virus co-circulation. To foster vector control interventions and mitigate disease burden, there is surge for knowledge on vector susceptibility and viral tolerance in response to multiple infections. To address our understanding on transmission dynamics and reproductive fitness, both the vectors were exposed to single and dual combinations of all four dengue serotypes by artificial feeding and followed up to third generation. Artificial feeding observed significant difference in feeding rate for both the species where A.albopictus was poor artificial feeder (35-50%) compared to A.aegypti (95-97%) Robust sequential screening of viral antigen in mosquitoes was followed by Dengue NS1 ELISA, RT-PCR and Quantitative PCR. To observe viral dissemination in different mosquito tissues Indirect immunofluorescence assay was performed. Result showed that both the vectors were infected initially with all dengue(1-4)serotypes and its co-infection (D1 and D2, D1 and D3, D1 and D4, D2 and D4) combinations. In case of DENV-2 there was significant difference in the peak titer observed at 16th day post infection. But when exposed to dual infections A.aegypti supported all combinations of virus where A.albopictus only continued single infections in successive days. There was a significant negative effect on the fecundity and fertility of both the vectors compared to control (PANOVA < 0.001). In case of dengue 2 infected mosquito, fecundity in parent generation was significantly higher (PBonferroni < 0.001) for A.albopicus compare to A.aegypti but there was a complete loss of fecundity from second to third generation for A.albopictus. It was observed that A.aegypti becomes infected with multiple serotypes frequently even at low viral titres compared to A.albopictus. Possible reason for this could be the presence of wolbachia infection in A.albopictus or mosquito innate immune response, small RNA interference etc. Based on the observations it could be anticipated that transovarial transmission may not be an important phenomenon for clinical disease outcome, due to the absence of viral positivity by third generation. Also, Dengue NS1 ELISA can be used for preliminary viral detection in mosquitoes as more than 90% of the samples were found positive compared to RT-PCR and viral load estimation.

Keywords: co-infection, dengue, reproductive fitness, viral quantification

Procedia PDF Downloads 183
9715 Interactive Glare Visualization Model for an Architectural Space

Authors: Florina Dutt, Subhajit Das, Matthew Swartz

Abstract:

Lighting design and its impact on indoor comfort conditions are an integral part of good interior design. Impact of lighting in an interior space is manifold and it involves many sub components like glare, color, tone, luminance, control, energy efficiency, flexibility etc. While other components have been researched and discussed multiple times, this paper discusses the research done to understand the glare component from an artificial lighting source in an indoor space. Consequently, the paper discusses a parametric model to convey real time glare level in an interior space to the designer/ architect. Our end users are architects and likewise for them it is of utmost importance to know what impression the proposed lighting arrangement and proposed furniture layout will have on indoor comfort quality. This involves specially those furniture elements (or surfaces) which strongly reflect light around the space. Essentially, the designer needs to know the ramification of the ‘discomfortable glare’ at the early stage of design cycle, when he still can afford to make changes to his proposed design and consider different routes of solution for his client. Unfortunately, most of the lighting analysis tools that are present, offer rigorous computation and analysis on the back end eventually making it challenging for the designer to analyze and know the glare from interior light quickly. Moreover, many of them do not focus on glare aspect of the artificial light. That is why, in this paper, we explain a novel approach to approximate interior glare data. Adding to that we visualize this data in a color coded format, expressing the implications of their proposed interior design layout. We focus on making this analysis process very fluid and fast computationally, enabling complete user interaction with the capability to vary different ranges of user inputs adding more degrees of freedom for the user. We test our proposed parametric model on a case study, a Computer Lab space in our college facility.

Keywords: computational geometry, glare impact in interior space, info visualization, parametric lighting analysis

Procedia PDF Downloads 336
9714 Exploration of Building Information Modelling Software to Develop Modular Coordination Design Tool for Architects

Authors: Muhammad Khairi bin Sulaiman

Abstract:

The utilization of Building Information Modelling (BIM) in the construction industry has provided an opportunity for designers in the Architecture, Engineering and Construction (AEC) industry to proceed from the conventional method of using manual drafting to a way that creates alternative designs quickly, produces more accurate, reliable and consistent outputs. By using BIM Software, designers can create digital content that manipulates the use of data using the parametric model of BIM. With BIM software, more alternative designs can be created quickly and design problems can be explored further to produce a better design faster than conventional design methods. Generally, BIM is used as a documentation mechanism and has not been fully explored and utilised its capabilities as a design tool. Relative to the current issue, Modular Coordination (MC) design as a sustainable design practice is encouraged since MC design will reduce material wastage through standard dimensioning, pre-fabrication, repetitive, modular construction and components. However, MC design involves a complex process of rules and dimensions. Therefore, a tool is needed to make this process easier. Since the parameters in BIM can easily be manipulated to follow MC rules and dimensioning, thus, the integration of BIM software with MC design is proposed for architects during the design stage. With this tool, there will be an improvement in acceptance and practice in the application of MC design effectively. Consequently, this study will analyse and explore the function and customization of BIM objects and the capability of BIM software to expedite the application of MC design during the design stage for architects. With this application, architects will be able to create building models and locate objects within reference modular grids that adhere to MC rules and dimensions. The parametric modeling capabilities of BIM will also act as a visual tool that will further enhance the automation of the 3-Dimensional space planning modeling process. (Method) The study will first analyze and explore the parametric modeling capabilities of rule-based BIM objects, which eventually customize a reference grid within the rules and dimensioning of MC. Eventually, the approach will further enhance the architect's overall design process and enable architects to automate complex modeling, which was nearly impossible before. A prototype using a residential quarter will be modeled. A set of reference grids guided by specific MC rules and dimensions will be used to develop a variety of space planning and configuration. With the use of the design, the tool will expedite the design process and encourage the use of MC Design in the construction industry.

Keywords: building information modeling, modular coordination, space planning, customization, BIM application, MC space planning

Procedia PDF Downloads 67
9713 Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy

Authors: Shaoying Guo, Yanyun Xu, Meng Zhang, Weiqing Huang

Abstract:

The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.

Keywords: cross-validation support vector machine, refined com- posite multiscale dispersion entropy, specific emitter identification, transient signal, wireless communication device

Procedia PDF Downloads 117