Search results for: targeted methodology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6446

Search results for: targeted methodology

5576 Evaluating the Performance of 28 EU Member Countries on Health2020: A Data Envelopment Analysis Evaluation of the Successful Implementation of Policies

Authors: Elias K. Maragos, Petros E. Maravelakis, Apostolos I. Linardis

Abstract:

Health2020 is a promising framework of policies provided by the World Health Organization (WHO) and aiming to diminish the health and well-being inequalities among the citizens of the European Union (EU) countries. The major demographic, social and environmental changes, in addition to the resent economic crisis prevent the unobstructed and successful implementation of this framework. The unemployment rates and the percentage of people at risk of poverty have increased among the citizens of EU countries. At the same time, the adopted fiscal, economic policies do not help governments to serve their social role and mitigate social and health inequalities. In those circumstances, there is a strong pressure to organize all health system resources efficiently and wisely. In order to provide a unified and value-based framework of valuation, we propose a valuation framework using data envelopment analysis (DEA) and dynamic DEA. We believe that the adopted methodology could provide a robust tool which can capture the degree of success with which policies have been implemented and is capable to determine which of the countries developed the requested policies efficiently and which of the countries have been lagged. Using the proposed methodology, we evaluated the performance of 28 EU member-countries in relation to the Health2020 peripheral targets. We adopted several versions of evaluation, measuring the effectiveness and the efficiency of EU countries from 2011 to 2016. Our results showed stability in technological changes and revealed a group of countries which were benchmarks in most of the years for the inefficient countries.

Keywords: DEA, Health2020, health inequalities, malmquist index, policies evaluation, well-being

Procedia PDF Downloads 143
5575 A Game of Information in Defense/Attack Strategies: Case of Poisson Attacks

Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez

Abstract:

In this paper, we briefly introduce the concept of Poisson attacks in the case of defense/attack strategies where attacks are assumed to be continuous. We suggest a game model in which the attacker will combine both criteria of a sufficient confidence level of a successful attack and a reasonably small size of the estimation error in order to launch an attack. Here, estimation error arises from assessing the system failure upon attack using aggregate data at the system level. The corresponding error is referred to as aggregation error. On the other hand, the defender will attempt to deter attack by making one or both criteria inapplicable. The defender will build his/her strategy by both strengthening the targeted system and increasing the size of error. We will formulate the defender problem based on appropriate optimization models. The attacker will opt for a Bayesian updating in assessing the impact on the improvement made by the defender. Then, the attacker will evaluate the feasibility of the attack before making the decision of whether or not to launch it. We will provide illustrations to better explain the process.

Keywords: attacker, defender, game theory, information

Procedia PDF Downloads 468
5574 Application of Causal Inference and Discovery in Curriculum Evaluation and Continuous Improvement

Authors: Lunliang Zhong, Bin Duan

Abstract:

The undergraduate graduation project is a vital part of the higher education curriculum, crucial for engineering accreditation. Current evaluations often summarize data without identifying underlying issues. This study applies the Peter-Clark algorithm to analyze causal relationships within the graduation project data of an Electronics and Information Engineering program, creating a causal model. Structural equation modeling confirmed the model's validity. The analysis reveals key teaching stages affecting project success, uncovering problems in the process. Introducing causal discovery and inference into project evaluation helps identify issues and propose targeted improvement measures. The effectiveness of these measures is validated by comparing the learning outcomes of two student cohorts, stratified by confounding factors, leading to improved teaching quality.

Keywords: causal discovery, causal inference, continuous improvement, Peter-Clark algorithm, structural equation modeling

Procedia PDF Downloads 18
5573 Critical Design Futures: A Foresight 3.0 Approach to Business Transformation and Innovation

Authors: Nadya Patel, Jawn Lim

Abstract:

Foresight 3.0 is a synergistic methodology that encompasses systems analysis, future studies, capacity building, and forward planning. These components are interconnected, fostering a collective anticipatory intelligence that promotes societal resilience (Ravetz, 2020). However, traditional applications of these strands can often fall short, leading to missed opportunities and narrow perspectives. Therefore, Foresight 3.0 champions a holistic approach to tackling complex issues, focusing on systemic transformations and power dynamics. Businesses are pivotal in preparing the workforce for an increasingly uncertain and complex world. This necessitates the adoption of innovative tools and methodologies, such as Foresight 3.0, that can better equip young employees to anticipate and navigate future challenges. Firstly, the incorporation of its methodology into workplace training can foster a holistic perspective among employees. This approach encourages employees to think beyond the present and consider wider social, economic, and environmental contexts, thereby enhancing their problem-solving skills and resilience. This paper discusses our research on integrating Foresight 3.0's transformative principles with a newly developed Critical Design Futures (CDF) framework to equip organisations with the ability to innovate for the world's most complex social problems. This approach is grounded in 'collective forward intelligence,' enabling mutual learning, co-innovation, and co-production among a diverse stakeholder community, where business transformation and innovation are achieved.

Keywords: business transformation, innovation, foresight, critical design

Procedia PDF Downloads 81
5572 Effects and Coping Strategies of Cyber Bullying in Pakistan: A Gender Response

Authors: Rabia Qusien

Abstract:

New media has emerged as a significant force in the society which connects people across the globe. Where new media brought many advantages for its users, there is a darker aspect of new technology in the form of cyberbullying. Researcher has employed survey method to reach to its targeted audience. Sample of 604 respondents was selected from one of metropolitan city of Pakistan Lahore to collect the data. Equal sample from both genders was selected to apply gender analysis. Results of this study indicate that cyber bullying is having significant psychological and educational effects. Females face more cyber bullying incidents as compared to males so they face more severe effects of cyber bullying. A comprehensive analysis of managing strategies depicts that mostly youth tries to handle this issue personally but at times they seek the support of their family and friends when they face severe issues. Due to privacy concerns females get more upset and they are more likely to seek social support from friends and family.

Keywords: cyber bullying, cyber victims, educational impacts, psychological impacts

Procedia PDF Downloads 145
5571 Structural Analysis of Multi-Pressure Integrated Vessel for Sport-Multi-Artificial Environment System

Authors: Joon-Ho Lee, Jeong-Hwan Yoon, Jung-Hwan Yoon, Sangmo Kang, Su-Yeon Hong, Hyun-Woo Jeong, Jaeick Chae

Abstract:

There are several dedicated individual chambers for sports that are supplied and used, but none of them are multi-pressured all-in-one chambers that can provide a sports multi-environment simultaneously. In this study, we design a multi-pressure (positive/atmospheric/negative pressure) integrated vessel that can be used for the sport-multi-artificial environment system. We presented additional vessel designs with enlarged space for the tall users; with reinforcement pads added to reduce the maximum stress in the joints of its shells, and then carried out numerical analysis for the structural analysis with maximum stress and structural safety. Under the targeted allowable pressure conditions, maximum stresses occurred at the joint of the shell, and the entrance, the safety of the structure was checked with the allowable stress of its material.

Keywords: structural analysis, multi-pressure, integrated vessel, sport-multi-artificial environment

Procedia PDF Downloads 532
5570 Ant Lion Optimization in a Fuzzy System for Benchmark Control Problem

Authors: Leticia Cervantes, Edith Garcia, Oscar Castillo

Abstract:

At today, there are several control problems where the main objective is to obtain the best control in the study to decrease the error in the application. Many techniques can use to control these problems such as Neural Networks, PID control, Fuzzy Logic, Optimization techniques and many more. In this case, fuzzy logic with fuzzy system and an optimization technique are used to control the case of study. In this case, Ant Lion Optimization is used to optimize a fuzzy system to control the velocity of a simple treadmill. The main objective is to achieve the control of the velocity in the control problem using the ALO optimization. First, a simple fuzzy system was used to control the velocity of the treadmill it has two inputs (error and error change) and one output (desired speed), then results were obtained but to decrease the error the ALO optimization was developed to optimize the fuzzy system of the treadmill. Having the optimization, the simulation was performed, and results can prove that using the ALO optimization the control of the velocity was better than a conventional fuzzy system. This paper describes some basic concepts to help to understand the idea in this work, the methodology of the investigation (control problem, fuzzy system design, optimization), the results are presented and the optimization is used for the fuzzy system. A comparison between the simple fuzzy system and the optimized fuzzy systems are presented where it can be proving the optimization improved the control with good results the major findings of the study is that ALO optimization is a good alternative to improve the control because it helped to decrease the error in control applications even using any control technique to optimized, As a final statement is important to mentioned that the selected methodology was good because the control of the treadmill was improve using the optimization technique.

Keywords: ant lion optimization, control problem, fuzzy control, fuzzy system

Procedia PDF Downloads 399
5569 A Fuzzy Multi-Criteria Model for Sustainable Development of Community-Based Tourism through the Homestay Program in Malaysia

Authors: Azizah Ismail, Zainab Khalifah, Abbas Mardani

Abstract:

Sustainable community-based tourism through homestay programme is a growing niche market that has impacted destinations in many countries including Malaysia. With demand predicted to continue increasing, the importance of the homestay product will grow in the tourism industry. This research examines the sustainability criteria for homestay programme in Malaysia covering economic, socio-cultural and environmental dimensions. This research applied a two-stage methodology for data analysis. Specifically, the researcher implements a hybrid method which combines two multi-criteria decision making approaches. In the first stage of the methodology, the Decision Making Trial and Evaluation Laboratory (DEMATEL) technique is applied. Then, Analytical Network Process (ANP) is employed for the achievement of the objective of the current research. After factors identification and problem formulation, DEMATEL is used to detect complex relationships and to build a Network Relation Map (NRM). Then ANP is used to prioritize and find the weights of the criteria and sub-criteria of the decision model. The research verifies the framework of multi-criteria for sustainable community-based tourism from the perspective of stakeholders. The result also provides a different perspective on the importance of sustainable criteria from the view of multi-stakeholders. Practically, this research gives the framework model and helps stakeholders to improve and innovate the homestay programme and also promote community-based tourism.

Keywords: community-based tourism, homestay programme, sustainable tourism criteria, sustainable tourism development

Procedia PDF Downloads 130
5568 Role of Indigenous Women in Securing Sustainable Livelihoods in Western Himalayan Region, India

Authors: Haresh Sharma, Jaimini Luharia

Abstract:

The ecology in the Western Himalayan region transforms with the change in altitude. This change is observed in terms of topography, species of flora and fauna and the quality of the soil. The current study focuses on women of indigenous communities of Pangi Valley, which is located in the state of Himachal Pradesh, India. The valley is bifurcated into three different areas –Saichu, Hudan Bhatori, and Sural Bhatori valleys. It is one of the most remote, rugged and difficult to access tribal regions of Chamba district. The altitude of the valley ranges from 2,000 m to 6,000 m above sea level. The Pangi valley is inhabited by ‘Pangwals’ and ‘Bhots’ tribes of the Himalayas who speak their local tribal language called’ Pangwali’. The valley is cut-off from the mainland due to heavy snow and lack of proper roads during peak winters. Due to difficult geographical location, the daily lives of the people are constantly challenged, and they are most of the times deprived of benefits targeted through government programs. However, the indigenous communities earn their livelihood through livestock and forest-based produce while some of them migrate to nearby places for better work. The current study involves snowball sampling methodology for data collection along with in-depth interviews of women members of Self-Help Groups and women farmers. The findings reveal that the lives of these indigenous communities largely depend on forest-based products. So, it creates all the more significance of enhancing, maintaining, and consuming natural resources sustainably. Under such circumstances, the women of the community play a significant role of guardians in conservation and protection of the forests. They are the custodians of traditional knowledge of environment conservation practices that have been followed for many years in the region. The present study also sought to establish a relationship between some of the development initiatives undertaken by the women in the valley that stimulate sustainable mountain economy and conservation practices. These initiatives include cultivation of products like hazelnut, ‘Gucchi’ rare quality mushroom, medicinal plants exclusively found in the region, thereby promoting long term sustainable conservation of agro-biodiversity of the Western Himalayan region. The measures taken by the community women are commendable as they ensure access and distribution of natural resources as well as manage them for future generations. Apart from this, the tribal women have actively formed Self-Help Groups promoting financial inclusion through various activities that augment ownership and accountability towards the overall development of the communities. But, the results also suggest that there’s not enough recognition given to women’s role in forests conservation practices due to several local socio-political reasons. There are not enough research studies done on communities of Pangi Valley due to inaccessibility created out of lack of proper roads and other resources. Also, there emerged a need to concretize indigenous and traditional knowledge of conservation practices followed by women in the community.

Keywords: forest conservation, indigenous community women, sustainable livelihoods, sustainable development, poverty alleviation, Western Himalayas

Procedia PDF Downloads 120
5567 Fully Autonomous Vertical Farm to Increase Crop Production

Authors: Simone Cinquemani, Lorenzo Mantovani, Aleksander Dabek

Abstract:

New technologies in agriculture are opening new challenges and new opportunities. Among these, certainly, robotics, vision, and artificial intelligence are the ones that will make a significant leap, compared to traditional agricultural techniques, possible. In particular, the indoor farming sector will be the one that will benefit the most from these solutions. Vertical farming is a new field of research where mechanical engineering can bring knowledge and know-how to transform a highly labor-based business into a fully autonomous system. The aim of the research is to develop a multi-purpose, modular, and perfectly integrated platform for crop production in indoor vertical farming. Activities will be based both on hardware development such as automatic tools to perform different activities on soil and plants, as well as research to introduce an extensive use of monitoring techniques based on machine learning algorithms. This paper presents the preliminary results of a research project of a vertical farm living lab designed to (i) develop and test vertical farming cultivation practices, (ii) introduce a very high degree of mechanization and automation that makes all processes replicable, fully measurable, standardized and automated, (iii) develop a coordinated control and management environment for autonomous multiplatform or tele-operated robots in environments with the aim of carrying out complex tasks in the presence of environmental and cultivation constraints, (iv) integrate AI-based algorithms as decision support system to improve quality production. The coordinated management of multiplatform systems still presents innumerable challenges that require a strongly multidisciplinary approach right from the design, development, and implementation phases. The methodology is based on (i) the development of models capable of describing the dynamics of the various platforms and their interactions, (ii) the integrated design of mechatronic systems able to respond to the needs of the context and to exploit the strength characteristics highlighted by the models, (iii) implementation and experimental tests performed to test the real effectiveness of the systems created, evaluate any weaknesses so as to proceed with a targeted development. To these aims, a fully automated laboratory for growing plants in vertical farming has been developed and tested. The living lab makes extensive use of sensors to determine the overall state of the structure, crops, and systems used. The possibility of having specific measurements for each element involved in the cultivation process makes it possible to evaluate the effects of each variable of interest and allows for the creation of a robust model of the system as a whole. The automation of the laboratory is completed with the use of robots to carry out all the necessary operations, from sowing to handling to harvesting. These systems work synergistically thanks to the knowledge of detailed models developed based on the information collected, which allows for deepening the knowledge of these types of crops and guarantees the possibility of tracing every action performed on each single plant. To this end, artificial intelligence algorithms have been developed to allow synergistic operation of all systems.

Keywords: automation, vertical farming, robot, artificial intelligence, vision, control

Procedia PDF Downloads 39
5566 Multi-Objective Optimization for the Green Vehicle Routing Problem: Approach to Case Study of the Newspaper Distribution Problem

Authors: Julio C. Ferreira, Maria T. A. Steiner

Abstract:

The aim of this work is to present a solution procedure referred to here as the Multi-objective Optimization for Green Vehicle Routing Problem (MOOGVRP) to provide solutions for a case study. The proposed methodology consists of three stages to resolve Scenario A. Stage 1 consists of the “treatment” of data; Stage 2 consists of applying mathematical models of the p-Median Capacitated Problem (with the objectives of minimization of distances and homogenization of demands between groups) and the Asymmetric Traveling Salesman Problem (with the objectives of minimizing distances and minimizing time). The weighted method was used as the multi-objective procedure. In Stage 3, an analysis of the results is conducted, taking into consideration the environmental aspects related to the case study, more specifically with regard to fuel consumption and air pollutant emission. This methodology was applied to a (partial) database that addresses newspaper distribution in the municipality of Curitiba, Paraná State, Brazil. The preliminary findings for Scenario A showed that it was possible to improve the distribution of the load, reduce the mileage and the greenhouse gas by 17.32% and the journey time by 22.58% in comparison with the current scenario. The intention for future works is to use other multi-objective techniques and an expanded version of the database and explore the triple bottom line of sustainability.

Keywords: Asymmetric Traveling Salesman Problem, Green Vehicle Routing Problem, Multi-objective Optimization, p-Median Capacitated Problem

Procedia PDF Downloads 111
5565 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks

Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas

Abstract:

This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).

Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems

Procedia PDF Downloads 134
5564 Culvert Blockage Evaluation Using Australian Rainfall And Runoff 2019

Authors: Rob Leslie, Taher Karimian

Abstract:

The blockage of cross drainage structures is a risk that needs to be understood and managed or lessened through the design. A blockage is a random event, influenced by site-specific factors, which needs to be quantified for design. Under and overestimation of blockage can have major impacts on flood risk and cost associated with drainage structures. The importance of this matter is heightened for those projects located within sensitive lands. It is a particularly complex problem for large linear infrastructure projects (e.g., rail corridors) located within floodplains where blockage factors can influence flooding upstream and downstream of the infrastructure. The selection of the appropriate blockage factors for hydraulic modeling has been subject to extensive research by hydraulic engineers. This paper has been prepared to review the current Australian Rainfall and Runoff 2019 (ARR 2019) methodology for blockage assessment by applying this method to a transport corridor brownfield upgrade case study in New South Wales. The results of applying the method are also validated against asset data and maintenance records. ARR 2019 – Book 6, Chapter 6 includes advice and an approach for estimating the blockage of bridges and culverts. This paper concentrates specifically on the blockage of cross drainage structures. The method has been developed to estimate the blockage level for culverts affected by sediment or debris due to flooding. The objective of the approach is to evaluate a numerical blockage factor that can be utilized in a hydraulic assessment of cross drainage structures. The project included an assessment of over 200 cross drainage structures. In order to estimate a blockage factor for use in the hydraulic model, a process has been advanced that considers the qualitative factors (e.g., Debris type, debris availability) and site-specific hydraulic factors that influence blockage. A site rating associated with the debris potential (i.e., availability, transportability, mobility) at each crossing was completed using the method outlined in ARR 2019 guidelines. The hydraulic results inputs (i.e., flow velocity, flow depth) and qualitative factors at each crossing were developed into an advanced spreadsheet where the design blockage level for cross drainage structures were determined based on the condition relating Inlet Clear Width and L10 (average length of the longest 10% of the debris reaching the site) and the Adjusted Debris Potential. Asset data, including site photos and maintenance records, were then reviewed and compared with the blockage assessment to check the validity of the results. The results of this assessment demonstrate that the estimated blockage factors at each crossing location using ARR 2019 guidelines are well-validated with the asset data. The primary finding of the study is that the ARR 2019 methodology is a suitable approach for culvert blockage assessment that has been validated against a case study spanning a large geographical area and multiple sub-catchments. The study also found that the methodology can be effectively coded within a spreadsheet or similar analytical tool to automate its application.

Keywords: ARR 2019, blockage, culverts, methodology

Procedia PDF Downloads 362
5563 The Impact of ChatGPT on the Healthcare Domain: Perspectives from Healthcare Majors

Authors: Su Yen Chen

Abstract:

ChatGPT has shown both strengths and limitations in clinical, educational, and research settings, raising important concerns about accuracy, transparency, and ethical use. Despite an improved understanding of user acceptance and satisfaction, there is still a gap in how general AI perceptions translate into practical applications within healthcare. This study focuses on examining the perceptions of ChatGPT's impact among 266 healthcare majors in Taiwan, exploring its implications for their career development, as well as its utility in clinical practice, medical education, and research. By employing a structured survey with precisely defined subscales, this research aims to probe the breadth of ChatGPT's applications within healthcare, assessing both the perceived benefits and the challenges it presents. Additionally, to further enhance the comprehensiveness of our methodology, we have incorporated qualitative data collection methods, which provide complementary insights to the quantitative findings. The findings from the survey reveal that perceptions and usage of ChatGPT among healthcare majors vary significantly, influenced by factors such as its perceived utility, risk, novelty, and trustworthiness. Graduate students and those who perceive ChatGPT as more beneficial and less risky are particularly inclined to use it more frequently. This increased usage is closely linked to significant impacts on personal career development. Furthermore, ChatGPT's perceived usefulness and novelty contribute to its broader impact within the healthcare domain, suggesting that both innovation and practical utility are key drivers of acceptance and perceived effectiveness in professional healthcare settings. Trust emerges as an important factor, especially in clinical settings where the stakes are high. The trust that healthcare professionals place in ChatGPT significantly affects its integration into clinical practice and influences outcomes in medical education and research. The reliability and practical value of ChatGPT are thus critical for its successful adoption in these areas. However, an interesting paradox arises with regard to the ease of use. While making ChatGPT more user-friendly is generally seen as beneficial, it also raises concerns among users who have lower levels of trust and perceive higher risks associated with its use. This complex interplay between ease of use and safety concerns necessitates a careful balance, highlighting the need for robust security measures and clear, transparent communication about how AI systems work and their limitations. The study suggests several strategic approaches to enhance the adoption and integration of AI in healthcare. These include targeted training programs for healthcare professionals to increase familiarity with AI technologies, reduce perceived risks, and build trust. Ensuring transparency and conducting rigorous testing are also vital to foster trust and reliability. Moreover, comprehensive policy frameworks are needed to guide the implementation of AI technologies, ensuring high standards of patient safety, privacy, and ethical use. These measures are crucial for fostering broader acceptance of AI in healthcare, as the study contributes to enriching the discourse on AI's role by detailing how various factors affect its adoption and impact.

Keywords: ChatGPT, healthcare, survey study, IT adoption, behaviour, applcation, concerns

Procedia PDF Downloads 28
5562 Landslide Vulnerability Assessment in Context with Indian Himalayan

Authors: Neha Gupta

Abstract:

Landslide vulnerability is considered as the crucial parameter for the assessment of landslide risk. The term vulnerability defined as the damage or degree of elements at risk of different dimensions, i.e., physical, social, economic, and environmental dimensions. Himalaya region is very prone to multi-hazard such as floods, forest fires, earthquakes, and landslides. With the increases in fatalities rates, loss of infrastructure, and economy due to landslide in the Himalaya region, leads to the assessment of vulnerability. In this study, a methodology to measure the combination of vulnerability dimension, i.e., social vulnerability, physical vulnerability, and environmental vulnerability in one framework. A combined result of these vulnerabilities has rarely been carried out. But no such approach was applied in the Indian Scenario. The methodology was applied in an area of east Sikkim Himalaya, India. The physical vulnerability comprises of building footprint layer extracted from remote sensing data and Google Earth imaginary. The social vulnerability was assessed by using population density based on land use. The land use map was derived from a high-resolution satellite image, and for environment vulnerability assessment NDVI, forest, agriculture land, distance from the river were assessed from remote sensing and DEM. The classes of social vulnerability, physical vulnerability, and environment vulnerability were normalized at the scale of 0 (no loss) to 1 (loss) to get the homogenous dataset. Then the Multi-Criteria Analysis (MCA) was used to assign individual weights to each dimension and then integrate it into one frame. The final vulnerability was further classified into four classes from very low to very high.

Keywords: landslide, multi-criteria analysis, MCA, physical vulnerability, social vulnerability

Procedia PDF Downloads 301
5561 Professional Working Conditions, Mental Health And Mobility In The Hungarian Social Sector Preliminary Findings From A Multi-method Study

Authors: Ágnes Győri, Éva Perpék, Zsófia Bauer, Zsuzsanna Elek

Abstract:

The aim of the research (funded by Hungarian national grant, NFKI- FK 138315) is to examine the professional mobility, mental health and work environment of social workers with a complex approach. Previous international and Hungarian research has pointed out that those working in the helping professions are strongly exposed to the risk of emotional-mental-physical exhaustion due to stress. Mental and physical strain, as well as lack of coping (can) cause health problems, but its role in career change and high labor turnover has also been proven. Even though satisfaction with working conditions of those employed in the human service sector in the context of the stress burden has been researched extensively, there is a lack of large-sample international and Hungarian domestic studies exploring the effects of profession-specific conditions. Nor has it been examined how the specific features of the social profession and mental health affect the career mobility of the professionals concerned. In our research, these factors and their correlations are analyzed by means of mixed methodology, utilizing the benefits of netnographic big data analysis and a sector-specific quantitative survey. The netnographic analysis of open web content generated inside and outside the social profession offers a holistic overview of the influencing factors related to mental health and the work environment of social workers. On the one hand, the topics and topoi emerging in the external discourse concerning the sector are examined, and on the other hand, focus on mentions and streams of comments regarding the profession, burnout, stress, coping, as well as labor turnover and career changes among social professionals. The analysis focuses on new trends and changes in discourse that have emerged during and after the pandemic. In addition to the online conversation analysis, a survey of social professionals with a specific focus has been conducted. The questionnaire is based on input from the first two research phases. The applied approach underlines that the mobility paths of social professionals can only be understood if, apart from the general working conditions, the specific features of social work and the effects of certain aspects of mental health (emotional-mental-physical strain, resilience) are taken into account as well. In this paper, the preliminary results from this innovative methodological mix are presented, with the aim of highlighting new opportunities and dimensions in the research on social work. A gap in existing research is aimed to be filled both on a methodological and empirical level, and the Hungarian domestic findings can create a feasible and relevant framework for a further international investigation and cross-cultural comparative analysis. Said results can contribute to the foundation of organizational and policy-level interventions, targeted programs whereby the risk of burnout and the rate of career abandonment can be reduced. Exploring different aspects of resilience and mapping personality strengths can be a starting point for stress-management, motivation-building, and personality-development training for social professionals.

Keywords: burnout, mixed methods, netnography, professional mobility, social work

Procedia PDF Downloads 143
5560 Right-Wing Narratives Associated with Cognitive Predictors of Radicalization: Direct User Engagement Drives Radicalization

Authors: Julius Brejohn Calvert

Abstract:

This Study Aimed to Investigate the Ecological Nature of Extremism Online. The Construction of a Far-Right Ecosystem Was Successful Using a Sample of Posts, Each With Separate Narrative Domains. Most of the Content Expressed Anti-black Racism and Pro-white Sentiments. Many Posts Expressed an Overt Disdain for the Recent Progress Made Regarding the United States and the United Kingdom’s Expansion of Civil Liberties to People of Color (Poc). Of Special Note, Several Anti-lgbt Posts Targeted the Ongoing Political Grievances Expressed by the Transgender Community. Overall, the Current Study Is Able to Demonstrate That Direct Measures of User Engagement, Such as Shares and Reactions, Can Be Used to Predict the Effect of a Post’s Radicalization Capabilities, Although Single Posts Do Not Operate on the Cognitive Processes of Radicalization Alone. In This Analysis, the Data Supports a Theoretical Framework Where Individual Posts Have a Higher Radicalization Capability Based on the Amount of User Engagement (Both Indirect and Direct) It Receives.

Keywords: cognitive psychology, cognitive radicalization, extremism online, domestic extremism, political science, political psychology

Procedia PDF Downloads 71
5559 Assessment of the Impact of Teaching Methodology on Skill Acquisition in Music Education among Students in Emmanuel Alayande University of Education, Oyo

Authors: Omotayo Abidemi Funmilayo

Abstract:

Skill acquisition in professional fields has been prioritized and considered important to demonstrate the mastery of subject matter and present oneself as an expert in such profession. The ability to acquire skills in different fields, however calls for different method from the instructor or teacher during training. Music is not an exception of such profession, where there exist different area of skills acquisition require practical performance. This paper, however, focused on the impact and effects of different methods on acquisition of practical knowledge in the handling of some musical instruments among the students of Emmanuel Alayande College of Education, Oyo. In this study, 30 students were selected and divided into two groups based on the selected area of learning, further division were made on each of the two major groups to consist of five students each, to be trained using different methodology for two months and three hours per week. Comparison of skill acquired were made using standard research instrument at reliable level of significance, test were carried out on the thirty students considered for the study based on area of skill acquisition. The students that were trained on the keyboard and saxophone using play way method, followed by the students that were trained using demonstration method while the set of students that received teaching instruction through lecture method performed below average. In conclusion, the study reveals that ability to acquire professional skill on handling musical instruments are better enhanced using play way method.

Keywords: music education, skill acquisition, keyboard, saxophone

Procedia PDF Downloads 72
5558 Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach

Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva

Abstract:

Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.

Keywords: ammonia slip, neural-network, vehicles emissions, SCR-NOx

Procedia PDF Downloads 213
5557 Navigating the Future: Evaluating the Market Potential and Drivers for High-Definition Mapping in the Autonomous Vehicle Era

Authors: Loha Hashimy, Isabella Castillo

Abstract:

In today's rapidly evolving technological landscape, the importance of precise navigation and mapping systems cannot be understated. As various sectors undergo transformative changes, the market potential for Advanced Mapping and Management Systems (AMMS) emerges as a critical focus area. The Galileo/GNSS-Based Autonomous Mobile Mapping System (GAMMS) project, specifically targeted toward high-definition mapping (HDM), endeavours to provide insights into this market within the broader context of the geomatics and navigation fields. With the growing integration of Autonomous Vehicles (AVs) into our transportation systems, the relevance and demand for sophisticated mapping solutions like HDM have become increasingly pertinent. The research employed a meticulous, lean, stepwise, and interconnected methodology to ensure a comprehensive assessment. Beginning with the identification of pivotal project results, the study progressed into a systematic market screening. This was complemented by an exhaustive desk research phase that delved into existing literature, data, and trends. To ensure the holistic validity of the findings, extensive consultations were conducted. Academia and industry experts provided invaluable insights through interviews, questionnaires, and surveys. This multi-faceted approach facilitated a layered analysis, juxtaposing secondary data with primary inputs, ensuring that the conclusions were both accurate and actionable. Our investigation unearthed a plethora of drivers steering the HD maps landscape. These ranged from technological leaps, nuanced market demands, and influential economic factors to overarching socio-political shifts. The meteoric rise of Autonomous Vehicles (AVs) and the shift towards app-based transportation solutions, such as Uber, stood out as significant market pull factors. A nuanced PESTEL analysis further enriched our understanding, shedding light on political, economic, social, technological, environmental, and legal facets influencing the HD maps market trajectory. Simultaneously, potential roadblocks were identified. Notable among these were barriers related to high initial costs, concerns around data quality, and the challenges posed by a fragmented and evolving regulatory landscape. The GAMMS project serves as a beacon, illuminating the vast opportunities that lie ahead for the HD mapping sector. It underscores the indispensable role of HDM in enhancing navigation, ensuring safety, and providing pinpoint, accurate location services. As our world becomes more interconnected and reliant on technology, HD maps emerge as a linchpin, bridging gaps and enabling seamless experiences. The research findings accentuate the imperative for stakeholders across industries to recognize and harness the potential of HD mapping, especially as we stand on the cusp of a transportation revolution heralded by Autonomous Vehicles and advanced geomatic solutions.

Keywords: high-definition mapping (HDM), autonomous vehicles, PESTEL analysis, market drivers

Procedia PDF Downloads 84
5556 Insiders’ Perspectives of Countering Public Sector Corruption in Nigeria: Identifying and Targeting Its Nature, Characteristics and Fundamental Causes

Authors: Musa Bala Zakari, Mark Button

Abstract:

This paper explores the extent, nature, and characteristics of public sector corruption in Nigeria and the enhancement of the major anti-corruption initiatives (reforms), thereby providing insight into the types, forms and causes of corruption in Nigeria. This paper argues that attempts to devise and suggest effective anti-corruption reforms to control systemic corruption in Nigeria require identifying the most prevalent types of corruption targeted and tackling the fundamental country specific causes. It analyses two types of public sector corruption as it relates to Nigeria and the workings of its inefficient governance system. This paper concludes with the imperative of a collective action against corruption supported by considerable amount of domestic political will existing in a favourable policy context. In undertaking this, the paper draws upon publicly available documents, case laws review and semi-structured interviews conducted with various personnel working in the field of corruption in the dedicated anticorruption agencies, academics, and practitioners from other relevant institutions of accountability.

Keywords: corruption, development, good governance, public sector

Procedia PDF Downloads 152
5555 Exploring Entrepreneurship Intension Aptitude along Gender Lines among Business Decision Students in Nigeria

Authors: Paul O. Udofot, Emem B. Inyang

Abstract:

The study investigated the variability in aptitude amidst interactive effects of several social and environmental factors that could influence individual tendencies to engage in entrepreneurship in Nigeria. Consequently, the study targeted a population having similar backgrounds in type and level of higher education that are tailored toward enterprise management and development in the Niger Delta region of Nigeria. A two-stage sampling procedure was used to select 67 respondents. Primarily, the study assessed the salient pattern of entrepreneurship aptitude of respondents, and estimated and analyzed the index against their personal characteristics. Male respondents belonged to two extremes of aptitude index ranges (poor and high). Though female respondents did not exhibit a poor entrepreneurship aptitude index, the incidence percentage of the high index range of entrepreneurship aptitude among male trainees was more than the combined incidence percentage of their female counterparts. Respondents’ backgrounds outside gender presented a serious influence on entrepreneurship uptake likelihood if all situations were normal.

Keywords: aptitude, entrepreneurship, entrepreneurial orientation, gender divide, intention, trainee

Procedia PDF Downloads 287
5554 Systematic Mapping Study of Digitization and Analysis of Manufacturing Data

Authors: R. Clancy, M. Ahern, D. O’Sullivan, K. Bruton

Abstract:

The manufacturing industry is currently undergoing a digital transformation as part of the mega-trend Industry 4.0. As part of this phase of the industrial revolution, traditional manufacturing processes are being combined with digital technologies to achieve smarter and more efficient production. To successfully digitally transform a manufacturing facility, the processes must first be digitized. This is the conversion of information from an analogue format to a digital format. The objective of this study was to explore the research area of digitizing manufacturing data as part of the worldwide paradigm, Industry 4.0. The formal methodology of a systematic mapping study was utilized to capture a representative sample of the research area and assess its current state. Specific research questions were defined to assess the key benefits and limitations associated with the digitization of manufacturing data. Research papers were classified according to the type of research and type of contribution to the research area. Upon analyzing 54 papers identified in this area, it was noted that 23 of the papers originated in Germany. This is an unsurprising finding as Industry 4.0 is originally a German strategy with supporting strong policy instruments being utilized in Germany to support its implementation. It was also found that the Fraunhofer Institute for Mechatronic Systems Design, in collaboration with the University of Paderborn in Germany, was the most frequent contributing Institution of the research papers with three papers published. The literature suggested future research directions and highlighted one specific gap in the area. There exists an unresolved gap between the data science experts and the manufacturing process experts in the industry. The data analytics expertise is not useful unless the manufacturing process information is utilized. A legitimate understanding of the data is crucial to perform accurate analytics and gain true, valuable insights into the manufacturing process. There lies a gap between the manufacturing operations and the information technology/data analytics departments within enterprises, which was borne out by the results of many of the case studies reviewed as part of this work. To test the concept of this gap existing, the researcher initiated an industrial case study in which they embedded themselves between the subject matter expert of the manufacturing process and the data scientist. Of the papers resulting from the systematic mapping study, 12 of the papers contributed a framework, another 12 of the papers were based on a case study, and 11 of the papers focused on theory. However, there were only three papers that contributed a methodology. This provides further evidence for the need for an industry-focused methodology for digitizing and analyzing manufacturing data, which will be developed in future research.

Keywords: analytics, digitization, industry 4.0, manufacturing

Procedia PDF Downloads 111
5553 Preparation and Evaluation of Zidovudine Nanoparticles

Authors: D. R. Rama Brahma Reddy, A. Vijaya Sarada Reddy

Abstract:

Nanoparticles represent a promising drug delivery system of controlled and targeted drug release. They are specially designed to release the drug in the vicinity of target tissue. The aim of this study was to prepare and evaluate polymethacrylic acid nanoparticles containing Zidovudine in different drug to polymer ratio by nanoprecipitation method. SEM indicated that nanoparticles have a discrete spherical structure without aggregation. The average particle size was found to be 120 ± 0.02 - 420 ± 0.05 nm. The particle size of the nanoparticles was gradually increased with increase in the proportion of polymethacrylic acid polymer. The drug content of the nanoparticles was increasing on increasing polymer concentration up to a particular concentration. No appreciable difference was observed in the extent of degradation of product during 60 days in which, nanoparticles were stored at various temperatures. FT-IR studies indicated that there was no chemical interaction between drug and polymer and stability of drug. The in-vitro release behavior from all the drug loaded batches was found to be zero order and provided sustained release over a period of 24 h. The developed formulation overcome and alleviates the drawbacks and limitations of Zidovudine sustained release formulations and could possibility be advantageous in terms of increased bio availability of Zidovudine.

Keywords: nanoparticles, zidovudine, biodegradable, polymethacrylic acid

Procedia PDF Downloads 626
5552 Chemical Fingerprinting of the Ephedrine Pathway to Methamphetamine

Authors: Luke Andrighetto, Paul G. Stevenson, Luke C. Henderson, Jim Pearson, Xavier A. Conlan

Abstract:

As pseudoephedrine, a common ingredient in cold and flu medications is closely monitored and restricted in Australia, alternative methods of accessing it are of interest. The impurities and by-products of every reaction step of pseudoephedrine/ephedrine and methamphetamine synthesis have been mapped in order to develop a chemical fingerprint based on synthetic route. Likewise, seized methamphetamine contains a combination of different cutting agents and starting materials. Therefore, in-silico optimised two-dimensional HPLC with DryLab® and OpenMS® software has been used to efficiently separate complex seizure samples. An excellent match between simulated and real separations was observed. Targeted separation of model compounds was completed with significantly reduced method development time. This study produced a two-dimensional separation regime that offers unprecedented separation power (separation space) while maintaining a rapid analysis time that is faster than those previously reported for gas chromatography, single dimension high performance liquid chromatography or capillary electrophoresis.

Keywords: chemical fingerprint, ephedrine, methamphetamine, two-dimensional HPLC

Procedia PDF Downloads 459
5551 Micro-CT Assessment of Fracture Healing with Targeted Delivery of Tocotrienol in Osteoporosis Model

Authors: Ahmad Nazrun Shuid, Isa Naina Mohamed, Nurul Izzah Ibrahim, Norazlina Mohamed

Abstract:

Studies have shown that oral tocotrienol, a potent vitamin E, promoted fracture healing of osteoporotic bone. In this study, tocotrienol was combined with a polymer carrier (PLGA), and injected to the fracture site. The slow and constant release of tocotrienol particles would promote fracture healing of post-menopausal osteoporosis rat model. Fracture healing was assessed using micro-CT. Twenty-four Sprague-Dawley rats were ovariectomised or sham-operated and the left tibiae were fractured and fixed with plate and screws. The fractures were created at the upper third of the left tibiae. The rats were divided into 3 groups: sham-operated (SO), ovariectomised-control (OVxC) and PLGA-incorporated tocotrienol treatment (OVx + TT) groups. After 4 weeks, the OVx + TT group showed significantly better callus fracture healing than the OVxC group. In conclusion, tocotrienol-incorporated PLGA was able to promote fracture healing of osteoporotic bone.

Keywords: osteoporosis, micro-CT, tocotrienol, PLGA, fracture

Procedia PDF Downloads 668
5550 Engineering of E-Learning Content Creation: Case Study for African Countries

Authors: María-Dolores Afonso-Suárez, Nayra Pumar-Carreras, Juan Ruiz-Alzola

Abstract:

This research addresses the use of an e-Learning creation methodology for learning objects. Throughout the process, indicators are being gathered, to determine if it responds to the main objectives of an engineering discipline. These parameters will also indicate if it is necessary to review the creation cycle and readjust any phase. Within the project developed for this study, apart from the use of structured methods, there has been a central objective: the establishment of a learning atmosphere. A place where all the professionals involved are able to collaborate, plan, solve problems and determine guides to follow in order to develop creative and innovative solutions. It has been outlined as a blended learning program with an assessment plan that proposes face to face lessons, coaching, collaboration, multimedia and web based learning objects as well as support resources. The project has been drawn as a long term task, the pilot teaching actions designed provide the preliminary results object of study. This methodology is been used in the creation of learning content for the African countries of Senegal, Mauritania and Cape Verde. It has been developed within the framework of the MACbioIDi, an Interreg European project for the International cooperation and development. The educational area of this project is focused in the training and advice of professionals of the medicine as well as engineers in the use of applications of medical imaging technology, specifically the 3DSlicer application and the Open Anatomy Browser.

Keywords: teaching contents engineering, e-learning, blended learning, international cooperation, 3dslicer, open anatomy browser

Procedia PDF Downloads 172
5549 Absolute Quantification of the Bexsero Vaccine Component Factor H Binding Protein (fHbp) by Selected Reaction Monitoring: The Contribution of Mass Spectrometry in Vaccinology

Authors: Massimiliano Biagini, Marco Spinsanti, Gabriella De Angelis, Sara Tomei, Ilaria Ferlenghi, Maria Scarselli, Alessia Biolchi, Alessandro Muzzi, Brunella Brunelli, Silvana Savino, Marzia M. Giuliani, Isabel Delany, Paolo Costantino, Rino Rappuoli, Vega Masignani, Nathalie Norais

Abstract:

The gram-negative bacterium Neisseria meningitidis serogroup B (MenB) is an exclusively human pathogen representing the major cause of meningitides and severe sepsis in infants and children but also in young adults. This pathogen is usually present in the 30% of healthy population that act as a reservoir, spreading it through saliva and respiratory fluids during coughing, sneezing, kissing. Among surface-exposed protein components of this diplococcus, factor H binding protein is a lipoprotein proved to be a protective antigen used as a component of the recently licensed Bexsero vaccine. fHbp is a highly variable meningococcal protein: to reflect its remarkable sequence variability, it has been classified in three variants (or two subfamilies), and with poor cross-protection among the different variants. Furthermore, the level of fHbp expression varies significantly among strains, and this has also been considered an important factor for predicting MenB strain susceptibility to anti-fHbp antisera. Different methods have been used to assess fHbp expression on meningococcal strains, however, all these methods use anti-fHbp antibodies, and for this reason, the results are affected by the different affinity that antibodies can have to different antigenic variants. To overcome the limitations of an antibody-based quantification, we developed a quantitative Mass Spectrometry (MS) approach. Selected Reaction Monitoring (SRM) recently emerged as a powerful MS tool for detecting and quantifying proteins in complex mixtures. SRM is based on the targeted detection of ProteoTypicPeptides (PTPs), which are unique signatures of a protein that can be easily detected and quantified by MS. This approach, proven to be highly sensitive, quantitatively accurate and highly reproducible, was used to quantify the absolute amount of fHbp antigen in total extracts derived from 105 clinical isolates, evenly distributed among the three main variant groups and selected to be representative of the fHbp circulating subvariants around the world. We extended the study at the genetic level investigating the correlation between the differential level of expression and polymorphisms present within the genes and their promoter sequences. The implications of fHbp expression on the susceptibility of the strain to killing by anti-fHbp antisera are also presented. To date this is the first comprehensive fHbp expression profiling in a large panel of Neisseria meningitidis clinical isolates driven by an antibody-independent MS-based methodology, opening the door to new applications in vaccine coverage prediction and reinforcing the molecular understanding of released vaccines.

Keywords: quantitative mass spectrometry, Neisseria meningitidis, vaccines, bexsero, molecular epidemiology

Procedia PDF Downloads 312
5548 Efficiency and Equity in Italian Secondary School

Authors: Giorgia Zotti

Abstract:

This research comprehensively investigates the multifaceted interplay determining school performance, individual backgrounds, and regional disparities within the landscape of Italian secondary education. Leveraging data gleaned from the INVALSI 2021-2022 database, the analysis meticulously scrutinizes two fundamental distributions of educational achievements: the standardized Invalsi test scores and official grades in Italian and Mathematics, focusing specifically on final-year secondary school students in Italy. Applying a comprehensive methodology, the study initially employs Data Envelopment Analysis (DEA) to assess school performances. This methodology involves constructing a production function encompassing inputs (hours spent at school) and outputs (Invalsi scores in Italian and Mathematics, along with official grades in Italian and Math). The DEA approach is applied in both of its versions: traditional and conditional. The latter incorporates environmental variables such as school type, size, demographics, technological resources, and socio-economic indicators. Additionally, the analysis delves into regional disparities by leveraging the Theil Index, providing insights into disparities within and between regions. Moreover, in the frame of the inequality of opportunity theory, the study quantifies the inequality of opportunity in students' educational achievements. The methodology applied is the Parametric Approach in the ex-ante version, considering diverse circumstances like parental education and occupation, gender, school region, birthplace, and language spoken at home. Consequently, a Shapley decomposition is applied to understand how much each circumstance affects the outcomes. The outcomes of this comprehensive investigation unveil pivotal determinants of school performance, notably highlighting the influence of school type (Liceo) and socioeconomic status. The research unveils regional disparities, elucidating instances where specific schools outperform others in official grades compared to Invalsi scores, shedding light on the intricate nature of regional educational inequalities. Furthermore, it emphasizes a heightened inequality of opportunity within the distribution of Invalsi test scores in contrast to official grades, underscoring pronounced disparities at the student level. This analysis provides insights for policymakers, educators, and stakeholders, fostering a nuanced understanding of the complexities within Italian secondary education.

Keywords: inequality, education, efficiency, DEA approach

Procedia PDF Downloads 75
5547 Exploration and Evaluation of the Effect of Multiple Countermeasures on Road Safety

Authors: Atheer Al-Nuaimi, Harry Evdorides

Abstract:

Every day many people die or get disabled or injured on roads around the world, which necessitates more specific treatments for transportation safety issues. International road assessment program (iRAP) model is one of the comprehensive road safety models which accounting for many factors that affect road safety in a cost-effective way in low and middle income countries. In iRAP model road safety has been divided into five star ratings from 1 star (the lowest level) to 5 star (the highest level). These star ratings are based on star rating score which is calculated by iRAP methodology depending on road attributes, traffic volumes and operating speeds. The outcome of iRAP methodology are the treatments that can be used to improve road safety and reduce fatalities and serious injuries (FSI) numbers. These countermeasures can be used separately as a single countermeasure or mix as multiple countermeasures for a location. There is general agreement that the adequacy of a countermeasure is liable to consistent losses when it is utilized as a part of mix with different countermeasures. That is, accident diminishment appraisals of individual countermeasures cannot be easily added together. The iRAP model philosophy makes utilization of a multiple countermeasure adjustment factors to predict diminishments in the effectiveness of road safety countermeasures when more than one countermeasure is chosen. A multiple countermeasure correction factors are figured for every 100-meter segment and for every accident type. However, restrictions of this methodology incorporate a presumable over-estimation in the predicted crash reduction. This study aims to adjust this correction factor by developing new models to calculate the effect of using multiple countermeasures on the number of fatalities for a location or an entire road. Regression models have been used to establish relationships between crash frequencies and the factors that affect their rates. Multiple linear regression, negative binomial regression, and Poisson regression techniques were used to develop models that can address the effectiveness of using multiple countermeasures. Analyses are conducted using The R Project for Statistical Computing showed that a model developed by negative binomial regression technique could give more reliable results of the predicted number of fatalities after the implementation of road safety multiple countermeasures than the results from iRAP model. The results also showed that the negative binomial regression approach gives more precise results in comparison with multiple linear and Poisson regression techniques because of the overdispersion and standard error issues.

Keywords: international road assessment program, negative binomial, road multiple countermeasures, road safety

Procedia PDF Downloads 240