Search results for: soil classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5065

Search results for: soil classification

4195 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal

Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan

Abstract:

This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.

Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal

Procedia PDF Downloads 113
4194 The Depth Penetration of Beryllium-7, ⁷BE as a Tracer in the Sembrong Catchment Area Study

Authors: J. Sharib, D. N. A. Tugi, M. T. Ishak, M. I. A. Adziz

Abstract:

The main purpose of this research paper conducted was to study the penetration of ⁷Be onto the soil surface for two different seasons in different areas of agricultural activity. The study was conducted during the dry and wet seasons from January to May 2019 in the Sembrong catchment area. The Sembrong Catchment Area is located in the district of Kluang, Johor in the South of Peninsular Malaysia and was selected based on the small size of the catchment and surrounded by various agricultural activities. A total of twenty (20) core soil samples to a depth of 10 cm each were taken using a metal corer made of metal. All these samples were brought to the Radiochemistry and Environment Group (RAS), Nuclear Malaysia, Block 23, Bangi, Malaysia, to enable the preparation, drying and analysis work to be carried out. Furthermore, all samples were oven dried at 45 – 60 ºC so that the dry weight became constant and gently disaggregated. Lastly, dried samples were milled and sieved at 2 mm before being packed into a well-type container and ready for ⁷Be analysis. The result of the analysis shows that the penetration of ⁷Be into the soil surface decreases by an exponential decay. The distribution of profiles to the interior of the soil surface or ho values ranged from 1.56 to 3.62 kg m⁻² and from 2.59 to 4.17 kg m⁻² for both dry and wet seasons. Consequently, the dry season has given a lower ho value when compared to the wet season. In conclusion, ⁷Be is a very suitable tracer to be used in determining the penetration onto the soil surface or ho values for the two different seasons.

Keywords: depth penetration, dry season, wet season, sembrong catchment, well type container

Procedia PDF Downloads 127
4193 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier

Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim

Abstract:

There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.

Keywords: data mining, document classifier, text mining, topic modeling

Procedia PDF Downloads 402
4192 Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN

Authors: Kwangmin Joo

Abstract:

Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images.

Keywords: Disc space narrowing, Degenerative disc disorders, Deep learning based segmentation, Clustering technique

Procedia PDF Downloads 125
4191 Deep Foundations: Analysis of the Lateral Response of Closed Ended Steel Tubular Piles Embedded in Sandy Soil Using P-Y Curves

Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill

Abstract:

Understanding the behaviour of the piles under the action of the independent lateral loads and the precise prediction of the capacity of piles subjected to different lateral loads are vital topics in foundation design and analysis. Moreover, the laterally loaded behaviour of deep foundations penetrated in cohesive and non-cohesive soils is basically analysed by the Winkler Model (beam on elastic foundation), in which the interaction between the pile embedded depth and contacted soil is simulated by nonlinear p–y curves. The presence of many approaches to interpret the behaviour of soil-pile interaction has resulted in numerous outputs and indicates that no general approach has yet been adopted. The current study presents the result of numerical modelling of the behaviour of steel tubular piles (25.4mm) outside diameter with various embedment depth-to-diameter ratios (L/d) embedded in a sand calibrated chamber of known relative density. The study revealed that the shear strength parameters of the sand specimens and the (L/d) ratios are the most significant factor influencing the response of the pile and its capacity while taking into consideration the complex interaction between the pile and soil. Good agreement has been achieved when comparing the application of this modelling approach with experimental physical modelling carried out by another researcher.

Keywords: deep foundations, slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), non-cohesive soil

Procedia PDF Downloads 299
4190 One-Shot Text Classification with Multilingual-BERT

Authors: Hsin-Yang Wang, K. M. A. Salam, Ying-Jia Lin, Daniel Tan, Tzu-Hsuan Chou, Hung-Yu Kao

Abstract:

Detecting user intent from natural language expression has a wide variety of use cases in different natural language processing applications. Recently few-shot training has a spike of usage on commercial domains. Due to the lack of significant sample features, the downstream task performance has been limited or leads to an unstable result across different domains. As a state-of-the-art method, the pre-trained BERT model gathering the sentence-level information from a large text corpus shows improvement on several NLP benchmarks. In this research, we are proposing a method to change multi-class classification tasks into binary classification tasks, then use the confidence score to rank the results. As a language model, BERT performs well on sequence data. In our experiment, we change the objective from predicting labels into finding the relations between words in sequence data. Our proposed method achieved 71.0% accuracy in the internal intent detection dataset and 63.9% accuracy in the HuffPost dataset. Acknowledgment: This work was supported by NCKU-B109-K003, which is the collaboration between National Cheng Kung University, Taiwan, and SoftBank Corp., Tokyo.

Keywords: OSML, BERT, text classification, one shot

Procedia PDF Downloads 101
4189 Soil/Phytofisionomy Relationship in Southeast of Chapada Diamantina, Bahia, Brazil

Authors: Marcelo Araujo da Nóbrega, Ariel Moura Vilas Boas

Abstract:

This study aims to characterize the physicochemical aspects of the soils of southeastern Chapada Diamantina - Bahia related to the phytophysiognomies of this area, rupestrian field, small savanna (savanna fields), small dense savanna (savanna fields), savanna (Cerrado), dry thorny forest (Caatinga), dry thorny forest/savanna, scrub (Carrasco - ecotone), forest island (seasonal semi-deciduous forest - Capão) and seasonal semi-deciduous forest. To achieve the research objective, soil samples were collected in each plant formation and analyzed in the soil laboratory of ESALQ - USP in order to identify soil fertility through the determination of pH, organic matter, phosphorus, potassium, calcium, magnesium, potential acidity, sum of bases, cation exchange capacity and base saturation. The composition of soil particles was also checked; that is, the texture, step made in the terrestrial ecosystems laboratory of the Department of Ecology of USP and in the soil laboratory of ESALQ. Another important factor also studied was to show the variations in the vegetation cover in the region as a function of soil moisture in the different existing physiographic environments. Another study carried out was a comparison between the average soil moisture data with precipitation data from three locations with very different phytophysiognomies. The soils found in this part of Bahia can be classified into 5 classes, with a predominance of oxisols. All of these classes have a great diversity of physical and chemical properties, as can be seen in photographs and in particle size and fertility analyzes. The deepest soils are located in the Central Pediplano of Chapada Diamantina where the dirty field, the clean field, the executioner and the semideciduous seasonal forest (Capão) are located, and the shallower soils were found in the rupestrian field, dry thorny forest, and savanna fields, the latter located on a hillside. As for the variations in water in the region's soil, the data indicate that there were large spatial variations in humidity in both the rainy and dry periods.

Keywords: Bahia, Brazil, chapada diamantina, phytophysiognomies, soils

Procedia PDF Downloads 144
4188 Impact of Wastewater Irrigation on Soil and Vegetable Quality in Peri Urban Cropping System

Authors: Neelam Patel

Abstract:

Farmers in peri-urban areas of developing countries depend on wastewater for Irrigation but with great environmental and health hazards. Since, irrigation with wastewater is growing in the developing countries but its suitability to environment and other health factors should be checked. Metal pollution is a very serious issue these days, various neuro, physical and mental disorders are prevailing due to the metal pollution. Waste water contaminated with heavy metals got accumulated in the soil and then bioaccumulated in the vegetables irrigated with waste water. A 3-year field experiment on cauliflower has been done by using wastewater with two different methods of irrigation i.e. Drip and Flood irrigation and checked the impact on the cauliflower and soil quality. Heavy metals (Cr, Cu, Ni, Zn and Pb) have been studied in wastewater used for the irrigation and their accumulation in the soil and vegetable was studied. The study reveals that the concentration of heavy metals increases by 100 times from initial in soil. After 3 years, the concentration of Copper(41 ppm) Chromium(39.4 ppm) Lead(62.2ppm) Zinc(100.5 ppm) and Nickel(75.7 ppm) in Flood irrigated soil while in Drip irrigated soil , Copper (36.4 ppm) Chromium(36.8 ppm) Lead(53.7 ppm) Zinc(70.3 ppm) and Nickel (53.9 ppm). In vegetable, the wastewater irrigated shows an increase in the concentration of metals with the time and the accumulation of Nickel (6.98ppm), Lead (30.18 ppm) and Zinc (55.83 ppm) in drip irrigated while in flood irrigated, Nickel (30.58 ppm), Lead (73.95ppm) Zinc (93.50 ppm) and Copper (54.58 ppm) in edible part of cauliflower which is above the permissible limits suggested by different international agencies. On other hand, the nutrients content i.e. Nitrogen, Phosphorus and Potassium in soil was increased in concentration with time. The study pointed out that the metal contaminated waste water consisting the nutrients in it but also heavy metals which causes health issues in human. While the increase in concentration of nutrients in the soil indirectly helpful to the farmers economically by restricting the use of fertilizers. But the metal pollution directly affects the health of human being. The different method of irrigation suggested that the drip irrigated vegetable acquired less metal then the flood one and is a better combo with the waste water for the irrigation.

Keywords: drip irrigation, heavy metals, metal contamination, waste water

Procedia PDF Downloads 327
4187 Effects of Organic Manure on the Growth of Jatropha curcas in Kogi State North Central Nigeria

Authors: S. O. Amhakhian, M. Idenyi

Abstract:

A pot experiment was conducted to assess the effects of organic manure on the growth of Jatropha curcas L seedlings at the Faculty of Agriculture, Kogi State University, Anyigba. There were seven treatments, namely, three (3) levels of poultry droppings (PD) (20g, 40g and 60g/kg soil) designated as T1, T2 and T3 respectively, three (3) levels of solid cattle dung (CD) (40g, 80g and 120g/kg soil designated as T4, T5, and T6) respectively, and control (no organic manure) designated as T7. All the treatments were replicated three (3) times. Jathopha curcas L seeds were sown into the polythene pot and observed for the period of six (6) weeks. Growth parameters measured were plant height, leaf count, stem girth, numbers of branches, and fresh weight. Mean separation using F-LSD0.05 showed that 120g cow dung/kg soil (T6) gave optional level of organic manure required for Jatropha curcas throughout the growth period of the seedlings. All the treatments having organic manure were significantly better than the control (P < 0.05) except at two weeks after planting where all the treatments gave the same number of leaves and at the sixth week after planting where only 120g cow dung/kg soil (T6) showed significant difference (P <0.05) in the number of branches. As a result, 120g cow dung/kg soil (T6) is therefore recommended for raising Jatrophus curcas L seedlings in Anyigba, Kogi State.

Keywords: Jatropha curcas, cow-dungs, seedlings, poultry dropping, polythene-pot

Procedia PDF Downloads 318
4186 Soil Salinity from Wastewater Irrigation in Urban Greenery

Authors: H. Nouri, S. Chavoshi Borujeni, S. Anderson, S. Beecham, P. Sutton

Abstract:

The potential risk of salt leaching through wastewater irrigation is of concern for most local governments and city councils. Despite the necessity of salinity monitoring and management in urban greenery, most attention has been on agricultural fields. This study was defined to investigate the capability and feasibility of monitoring and predicting soil salinity using near sensing and remote sensing approaches using EM38 surveys, and high-resolution multispectral image of WorldView3. Veale Gardens within the Adelaide Parklands was selected as the experimental site. The results of the near sensing investigation were validated by testing soil salinity samples in the laboratory. Over 30 band combinations forming salinity indices were tested using image processing techniques. The outcomes of the remote sensing and near sensing approaches were compared to examine whether remotely sensed salinity indicators could map and predict the spatial variation of soil salinity through a potential statistical model. Statistical analysis was undertaken using the Stata 13 statistical package on over 52,000 points. Several regression models were fitted to the data, and the mixed effect modelling was selected the most appropriate one as it takes to account the systematic observation-specific unobserved heterogeneity. Results showed that SAVI (Soil Adjusted Vegetation Index) was the only salinity index that could be considered as a predictor for soil salinity but further investigation is needed. However, near sensing was found as a rapid, practical and realistically accurate approach for salinity mapping of heterogeneous urban vegetation.

Keywords: WorldView3, remote sensing, EM38, near sensing, urban green spaces, green smart cities

Procedia PDF Downloads 162
4185 The Influence of Conservation Measures, Limiting Soil Degradation, on the Quality of Surface Water Resources

Authors: V. Sobotková, B. Šarapatka, M. Dumbrovský, J. Uhrová, M. Bednář

Abstract:

The paper deals with the influence of implemented conservation measures on the quality of surface water resources. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity to improve the quality of the environment and sustainability of crop production by means of better soil and water conservation. The most important degradation factor in our study area in the Hubenov drinking water reservoir catchment basin was water erosion together with loss of organic matter. Hubenov Reservoir water resources were monitored for twenty years (1990–2010) to collect water quality data for nitrate nitrogen (N-NO3-), total P, and undissolved substances. Results obtained from measurements taken before and after land consolidation indicated a decrease in the linear trend of N-NO3- and total P concentrations, this was achieved through implementation of conservation measures limiting soil degradation in the Hubenov reservoir catchment area.

Keywords: complex land consolidation, degradation, land use, soil and water conservation, surface water resources

Procedia PDF Downloads 357
4184 Interaction with Earth’s Surface in Remote Sensing

Authors: Spoorthi Sripad

Abstract:

Remote sensing is a powerful tool for acquiring information about the Earth's surface without direct contact, relying on the interaction of electromagnetic radiation with various materials and features. This paper explores the fundamental principle of "Interaction with Earth's Surface" in remote sensing, shedding light on the intricate processes that occur when electromagnetic waves encounter different surfaces. The absorption, reflection, and transmission of radiation generate distinct spectral signatures, allowing for the identification and classification of surface materials. The paper delves into the significance of the visible, infrared, and thermal infrared regions of the electromagnetic spectrum, highlighting how their unique interactions contribute to a wealth of applications, from land cover classification to environmental monitoring. The discussion encompasses the types of sensors and platforms used to capture these interactions, including multispectral and hyperspectral imaging systems. By examining real-world applications, such as land cover classification and environmental monitoring, the paper underscores the critical role of understanding the interaction with the Earth's surface for accurate and meaningful interpretation of remote sensing data.

Keywords: remote sensing, earth's surface interaction, electromagnetic radiation, spectral signatures, land cover classification, archeology and cultural heritage preservation

Procedia PDF Downloads 59
4183 Ground Response Analyses in Budapest Based on Site Investigations and Laboratory Measurements

Authors: Zsolt Szilvágyi, Jakub Panuska, Orsolya Kegyes-Brassai, Ákos Wolf, Péter Tildy, Richard P. Ray

Abstract:

Near-surface loose sediments and local ground conditions in general have a major influence on seismic response of structures. It is a difficult task to model ground behavior in seismic soil-structure-foundation interaction problems, fully account for them in seismic design of structures, or even properly consider them in seismic hazard assessment. In this study, we focused on applying seismic soil investigation methods, used for determining soil stiffness and damping properties, to response analysis used in seismic design. A site in Budapest, Hungary was investigated using Multichannel Analysis of Surface Waves, Seismic Cone Penetration Tests, Bender Elements, Resonant Column and Torsional Shear tests. Our aim was to compare the results of the different test methods and use the resulting soil properties for 1D ground response analysis. Often in practice, there are little-to no data available on dynamic soil properties and estimated parameters are used for design. Therefore, a comparison is made between results based on estimated parameters and those based on detailed investigations. Ground response results are also compared to Eurocode 8 design spectra.

Keywords: MASW, resonant column test, SCPT, site response analysis, torsional shear test

Procedia PDF Downloads 400
4182 Impacts of Tillage on Biodiversity of Microarthropod Communities in Two Different Crop Systems

Authors: Leila Ramezani, Mohammad Saeid Mossadegh

Abstract:

Different uses of land by humans alter the physico chemical characteristics of the soil and affect the soil microhabitat. The objective of this study was to evaluate the influence of tillage in three different human land uses on microarthropods biodiversity in Khuzestan province, southwest of Iran. Three microhabitats including a permanent grassland with old Date-Palms around and no till system, and two wheat fields, one with conservative agricultural practices and low till system and the other with conventional agricultural practices (deep tillage), were compared for the biodiversity of the two main groups of soil microarthropods (Oribatida and Collembola). Soil samples were collected from the top to a depth of 15 cm bimonthly during a period of two years. Significant differences in the biodiversity index of microarthropods were observed between the different tillage systems (F = 36.748, P =0.000). Indeed, analysis of species diversity showed that the diversity index at the conservative field with low till (2.58 ± 0.01) was higher (p < 0.05) than the conventional tilled field (2.45 ± 0.08) and the diversity of natural grassland was the highest (2.79 ± 0.19, p < 0.05). Indeed, the index of biodiversity and population abundance differed significantly in different seasons (p < 0.00).

Keywords: biodiversity, Collembola, microarthropods, Oribatida

Procedia PDF Downloads 175
4181 Floristic Diversity, Composition and Environmental Correlates on the Arid, Coralline Islands of the Farasan Archipelago, Red SEA, Saudi Arabia

Authors: Khalid Al Mutairi, Mashhor Mansor, Magdy El-Bana, Asyraf Mansor, Saud AL-Rowaily

Abstract:

Urban expansion and the associated increase in anthropogenic pressures have led to a great loss of the Red Sea’s biodiversity. Floristic composition, diversity, and environmental controls were investigated for 210 relive's on twenty coral islands of Farasan in the Red Sea, Saudi Arabia. Multivariate statistical analyses for classification (Cluster Analysis), ordination (Detrended Correspondence Analysis (DCA), and Redundancy Analysis (RDA) were employed to identify vegetation types and their relevance to the underlying environmental gradients. A total of 191 flowering plants belonging to 53 families and 129 genera were recorded. Geophytes and chamaephytes were the main life forms in the saline habitats, whereas therophytes and hemicryptophytes dominated the sandy formations and coral rocks. The cluster analysis and DCA ordination identified twelve vegetation groups that linked to five main habitats with definite floristic composition and environmental characteristics. The constrained RDA with Monte Carlo permutation tests revealed that elevation and soil salinity were the main environmental factors explaining the vegetation distributions. These results indicate that the flora of the study archipelago represents a phytogeographical linkage between Africa and Saharo-Arabian landscape functional elements. These findings should guide conservation and management efforts to maintain species diversity, which is threatened by anthropogenic activities and invasion by the exotic invasive tree Prosopis juliflora (Sw.) DC.

Keywords: biodiversity, classification, conservation, ordination, Red Sea

Procedia PDF Downloads 343
4180 Effect of Land Use and Abandonment on Soil Carbon and Nitrogen Depletion by Runoff in Shallow Soils under Semi-Arid Mediterranean Climate

Authors: Mohamed Emran, Giovanni Pardini, Maria Gispert, Mohamed Rashad

Abstract:

Land use and abandonment in semi-arid degraded ecosystems may cause regressive dynamics in vegetation cover affecting organic matter contents, soil nutrients and structural stability, thus reducing soil resistance to erosion. Mediterranean areas are generally subjected to climatic fluctuations, which modify soil conditions and hydrological processes, such as runoff and water infiltration within the upper soil horizons. Low erosion rates occur in very fragile and shallow soils with minor clay content progressively decrease organic carbon C and nitrogen N pools in the upper soil horizons. Seven soils were selected representing variant context of land use and abandonment at the Cap de Creus Peninsula, Catalonia, NE Spain, from recent cultivated vines and olive groves, mid abandoned forests standing under cork and pine trees, pasture to late abandoned Cistus and Erica scrubs. The aim of this work was to study the effect of changes in land use and abandonment on the depletion of soil organic carbon and nitrogen transported by runoff water in shallow soils after natural rainfall events during two years with different rainfall patterns (1st year with low rainfall and 2nd year with high rainfall) by i) monitoring the most significant soil erosion parameters at recorded rainfall events, ii) studying the most relevant soil physical and chemical characteristics on seasonal basis and iii) analysing the seasonal trends of depleted carbon and nitrogen and their interaction with soil surface compaction parameters. Significant seasonal variability was observed in the relevant soil physical and chemical parameters and soil erosion parameters in all soils to establish their evolution under land use and abandonment during two years of different rainfall patterns (214 and 487 mm per year), giving important indications on soil response to rainfall impacts. Erosion rates decreased significantly with the increasing of soil C and N under low and high rainfall. In cultivated soils, C and N depletion increased by 144% and 115%, respectively by 13% increase in erosion rates during the 1st year with respect to the 2nd year. Depleted C and N were proportionally higher in soils under vines and olive with vulnerable soil structure and low soil resilience leading to degradation, altering nutrients cycles and causing adverse impact on environmental quality. Statistical analysis underlined that, during the 1st year, soil surface was less effective in preserving stocks of organic resources leading to higher susceptibility to erosion with consequent C and N depletion. During the 2nd year, higher organic reserve and water storage occurred despite the increasing of C and N loss with an effective contribution from soil surface compaction parameters. The overall estimation during the two years indicated clear differences among soils under vines, olive, cork and pines, suggesting on the one hand, that current cultivation practices are inappropriate and that reforestation with pines may delay the achievement of better soil conditions. On the other hand, the natural succession of vegetation under Cistus, pasture and Erica suggests the recovery of good soil conditions.

Keywords: land abandonment, land use, nutrient's depletion, soil erosion

Procedia PDF Downloads 346
4179 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture

Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko

Abstract:

Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.

Keywords: classification, feature selection, texture analysis, tree algorithms

Procedia PDF Downloads 178
4178 Analysis of Matching Pursuit Features of EEG Signal for Mental Tasks Classification

Authors: Zin Mar Lwin

Abstract:

Brain Computer Interface (BCI) Systems have developed for people who suffer from severe motor disabilities and challenging to communicate with their environment. BCI allows them for communication by a non-muscular way. For communication between human and computer, BCI uses a type of signal called Electroencephalogram (EEG) signal which is recorded from the human„s brain by means of an electrode. The electroencephalogram (EEG) signal is an important information source for knowing brain processes for the non-invasive BCI. Translating human‟s thought, it needs to classify acquired EEG signal accurately. This paper proposed a typical EEG signal classification system which experiments the Dataset from “Purdue University.” Independent Component Analysis (ICA) method via EEGLab Tools for removing artifacts which are caused by eye blinks. For features extraction, the Time and Frequency features of non-stationary EEG signals are extracted by Matching Pursuit (MP) algorithm. The classification of one of five mental tasks is performed by Multi_Class Support Vector Machine (SVM). For SVMs, the comparisons have been carried out for both 1-against-1 and 1-against-all methods.

Keywords: BCI, EEG, ICA, SVM

Procedia PDF Downloads 278
4177 Assessment of Pollution Cd, Pb and as in Rice Cultivation in Savadkooh

Authors: Ghazal Banitahmasb, Nazanin Khakipour

Abstract:

More than 90 percent of the world's rice is produced and consumed in Asia. Heavy metal contamination of soil and water environments is a serious and growing problem. Toxin by human activities causes pollution in soils so that the intensity of metals in soils was exceeded. This study was done on 7 samples of rice cultivated in Savadkooh of Mazandaran province and soils; they were grown. The amount of heavy metals Arsenic, Lead and Cadmium were measured by atomic absorption. The test results showed that the amount of Lead in rice strain, Tarom A, was 0.768 ppm, the maximum amount of Cadmium in rice strain, Hashemi B, was 0.09 ppm and the highest levels of Arsenic was in red Tarom, 0.39 ppm. According to the results obtained in this study can be found all rice grown in Savadkooh city of Arsenic, Cadmium and Lead, but the measurements are less than specified in the national standard, and their use is safe for consumers. These results also indicate that positive and significant correlation between the studied heavy metals in soil and rice strains that grow there and by increasing the amount of heavy metals in the soil, the amount of these metals in crops grown on them is also increasing.

Keywords: heavy metals, Oryza sativa L., soil pollution, Savadkooh

Procedia PDF Downloads 415
4176 The Effect of Multiple Environmental Conditions on Acacia senegal Seedling’s Carbon, Nitrogen, and Hydrogen Contents: An Experimental Investigation

Authors: Abdelmoniem A. Attaelmanan, Ahmed A. H. Siddig

Abstract:

This study was conducted in light of continual global climate changes that projected increasing aridity, changes in soil fertility, and pollution. Plant growth and development largely depend on the combination of availing water and nutrients in the soil. Changes in the climate and atmospheric chemistry can cause serious effects on these growth factors. Plant carbon (C), nitrogen (N), and hydrogen (H) play a fundamental role in the maintenance of ecosystem structure and function. Hashab (Acacia senegal), which produces gum Arabic, supports dryland ecosystems in tropical zones by its potentiality to restore degraded soils; hence it is ecologically and economically important for the dry areas of sub-Saharan Africa. The study aims at investigating the effects of water stress (simulated drought) and poor soil type on Acacia senegal C, N, and H contents. Seven days old seedlings were assigned to the treatments in Split- plot design for four weeks. The main plot is irrigation interval (well-watered and water-stressed), and the subplot is soil types (silt and sand soils). Seedling's C%, N%, and H% were measured using CHNS-O Analyzer and applying Standard Test Method. Irrigation intervals and soil types had no effects on seedlings and leaves C%, N%, and H%, irrigation interval had affected stem C and H%, both irrigation intervals and soil types had affected root N% and interaction effect of water and soil was found on leaves and root's N%. Synthesis application of well-watered irrigation with soil that is rich in N and other nutrients would result in the greatest seedling C, N, and H content which will enhance growth and biomass accumulation and can play a crucial role in ecosystem productivity and services in the dryland regions.

Keywords: Acacia senegal, Africa, climate change, drylands, nutrients biomass, Sub-Saharan, Sudan

Procedia PDF Downloads 116
4175 Study of the Effect of Humic Acids on Soil Salinity Reduction

Authors: S. El Hasini, M. El Azzouzi, M. De Nobili, K. Azim, A. Zouahri

Abstract:

Soil salinization is one of the most severe environmental hazards which threaten sustainable agriculture in arid and semi-arid regions, including Morocco. In this regard the application of organic matter to saline soil has confirmed its effectiveness. The present study was aimed to examine the effect of humic acid which represent, among others, the important component of organic matter that contributes to reduce soil salinity. In fact, different composts taken from Agadir (Morocco), with different C/N ratio, were tested. After extraction and purification of humic acid, the interaction with Na2CO3 was carried out. The reduction of salinity is calculated as a value expressed in mg Na2CO3 equivalent/g HA. The results showed that humic acid had generally a significant effect on salinity. In that respect, the hypothesis proposed that carboxylic groups of humic acid create bonds with excess sodium in the soil to form a coherent complex which descends by leaching operation. The comparison between composts was based on C/N ratio, it showed that the compost with the lower ratio C/N had the most important effect on salinity reduction, whereas the compost with higher C/N ratio was less effective. The study is attended also to evaluate the quality of each compost by determining the humification index, we noticed that the compost which have the lowest C/N (20) ratio was relatively less stable, where a greater predominance of the humified substances, when the compost with C/N ratio is 35 exhibited higher stability.

Keywords: compost, humic acid, organic matter, salinity

Procedia PDF Downloads 241
4174 Stabilisation of a Soft Soil by Alkaline Activation

Authors: Mohammadjavad Yaghoubi, Arul Arulrajah, Mahdi M. Disfani, Suksun Horpibulsuk, Myint W. Bo, Stephen P. Darmawan

Abstract:

This paper investigates the changes in the strength development of a high water content soft soil stabilised with alkaline activation of fly ash (FA) to use in deep soil mixing (DSM) technology. The content of FA was 20% by dry mass of soil, and the alkaline activator was sodium silicate (Na2SiO3). Samples were cured for 3, 7, 14, 28 and 56 days to evaluate the effect of curing time on strength development. To study the effect of adding slag (S) to the mixture on the strength development, 5% S was replaced with FA. In addition, the effect of the initial unit weight of samples on strength development was studied by preparing specimens with two different static compaction stresses. This was to replicate the field conditions where during implementing the DSM technique, the pressure on the soil while being mixed, increases with depth. Unconfined compression strength (UCS), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) tests were conducted on the specimens. The results show that adding S to the FA based geopolymer activated by Na2SiO3 decreases the strength. Furthermore, samples prepared at a higher unit weight demonstrate greater strengths. Moreover, samples prepared at lower unit weight reached their final strength at about 14 days of curing, whereas the strength development continues to 56 days for specimens prepared at a higher unit weight.

Keywords: alkaline activation, curing time, fly ash, geopolymer, slag

Procedia PDF Downloads 338
4173 Investigation of Utilizing L-Band Horn Antenna in Landmine Detection

Authors: Ahmad H. Abdelgwad, Ahmed A. Nashat

Abstract:

Landmine detection is an important and yet challenging problem remains to be solved. Ground Penetrating Radar (GPR) is a powerful and rapidly maturing technology for subsurface threat identification. The detection methodology of GPR depends mainly on the contrast of the dielectric properties of the searched target and its surrounding soil. This contrast produces a partial reflection of the electromagnetic pulses that are being transmitted into the soil and then being collected by the GPR.  One of the most critical hardware components for the performance of GPR is the antenna system. The current paper explores the design and simulation of a pyramidal horn antenna operating at L-band frequencies (1- 2 GHz) to detect a landmine. A prototype model of the GPR system setup is developed to simulate full wave analysis of the electromagnetic fields in different soil types. The contrast in the dielectric permittivity of the landmine and the sandy soil is the most important parameter to be considered for detecting the presence of landmine. L-band horn antenna is proved to be well-versed in the investigation of landmine detection.

Keywords: full wave analysis, ground penetrating radar, horn antenna design, landmine detection

Procedia PDF Downloads 219
4172 Bacterial Community Diversity in Soil under Two Tillage Systems

Authors: Dalia Ambrazaitienė, Monika Vilkienė, Danute Karcauskienė, Gintaras Siaudinis

Abstract:

The soil is a complex ecosystem that is part of our biosphere. The ability of soil to provide ecosystem services is dependent on microbial diversity. T Tillage is one of the major factors that affect soil properties. The no-till systems or shallow ploughless tillage are opposite of traditional deep ploughing, no-tillage systems, for instance, increase soil organic matter by reducing mineralization rates and stimulating litter concentrations of the top soil layer, whereas deep ploughing increases the biological activity of arable soil layer and reduces the incidence of weeds. The role of soil organisms is central to soil processes. Although the number of microbial species in soil is still being debated, the metagenomic approach to estimate microbial diversity predicted about 2000 – 18 000 bacterial genomes in 1 g of soil. Despite the key role of bacteria in soil processes, there is still lack of information about the bacterial diversity of soils as affected by tillage practices. This study focused on metagenomic analysis of bacterial diversity in long-term experimental plots of Dystric Epihypogleyic Albeluvisols in western part of Lithuania. The experiment was set up in 2013 and had a split-plot design where the whole-plot treatments were laid out in a randomized design with three replicates. The whole-plot treatments consisted of two tillage methods - deep ploughing (22-25 cm) (DP), ploughless tillage (7-10 cm) (PT). Three subsamples (0-20 cm) were collected on October 22, 2015 for each of the three replicates. Subsamples from the DP and PT systems were pooled together wise to make two composition samples, one representing deep ploughing (DP) and the other ploughless tillage (PT). Genomic DNA from soil sample was extracted from approximately 200 mg field-moist soil by using the D6005 Fungal/Bacterial Miniprep set (Zymo Research®) following the manufacturer’s instructions. To determine bacterial diversity and community composition, we employed a culture – independent approach of high-throughput pyrosequencing of the 16S rRNA gene. Metagenomic sequencing was made with Illumina MiSeq platform in Base Clear Company. The microbial component of soil plays a crucial role in cycling of nutrients in biosphere. Our study was a preliminary attempt at observing bacterial diversity in soil under two common but contrasting tillage practices. The number of sequenced reads obtained for PT (161 917) was higher than DP (131 194). The 10 most abundant genus in soil sample were the same (Arthrobacter, Candidatus Saccharibacteria, Actinobacteria, Acidobacterium, Mycobacterium, Bacillus, Alphaproteobacteria, Longilinea, Gemmatimonas, Solirubrobacter), just the percent of community part was different. In DP the Arthrobacter and Acidobacterium consist respectively 8.4 % and 2.5%, meanwhile in PT just 5.8% and 2.1% of all community. The Nocardioides and Terrabacter were observed just in PT. This work was supported by the project VP1-3.1-ŠMM-01-V-03-001 NKPDOKT and National Science Program: The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems [grant number SIT-9/2015] funded by the Research Council of Lithuania.

Keywords: deep ploughing, metagenomics, ploughless tillage, soil community analysis

Procedia PDF Downloads 246
4171 Land Degradation Assessment through Spatial Data Integration in Eastern Chotanagpur Plateau, India

Authors: Avijit Mahala

Abstract:

Present study is primarily concerned with the physical processes and status of land degradation in a tropical plateau fringe. Chotanagpur plateau is one of the most water erosion related degraded areas of India. The granite gneiss geological formation, low to medium developed soil cover, undulating lateritic uplands, high drainage density, low to medium rainfall (100-140cm), dry tropical deciduous forest cover makes the Silabati River basin a truly representative of the tropical environment. The different physical factors have been taken for land degradation study includes- physiographic formations, hydrologic characteristics, and vegetation cover. Water erosion, vegetal degradation, soil quality decline are the major processes of land degradation in study area. Granite-gneiss geological formation is responsible for developing undulating landforms. Less developed soil profile, low organic matter, poor structure of soil causes high soil erosion. High relief and sloppy areas cause unstable environment. The dissected highland causes topographic hindrance in productivity. High drainage density and frequency in rugged upland and intense erosion in sloppy areas causes high soil erosion of the basin. Decreasing rainfall and increasing aridity (low P/PET) threats water stress condition. Green biomass cover area is also continuously declining. Through overlaying the different physical factors (geological formation, soil characteristics, geomorphological characteristics, etc.) of considerable importance in GIS environment the varying intensities of land degradation areas has been identified. Middle reaches of Silabati basin with highly eroded laterite soil cover areas are more prone to land degradation.

Keywords: land degradation, tropical environment, lateritic upland, undulating landform, aridity, GIS environment

Procedia PDF Downloads 135
4170 Mineral Status of Feeds and Fodder and Its Subsequent Effect on Plasma of Livestock and Its Products in Red Lateritic Zone of West Bengal, India

Authors: S. K. Pyne, M. Mondal, G. Samanta

Abstract:

A survey was carried out in red lateritic zone of West Bengal to compare the mineral status in plasma of livestock grazing over red lateritic region. Sufficient number of samples of soil, feeds, fodder and blood were collected from four districts of red lateritic zone namely, West Midnapore, Birbhum, Bankura and Purulia respectively. The samples were analysed for Calcium (Ca), Phosphorus (P), Copper (Cu), Zinc (Zn), Manganese (Mn) and Iron (Fe). Concentration of Cu, Mn and Fe in soil were above the minimum critical level, whereas, Zn deficiency is wide spread in red lateritic soil. Paddy straw is deficient in Ca, P, Zn and Mn in the region. Green fodders are also deficient in P, Cu, Zn. The richness of iron (Fe) in soil, feeds, fodder and tree leaves is the characteristics of this region. Phosphorus is deficient in plasma of all categories of livestock with the exception of bullock. Cu is deficient in plasma of calf. Plasma Mn and Fe were higher (p<0.01) in the animals of red lateritic zone. The study reveals that the overall deficiency of phosphorus in different categories of livestock and there is need of dietary supplementation.

Keywords: mineral, red lateritic zone, grazing livestock, plasma

Procedia PDF Downloads 329
4169 Heart Failure Identification and Progression by Classifying Cardiac Patients

Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan

Abstract:

Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.

Keywords: decision tree, heart failure, data mining, classification model

Procedia PDF Downloads 402
4168 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals

Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor

Abstract:

This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.

Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers

Procedia PDF Downloads 75
4167 Failure Analysis of Khaliqabad Landslide along Mangla Reservoir Rim

Authors: Fatima Mehmood, Khalid Farooq

Abstract:

After the Mangla dam raising in 2010, the maximum reservoir impoundment level of 378.5 m SPD (Survey of Pakistan Datum) was achieved in September 2014. The reservoir drawdown was started on September 29, 2014 and a landslide occurred on Mirpur-Kotli Road near Khaliqabad on November 27, 2014. This landslide took place due to the failure of a slope along the reservoir rim. This study was undertaken to investigate the causative factors of Khaliqabad landslide. Site visits were carried out for recording the field observations and collection of the soil samples. The soil was subjected to different laboratory tests for the determination of index and engineering properties. The shear strength tests were performed at various levels of density and degrees of saturation. These soil parameters were used in an integrated SEEP-SLOPE/W analysis to obtain the drop in factor of safety with time and reservoir drawdown. The results showed the factor of safety dropped from 1.28 to 0.85 over a period of 60 days. The ultimate reduction in the shear strength of soil due to saturation with the simultaneous removal of the stabilizing effect of reservoir caused the disturbing forces to increase, and thus failure happened. The findings of this study can serve as a guideline for the modeling of the slopes experiencing rapid drawdown scenario with the consideration of more realistic distribution of soil moisture/ properties across the slope

Keywords: geotechnical investigation, landslide, reservoir drawdown, shear strength, slope stability

Procedia PDF Downloads 162
4166 Common Orthodontic Indices and Classification in the United Kingdom

Authors: Ashwini Mohan, Haris Batley

Abstract:

An orthodontic index is used to rate or categorise an individual’s occlusion using a numeric or alphanumeric score. Indexing of malocclusions and their correction is important in epidemiology, diagnosis, communication between clinicians as well as their patients and assessing treatment outcomes. Many useful indices have been put forward, but to the author’s best knowledge, no one method to this day appears to be equally suitable for the use of epidemiologists, public health program planners and clinicians. This article describes the common clinical orthodontic indices and classifications used in United Kingdom.

Keywords: classification, indices, orthodontics, validity

Procedia PDF Downloads 151