Search results for: score prediction
3282 The Ability of Forecasting the Term Structure of Interest Rates Based on Nelson-Siegel and Svensson Model
Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović
Abstract:
Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector auto-regressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is neural networks using Nelson-Siegel estimation of yield curves.Keywords: Nelson-Siegel Model, neural networks, Svensson Model, vector autoregressive model, yield curve
Procedia PDF Downloads 3373281 Photo-Fenton Decolorization of Methylene Blue Adsolubilized on Co2+ -Embedded Alumina Surface: Comparison of Process Modeling through Response Surface Methodology and Artificial Neural Network
Authors: Prateeksha Mahamallik, Anjali Pal
Abstract:
In the present study, Co(II)-adsolubilized surfactant modified alumina (SMA) was prepared, and methylene blue (MB) degradation was carried out on Co-SMA surface by visible light photo-Fenton process. The entire reaction proceeded on solid surface as MB was embedded on Co-SMA surface. The reaction followed zero order kinetics. Response surface methodology (RSM) and artificial neural network (ANN) were used for modeling the decolorization of MB by photo-Fenton process as a function of dose of Co-SMA (10, 20 and 30 g/L), initial concentration of MB (10, 20 and 30 mg/L), concentration of H2O2 (174.4, 348.8 and 523.2 mM) and reaction time (30, 45 and 60 min). The prediction capabilities of both the methodologies (RSM and ANN) were compared on the basis of correlation coefficient (R2), root mean square error (RMSE), standard error of prediction (SEP), relative percent deviation (RPD). Due to lower value of RMSE (1.27), SEP (2.06) and RPD (1.17) and higher value of R2 (0.9966), ANN was proved to be more accurate than RSM in order to predict decolorization efficiency.Keywords: adsolubilization, artificial neural network, methylene blue, photo-fenton process, response surface methodology
Procedia PDF Downloads 2553280 Emerging Issues of Non-Communicable Diseases among Older Persons in India
Authors: Dhananjay W. Bansod, Santosh Phad
Abstract:
Non-Communicable Diseases (NCD) are major contributing factors to the disease burden in the world as well as in India. With a growing proportion of older persons in India gives rise to several challenges. With the advancement of age, elderly is exposed to various kinds of health problems more specifically NCDs. Therefore, an effort has been made to examine the prevalence of NCDs among older persons and its treatment-seeking behaviour, also it is tried to explore the association between the NCDs and its effect on the overall wellbeing of older persons. Data used from “Building Knowledge Base of Population Ageing Survey” conducted in 2011 in seven states of India. Six chronic diseases used (non-communicable diseases) namely Arthritis, Hypertension, Cataract, Diabetes, Asthma and Heart diseases to understand the issues related to NCDs. Also seen the effect of NCDs on the wellbeing of the elderly, the subjective well-being consists of nine questions from which SUBI score generated for mental health status, which ranges from 9 to 27. This Index indicates that lower the score better is the mental health status. Further, this index modified and generated three categories of Better (9-15), Average (16-20) and Worse (21-27). The reliability analysis is carried out with the coefficient (Cronbach’s alpha) of the scale was 0.8884. The result shows that Orthopedic / musculoskeletal ailments involving arthritis, rheumatism and osteoarthritis are the most common type of ailment followed by hypertension. Two-thirds of the elderly reported suffering from at least one chronic ailment. Most chronic illness conditions received some form of treatment and mainly depend on public health facilities. Financial insecurity is the primary obstruction in seeking treatment for most of the chronic ailments which typically require a longer duration of medication and repeated medical consultations, both having significant economic implications. According to SUBI index, only 15 per cent of the elderly are in Better mental health status, and one-third of the elderly are with the worse score. Elderly with the ailments like Cataract, Asthma and Arthritis have worse mental health. It depicts that the burden of disease is more among the elderly and it is directly affecting the overall wellbeing of older persons.Keywords: NCD, well-being, older person, India
Procedia PDF Downloads 1503279 Perception and Participation Quality Assurance in Higher Education: A Case Study of Phranakhon Rajabhat University, Thailand
Authors: O. Vanijajiva, K. Oumaree, N. Ngampak
Abstract:
This research aims to study the level of perception and participation of Phranakhon Rajabhat University staff and to study the relationship between the levels of perception and participation with the score of University evaluation of quality assurance in education. The respondents were composed of 479 staffs. The tool used in this research is perceived and participation questionnaire of quality assurance in education of Phranakhon Rajabhat University. The results found that the most staffs are female with undergraduate education. Most 2 respondents are revealing educational staffs without academic position. The fact of times to gain knowledge of quality assurance in education is 1-3 times. The perception of knowledge about quality assurance in education is moderate (3.74 ± 0.65) with most respondent are more focus on university activity than quality assurance in education activity. The participation of quality assurance in education activities involved in moderate (3.17 ± 0.88), with most respondents more involved in student affair than quality assurance in education motion. For assessment of the relationship of perception and participation of quality assurance in education are average score (4.31 ± 0.16) showed that the level of perception and participation was associated with university evaluation in very low level (r = -0.103 and -0.121, respectively), while perception and participation are correlated with the moderate level (r = 0.691).Keywords: quality assurance education, awareness, participation, higher education, Thailand
Procedia PDF Downloads 3703278 Influence of Mothers’ Knowledge, Attitude and Behavior on Diet and Physical Activity of Their Pre-School Children: A Cross-Sectional Study from a Semi-Urban Area of Nepal
Authors: Natalia Oli, Abhinav Vaidya, Katja Pahkala, Gabriele Eiben, Alexandra Krettek
Abstract:
The nutritional transition towards a high fat and energy dense diet, decreasing physical activity level, and poor cardiovascular health knowledge contributes to a rising burden of cardiovascular diseases in Nepal. Dietary and physical activity behaviors are formed early in life and influenced by family, particularly by mothers in the social context of Nepal. The purpose of this study was to explore knowledge, attitude and behavior of mothers regarding diet and physical activity of their pre-school children. Cross-sectional study was conducted in the semi-urban area of Duwakot and Jhaukhel communities near the capital Kathmandu. Between August and November 2014, nine trained enumerators interviewed all mothers having children aged 2 to 7 years in their homes. Questionnaire contained information about mothers’ socio-demographic characteristics; their knowledge, attitude, and behavior regarding diet and physical activity as well as their children’s diet and physical activity. Knowledge, attitude and behavior responses were scored. SPSS version 22.0 was used for data analyses. Out of the 1,052 eligible mothers, 962 consented to participate in the study. The mean age was 28.9 ± 4.5 years. The majority of them (73%) were housewives. Mothers with higher education and income had higher knowledge, attitude, and behavior scores (All p < 0.001) whereas housewives and farmers had low knowledge score (p < 0.001). They, along with laborers, also exhibited lower attitude (p<0.001) and behavior scores (p < 0.001). Children’s diet score increased with mothers’ level of education (p <0.001) and income (p=0.041). Their physical activity score, however, declined with increasing level of their mothers’ education (p < 0.001) and income (p < 0.001). Children’s overall behavior score correlated poorly with mothers’ knowledge (r = 0.009, p=0.003), attitude (r =0.012, p=0.001), and behavior (r = 0.007, p= 0.008). Such poor correlation can be due to existence of the barriers among mothers. Mothers reported such barriers as expensive healthy food, difficulty to give up favorite food, taste preference of others family members and lack of knowledge on healthy food. Barriers for physical activity were lack of leisure time, lack of parks and playgrounds, being busy by caring for children and old people, feeling lazy and embarrassed in front of others. Additionally, among the facilitators for healthy lifestyle, mentioned by mothers, were better information, family eating healthy food and supporting physical activity, advice of medical personnel regarding healthy lifestyle and own ill health. The study demonstrated poor correlation of mothers’ knowledge and attitude with children’s behavior regarding diet and physical activity. Hence improving mothers’ knowledge or attitude may not be enough to improve dietary and physical activity habits of their children. Barriers and facilitators that affect mothers’ practices towards their children should also be addressed due to future intervention.Keywords: attitude, behavior, diet, knowledge, mothers, physical activity
Procedia PDF Downloads 2893277 The Effect of Environmental, Social, and Governance (ESG) Disclosure on Firms’ Credit Rating and Capital Structure
Authors: Heba Abdelmotaal
Abstract:
This paper explores the impact of the extent of a company's environmental, social, and governance (ESG) disclosure on credit rating and capital structure. The analysis is based on a sample of 202 firms from the 350 FTSE firms over the period of 2008-2013. ESG disclosure score is measured using Proprietary Bloomberg score based on the extent of a company's Environmental, Social, and Governance (ESG) disclosure. The credit rating is measured by The QuiScore, which is a measure of the likelihood that a company will become bankrupt in the twelve months following the date of calculation. The Capital Structure is measured by long term debt ratio. Two hypotheses are test using panel data regression. The results suggested that the higher degree of ESG disclosure leads to better credit rating. There is significant negative relationship between ESG disclosure and the long term debit percentage. The paper includes implications for the transparency which is resulting of the ESG disclosure could support the Monitoring Function. The monitoring role of disclosure is the increasing in the transparency of the credit rating agencies, also it could affect on managers’ actions. This study provides empirical evidence on the material of ESG disclosure on credit ratings changes and the firms’ capital decision making.Keywords: capital structure, credit rating agencies, ESG disclosure, panel data regression
Procedia PDF Downloads 3603276 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50
Procedia PDF Downloads 1303275 Air Dispersion Modeling for Prediction of Accidental Emission in the Atmosphere along Northern Coast of Egypt
Authors: Moustafa Osman
Abstract:
Modeling of air pollutants from the accidental release is performed for quantifying the impact of industrial facilities into the ambient air. The mathematical methods are requiring for the prediction of the accidental scenario in probability of failure-safe mode and analysis consequences to quantify the environmental damage upon human health. The initial statement of mitigation plan is supporting implementation during production and maintenance periods. In a number of mathematical methods, the flow rate at which gaseous and liquid pollutants might be accidentally released is determined from various types in term of point, line and area sources. These emissions are integrated meteorological conditions in simplified stability parameters to compare dispersion coefficients from non-continuous air pollution plumes. The differences are reflected in concentrations levels and greenhouse effect to transport the parcel load in both urban and rural areas. This research reveals that the elevation effect nearby buildings with other structure is higher 5 times more than open terrains. These results are agreed with Sutton suggestion for dispersion coefficients in different stability classes.Keywords: air pollutants, dispersion modeling, GIS, health effect, urban planning
Procedia PDF Downloads 3753274 Multi-Faceted Growth in Creative Industries
Authors: Sanja Pfeifer, Nataša Šarlija, Marina Jeger, Ana Bilandžić
Abstract:
The purpose of this study is to explore the different facets of growth among micro, small and medium-sized firms in Croatia and to analyze the differences between models designed for all micro, small and medium-sized firms and those in creative industries. Three growth prediction models were designed and tested using the growth of sales, employment and assets of the company as dependent variables. The key drivers of sales growth are: prudent use of cash, industry affiliation and higher share of intangible assets. Growth of assets depends on retained profits, internal and external sources of financing, as well as industry affiliation. Growth in employment is closely related to sources of financing, in particular, debt and it occurs less frequently than growth in sales and assets. The findings confirm the assumption that growth strategies of small and medium-sized enterprises (SMEs) in creative industries have specific differences in comparison to SMEs in general. Interestingly, only 2.2% of growing enterprises achieve growth in employment, assets and sales simultaneously.Keywords: creative industries, growth prediction model, growth determinants, growth measures
Procedia PDF Downloads 3323273 Implementation of Correlation-Based Data Analysis as a Preliminary Stage for the Prediction of Geometric Dimensions Using Machine Learning in the Forming of Car Seat Rails
Authors: Housein Deli, Loui Al-Shrouf, Hammoud Al Joumaa, Mohieddine Jelali
Abstract:
When forming metallic materials, fluctuations in material properties, process conditions, and wear lead to deviations in the component geometry. Several hundred features sometimes need to be measured, especially in the case of functional and safety-relevant components. These can only be measured offline due to the large number of features and the accuracy requirements. The risk of producing components outside the tolerances is minimized but not eliminated by the statistical evaluation of process capability and control measurements. The inspection intervals are based on the acceptable risk and are at the expense of productivity but remain reactive and, in some cases, considerably delayed. Due to the considerable progress made in the field of condition monitoring and measurement technology, permanently installed sensor systems in combination with machine learning and artificial intelligence, in particular, offer the potential to independently derive forecasts for component geometry and thus eliminate the risk of defective products - actively and preventively. The reliability of forecasts depends on the quality, completeness, and timeliness of the data. Measuring all geometric characteristics is neither sensible nor technically possible. This paper, therefore, uses the example of car seat rail production to discuss the necessary first step of feature selection and reduction by correlation analysis, as otherwise, it would not be possible to forecast components in real-time and inline. Four different car seat rails with an average of 130 features were selected and measured using a coordinate measuring machine (CMM). The run of such measuring programs alone takes up to 20 minutes. In practice, this results in the risk of faulty production of at least 2000 components that have to be sorted or scrapped if the measurement results are negative. Over a period of 2 months, all measurement data (> 200 measurements/ variant) was collected and evaluated using correlation analysis. As part of this study, the number of characteristics to be measured for all 6 car seat rail variants was reduced by over 80%. Specifically, direct correlations for almost 100 characteristics were proven for an average of 125 characteristics for 4 different products. A further 10 features correlate via indirect relationships so that the number of features required for a prediction could be reduced to less than 20. A correlation factor >0.8 was assumed for all correlations.Keywords: long-term SHM, condition monitoring, machine learning, correlation analysis, component prediction, wear prediction, regressions analysis
Procedia PDF Downloads 503272 Comparison of Different Intraocular Lens Power Calculation Formulas in People With Very High Myopia
Authors: Xia Chen, Yulan Wang
Abstract:
purpose: To compare the accuracy of Haigis, SRK/T, T2, Holladay 1, Hoffer Q, Barrett Universal II, Emmetropia Verifying Optical (EVO) and Kane for intraocular lens power calculation in patients with axial length (AL) ≥ 28 mm. Methods: In this retrospective single-center study, 50 eyes of 41 patients with AL ≥ 28 mm that underwent uneventful cataract surgery were enrolled. The actual postoperative refractive results were compared to the predicted refraction calculated with different formulas (Haigis, SRK/T, T2, Holladay 1, Hoffer Q, Barrett Universal II, EVO and Kane). The mean absolute prediction errors (MAE) 1 month postoperatively were compared. Results: The MAE of different formulas were as follows: Haigis (0.509), SRK/T (0.705), T2 (0.999), Holladay 1 (0.714), Hoffer Q (0.583), Barrett Universal II (0.552), EVO (0.463) and Kane (0.441). No significant difference was found among the different formulas (P = .122). The Kane and EVO formulas achieved the lowest level of mean prediction error (PE) and median absolute error (MedAE) (p < 0.05). Conclusion: The Kane and EVO formulas had a better success rate than others in predicting IOL power in high myopic eyes with AL longer than 28 mm in this study.Keywords: cataract, power calculation formulas, intraocular lens, long axial length
Procedia PDF Downloads 873271 Evaluation of Cooperative Hand Movement Capacity in Stroke Patients Using the Cooperative Activity Stroke Assessment
Authors: F. A. Thomas, M. Schrafl-Altermatt, R. Treier, S. Kaufmann
Abstract:
Stroke is the main cause of adult disability. Especially upper limb function is affected in most patients. Recently, cooperative hand movements have been shown to be a promising type of upper limb training in stroke rehabilitation. In these movements, which are frequently found in activities of daily living (e.g. opening a bottle, winding up a blind), the force of one upper limb has to be equally counteracted by the other limb to successfully accomplish a task. The use of standardized and reliable clinical assessments is essential to evaluate the efficacy of therapy and the functional outcome of a patient. Many assessments for upper limb function or impairment are available. However, the evaluation of cooperative hand movement tasks are rarely included in those. Thus, the aim of this study was (i) to develop a novel clinical assessment (CASA - Cooperative Activity Stroke Assessment) for the evaluation of patients’ capacity to perform cooperative hand movements and (ii) to test its inter- and interrater reliability. Furthermore, CASA scores were compared to current gold standard assessments for upper extremity in stroke patients (i.e. Fugl-Meyer Assessment, Box & Blocks Test). The CASA consists of five cooperative activities of daily living including (1) opening a jar, (2) opening a bottle, (3) open and closing of a zip, (4) unscrew a nut and (5) opening a clipbox. Here, the goal is to accomplish the tasks as fast as possible. In addition to the quantitative rating (i.e. time) which is converted to a 7-point scale, also the quality of the movement is rated in a 4-point scale. To test the reliability of CASA, fifteen stroke subjects were tested within a week twice by the same two raters. Intra-and interrater reliability was calculated using the intraclass correlation coefficient (ICC) for total CASA score and single items. Furthermore, Pearson-correlation was used to compare the CASA scores to the scores of Fugl-Meyer upper limb assessment and the box and blocks test, which were assessed in every patient additionally to the CASA. ICC scores of the total CASA score indicated an excellent- and single items established a good to excellent inter- and interrater reliability. Furthermore, the CASA score was significantly correlated to the Fugl-Meyer and Box & Blocks score. The CASA provides a reliable assessment for cooperative hand movements which are crucial for many activities of daily living. Due to its non-costly setup, easy and fast implementation, we suggest it to be well suitable for clinical application. In conclusion, the CASA is a useful tool in assessing the functional status and therapy related recovery in cooperative hand movement capacity in stroke patients.Keywords: activitites of daily living, clinical assessment, cooperative hand movements, reliability, stroke
Procedia PDF Downloads 3203270 Neural Networks Models for Measuring Hotel Users Satisfaction
Authors: Asma Ameur, Dhafer Malouche
Abstract:
Nowadays, user comments on the Internet have an important impact on hotel bookings. This confirms that the e-reputation issue can influence the likelihood of customer loyalty to a hotel. In this way, e-reputation has become a real differentiator between hotels. For this reason, we have a unique opportunity in the opinion mining field to analyze the comments. In fact, this field provides the possibility of extracting information related to the polarity of user reviews. This sentimental study (Opinion Mining) represents a new line of research for analyzing the unstructured textual data. Knowing the score of e-reputation helps the hotelier to better manage his marketing strategy. The score we then obtain is translated into the image of hotels to differentiate between them. Therefore, this present research highlights the importance of hotel satisfaction ‘scoring. To calculate the satisfaction score, the sentimental analysis can be manipulated by several techniques of machine learning. In fact, this study treats the extracted textual data by using the Artificial Neural Networks Approach (ANNs). In this context, we adopt the aforementioned technique to extract information from the comments available in the ‘Trip Advisor’ website. This actual paper details the description and the modeling of the ANNs approach for the scoring of online hotel reviews. In summary, the validation of this used method provides a significant model for hotel sentiment analysis. So, it provides the possibility to determine precisely the polarity of the hotel users reviews. The empirical results show that the ANNs are an accurate approach for sentiment analysis. The obtained results show also that this proposed approach serves to the dimensionality reduction for textual data’ clustering. Thus, this study provides researchers with a useful exploration of this technique. Finally, we outline guidelines for future research in the hotel e-reputation field as comparing the ANNs with other technique.Keywords: clustering, consumer behavior, data mining, e-reputation, machine learning, neural network, online hotel ‘reviews, opinion mining, scoring
Procedia PDF Downloads 1373269 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis
Authors: Abeer A. Aljohani
Abstract:
COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network
Procedia PDF Downloads 943268 The Effect of Peer Support on Adaptation to University Life in First Year Students of the University
Authors: Bilgen Ozluk, Ayfer Karaaslan
Abstract:
Introduction: Adaptation to university life is a difficult process for students. In peer support, students are expected to help other students or sometimes adults using their helping skills. Therefore, it is expected that peer support will have significant effect on students’ adaptation to university life. Aim: This study was conducted with the aim of determining the effect of peer support on adaptation to university life in the first year students of the faculty of health sciences. Methods: The population consists of 340 first year university students receiving education in the departments of nursing, health management, social services, nutrition and dietetics, physiotherapy and rehabilitation at an university located in the province of Konya. The sample of the study consisted of 274 students who voluntarily participated in the study. The data were collected between the dates 23 May 2016 and 3 June 2016. The data were collected using the socio-demographic information, the peer support scale and the university life adaptation scale. Ethical approvals for the study and permission from the university were taken. Numbers, percentages, averages, one-Way ANOVA, pearson correlation analysis and regression analysis have been used in assessing the data. Findings: When the problems most frequently encountered by students just starting the university were ordered, problems regarding their classes took the first place by 41.6%, socio-cultural problems took the second place by 38.7%, and economic problems took the third place by 37.6%. The mean total score of the Adaptation to University Life Scale was found to be 216.78±32.15. Considering that the lowest and highest scores that can be gained from the scale are 132 and 289 respectively, it was found that the adaptation to university life levels of the students were higher than the average. The mean adaptation to university life score of the nursing students was higher than those of the students of other departments. The mean score of ‘the Peer Support Scale’ was found to be 47.24±10.27. Considering that the lowest and highest scores that can be gained from the scale are 17 and 68 respectively, it was found that the peer support levels of the students were higher than the average. As a result of the regression analysis, it was found that 20% of the total variance regarding adaptation to university life was explained by peer support. Conclution: Receiving the support peer groups becomes highly important in the university adaptation process of first-year students. Peer support will create the means for easier completion of this difficult transition process.Keywords: adaptation to university life, first years, peer support, university student
Procedia PDF Downloads 2163267 Understanding ASPECTS of Stroke: Interrater Reliability between Emergency Medicine Physician and Radiologist in a Rural Setup
Authors: Vineel Inampudi, Arjun Prakash, Joseph Vinod
Abstract:
Aims and Objectives: To evaluate the interrater reliability in grading ASPECTS score, between emergency medicine physician at first contact and radiologist among patients with acute ischemic stroke. Materials and Methods: We conducted a retrospective analysis of 86 acute ischemic stroke cases referred to the Department of Radiodiagnosis during November 2014 to January 2016. The imaging (plain CT scan) was performed using GE Bright Speed Elite 16 Slice CT Scanner. ASPECTS score was calculated separately by an emergency medicine physician and radiologist. Interrater reliability for total and dichotomized ASPECTS (≥ 6 and < 6) scores were assessed using statistical analysis (ICC and Cohen ĸ coefficients) on SPSS software (v17.0). Results: Interrater agreement for total and dichotomized ASPECTS was substantial (ICC 0.79 and Cohen ĸ 0.68) between the emergency physician and radiologist. Mean difference in ASPECTS between the two readers was only 0.15 with standard deviation of 1.58. No proportionality bias was detected. Bland Altman plot was constructed to demonstrate the distribution of ASPECT differences between the two readers. Conclusion: Substantial interrater agreement was noted in grading ASPECTS between emergency medicine physician at first contact and radiologist thereby confirming its robustness even in a rural setting.Keywords: ASPECTS, computed tomography, MCA territory, stroke
Procedia PDF Downloads 2373266 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis
Authors: Syed Asif Hassan, Syed Atif Hassan
Abstract:
Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction
Procedia PDF Downloads 3923265 Effect of Implementing a Teaching Module about Diet and Exercises on Clinical Outcomes of Patients with Gout
Authors: Wafaa M. El- Kotb, Soheir Mohamed Weheida, Manal E. Fareed
Abstract:
The aim of this study was to determine the effect of implementing a teaching module about diet and exercises on clinical outcomes of patients with gout. Subjects: A purposive sample of 60 adult gouty patients was selected and randomly and alternatively divided into two equal groups 30 patients in each. Setting: The study was conducted in orthopedic out patient's clinic of Menoufia University. Tools of the study: Three tools were utilized for data collection: Knowledge assessment structured interview questionnaire, Clinical manifestation assessment tools and Nutritional assessment sheet. Results: All patients of both groups (100 %) had poor total knowledge score pre teaching, while 90 % of the study group had good total knowledge score post teaching by three months compared to 3.3 % of the control group. Moreover the recovery outcomes were significantly improved among study group compared to control group post teaching. Conclusion: Teaching study group about diet and exercises significantly improved their clinical outcomes. Recommendation: Patient's education about diet and exercises should be ongoing process for patients with gout.Keywords: clinical outcomes, diet, exercises, teaching module
Procedia PDF Downloads 3473264 Prediction of Critical Flow Rate in Tubular Heat Exchangers for the Onset of Damaging Flow-Induced Vibrations
Authors: Y. Khulief, S. Bashmal, S. Said, D. Al-Otaibi, K. Mansour
Abstract:
The prediction of flow rates at which the vibration-induced instability takes place in tubular heat exchangers due to cross-flow is of major importance to the performance and service life of such equipment. In this paper, the semi-analytical model for square tube arrays was extended and utilized to study the triangular tube patterns. A laboratory test rig with instrumented test section is used to measure the fluidelastic coefficients to be used for tuning the mathematical model. The test section can be made of any bundle pattern. In this study, two test sections were constructed for both the normal triangular and the rotated triangular tube arrays. The developed scheme is utilized in predicting the onset of flow-induced instability in the two triangular tube arrays. The results are compared to those obtained for two other bundle configurations. The results of the four different tube patterns are viewed in the light of TEMA predictions. The comparison demonstrated that TEMA guidelines are more conservative in all configurations consideredKeywords: fluid-structure interaction, cross-flow, heat exchangers,
Procedia PDF Downloads 2783263 Effect of Retained Posterior Horn of Medial Meniscus on Functional Outcome of ACL Reconstructed Knees
Authors: Kevin Syam, Devendra K. Chauhan, Mandeep Singh Dhillon
Abstract:
Background: The posterior horn of medial meniscus (PHMM) is a secondary stabilizer against anterior translation of tibia. Cadaveric studies have revealed increased strain on the ACL graft and greater instrumented laxity in Posterior horn deficient knees. Clinical studies have shown higher prevalence of radiological OA after ACL reconstruction combined with menisectomy. However, functional outcomes in ACL reconstructed knee in the absence of Posterior horn is less discussed, and specific role of posterior horn is ill-documented. This study evaluated functional and radiological outcomes in posterior horn preserved and posterior horn sacrificed ACL reconstructed knees. Materials: Of the 457 patients who had ACL reconstruction done over a 6 year period, 77 cases with minimum follow up of 18 months were included in the study after strict exclusion criteria (associated lateral meniscus injury, other ligamentous injuries, significant cartilage degeneration, repeat injury and contralateral knee injuries were excluded). 41 patients with intact menisci were compared with 36 patients with absent posterior horn of medial meniscus. Radiological and clinical tests for instability were conducted, and knees were evaluated using subjective International Knee Documentation Committee (IKDC) score and the Orthopadische Arbeitsgruppe Knie score (OAK). Results: We found a trend towards significantly better overall outcome (OAK) in cases with intact PHMM at average follow-up of 43.03 months (p value 0.082). Cases with intact PHMM had significantly better objective stability (p value 0.004). No significant differences were noted in the subjective IKDC score (p value 0.526) and the functional OAK outcome (category D) (p value 0.363). More cases with absent posterior horn had evidence of radiological OA (p value 0.022) even at mid-term follow-up. Conclusion: Even though the overall OAK and subjective IKDC scores did not show significant difference between the two subsets, the poorer outcomes in terms of objective stability and radiological OA noted in the absence of PHMM, indicates the importance of preserving this important part of the meniscus.Keywords: ACL, functional outcome, knee, posterior of medial meniscus
Procedia PDF Downloads 3593262 Combination Therapies Targeting Apoptosis Pathways in Pediatric Acute Myeloid Leukemia (AML)
Authors: Ahlam Ali, Katrina Lappin, Jaine Blayney, Ken Mills
Abstract:
Leukaemia is the most frequently (30%) occurring type of paediatric cancer. Of these, approximately 80% are acute lymphoblastic leukaemia (ALL) with acute myeloid leukaemia (AML) cases making up the remaining 20% alongside other leukaemias. Unfortunately, children with AML do not have promising prognosis with only 60% surviving 5 years or longer. It has been highlighted recently the need for age-specific therapies for AML patients, with paediatric AML cases having a different mutational landscape compared with AML diagnosed in adult patients. Drug Repurposing is a recognized strategy in drug discovery and development where an already approved drug is used for diseases other than originally indicated. We aim to identify novel combination therapies with the promise of providing alternative more effective and less toxic induction therapy options. Our in-silico analysis highlighted ‘cell death and survival’ as an aberrant, potentially targetable pathway in paediatric AML patients. On this basis, 83 apoptotic inducing compounds were screened. A preliminary single agent screen was also performed to eliminate potentially toxic chemicals, then drugs were constructed into a pooled library with 10 drugs per well over 160 wells, with 45 possible pairs and 120 triples in each well. Seven cell lines were used during this study to represent the clonality of AML in paediatric patients (Kasumi-1, CMK, CMS, MV11-14, PL21, THP1, MOLM-13). Cytotoxicity was assessed up to 72 hours using CellTox™ Green reagent. Fluorescence readings were normalized to a DMSO control. Z-Score was assigned to each well based on the mean and standard deviation of all the data. Combinations with a Z-Score <2 were eliminated and the remaining wells were taken forward for further analysis. A well was considered ‘successful’ if each drug individually demonstrated a Z-Score <2, while the combination exhibited a Z-Score >2. Each of the ten compounds in one well (155) had minimal or no effect as single agents on cell viability however, a combination of two or more of the compounds resulted in a substantial increase in cell death, therefore the ten compounds were de-convoluted to identify a possible synergistic pair/triple combinations. The screen identified two possible ‘novel’ drug pairing, with BCL2 inhibitor ABT-737, combined with either a CDK inhibitor Purvalanol A, or AKT/ PI3K inhibitor LY294002. (ABT-737- 100 nM+ Purvalanol A- 1 µM) (ABT-737- 100 nM+ LY294002- 2 µM). Three possible triple combinations were identified (LY2409881+Akti-1/2+Purvalanol A, SU9516+Akti-1/2+Purvalanol A, and ABT-737+LY2409881+Purvalanol A), which will be taken forward for examining their efficacy at varying concentrations and dosing schedules, across multiple paediatric AML cell lines for optimisation of maximum synergy. We believe that our combination screening approach has potential for future use with a larger cohort of drugs including FDA approved compounds and patient material.Keywords: AML, drug repurposing, ABT-737, apoptosis
Procedia PDF Downloads 2053261 Developing of Attitude towards Using Complementary Treatments Scale in Turkey
Authors: Ayşegül Bilge, Merve Uğuryol, Şeyda Dülgerler, Mustafa Yıldız
Abstract:
The purpose of this research is to prove the Attitude towards Using Complementary Treatments Scale reliability and validity. The research is a methodological type of research that has been planned to determine the validity and reliability of the Attitude towards Using Complementary Treatments Scale. The scale has been developed by the researchers. In the scale, there are 23 questions including complementary and modern therapies individuals apply when they have health problems 4-item Likert-type evaluation has been carried out in preparing the questionnaire. High score obtained from the scale indicates a positive attitude towards complementary therapies. In the course of validity assessment of the scale, expert opinion has been received, and the content validity of the scale has been determined by using Kendall coefficient correlation test (Wa=0.200, p = 0.460). In the course of the reliability assessment of the scale, total score correlations of 23 materials have been examined, and those under 0.20 correlation limit has been removed from the scale correlation. As a result, the scale was left to be 13 items. In the internal consistency tests of the analyses, Cronbach's alpha value has been found to be 0.79. As a result, of the validity analyses of the Attitude towards Using Complementary Treatments Scale, the content and language validity analyses has been found to be at the expected level. It has been determined to be a highly reliable scale as the result of the reliability analyses. In conclusion, Attitude towards Using Complementary Treatments Scale is a valid and reliable scale.Keywords: alternative health care, complementary treatment, instrument development, nursing practice
Procedia PDF Downloads 4023260 Rainfall–Runoff Simulation Using WetSpa Model in Golestan Dam Basin, Iran
Authors: M. R. Dahmardeh Ghaleno, M. Nohtani, S. Khaledi
Abstract:
Flood simulation and prediction is one of the most active research areas in surface water management. WetSpa is a distributed, continuous, and physical model with daily or hourly time step that explains precipitation, runoff, and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave equation which depends on the slope, velocity, and flow route characteristics. Golestan Dam Basin is located in Golestan province in Iran and it is passing over coordinates 55° 16´ 50" to 56° 4´ 25" E and 37° 19´ 39" to 37° 49´ 28"N. The area of the catchment is about 224 km2, and elevations in the catchment range from 414 to 2856 m at the outlet, with average slope of 29.78%. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe model efficiency coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 59% and 80.18%, respectively.Keywords: watershed simulation, WetSpa, stream flow, flood prediction
Procedia PDF Downloads 2443259 Attentional Engagement for Movie
Authors: Wuon-Shik Kim, Hyoung-Min Choi, Jeonggeon Woo, Sun Jung Kwon, SeungHee Lee
Abstract:
The research on attentional engagement (AE) in movies using physiological signals is rare and controversial. Therefore, whether physiological responses can be applied to evaluate AE in actual movies is unclear. To clarify this, we measured electrocardiogram and electroencephalogram (EEG) of 16 Japanese university students as they watched the American movie Iron Man. After the viewing, we evaluated the subjective AE and affection levels for 11 film content segments in Iron Man. Based on self-reports for AE, we selected two film content segments as stimuli: Film Content 9 describing Tony Stark (the main character) flying through the night sky (with the highest AE score) and Film Content 1, describing Tony Stark and his colleagues telling indecent jokes (with the lowest score). We divided these two content segments into two time intervals, respectively. Results indicated that the Film Content by Interval interaction for HR was significant, at F (1, 11)=35.64, p<.001, η2=.76; while HR in Film Content 1 decreased, that of in Film Content 9 increased. In Film Content 9, the main effects of the Interval for respiratory sinus arrhythmia (RSA) (F (1, 11)=5.91, p<.05, η2=.35) and for the attention index of EEG (F (1, 11)=5.23, p<.05, η2=.37) were significant. The increase in the RSA was significant (p<.05) as well, whereas that of the EEG attention index was nearly significant (p=.069). In conclusion, while RSA increases, HR decreases when people direct their attention toward normal films. However, while paying attention to a film evoking excitement, HR as well as RSA can increase.Keywords: attentional engagement, electroencephalogram, movie, respiratory sinus arrhythmia
Procedia PDF Downloads 3653258 Entrepreneurship Education as a Pre-Requisite for Graduate Entrepreneurship: A Study of Graduate Entrepreneurs in Yenagoa City
Authors: Kurotimi M. Fems, Francis D. W. Poazi, Helen Opigo
Abstract:
The concepts of entrepreneurship education together with graduate entrepreneurship have taken centre stage in many countries as a 21st century strategy for economic growth and development. Entrepreneurship education has been viewed as a pre-requisite tool for a more effective and successful business operation. This paper seeks to verify if entrepreneurship education is pre-requisite to graduate entrepreneurship, and to ascertain if such other factors as the need for achievement, competence and experience etc. also play a foundational role in the choice of a graduate becoming an entrepreneur. The scope of the research study is entrepreneurs within Yenagoa metropolis in Bayelsa state, Nigeria. The sample target is graduates engaged in entrepreneurship activities (graduates who own and run businesses). Stratified sampling technique was used and 101 responses were obtained from a total of 300 questionnaires issued. Bar chart, tables and percentages were used to analyze the collected data. The findings revealed that personality traits, situational circumstance, need for achievement and experience/competence were the foundational factors stimulating graduate entrepreneurs to engage in entrepreneurial pursuits. Of all, personality trait showed the highest score with 73 (73%) out of 101 entrepreneurs agreeing. Experience/Competence and situational circumstances followed behind with 66 (65%) and 63 (62.4%), respectively. Entrepreneurship education revealed the least score with 33 (32.3%) out of 101 participating entrepreneurs. All hope, however, is not lost, as this shows that something can be done to increase the impact of entrepreneurship education on graduate entrepreneurship.Keywords: Creative destruction, entrepreneurs, entrepreneurship education, graduate entrepreneurship, pre-requisite
Procedia PDF Downloads 3093257 Iraqi Short Term Electrical Load Forecasting Based on Interval Type-2 Fuzzy Logic
Authors: Firas M. Tuaimah, Huda M. Abdul Abbas
Abstract:
Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.Keywords: short term load forecasting, prediction interval, type 2 fuzzy logic systems, electric, computer systems engineering
Procedia PDF Downloads 3983256 Prediction of Gully Erosion with Stochastic Modeling by using Geographic Information System and Remote Sensing Data in North of Iran
Authors: Reza Zakerinejad
Abstract:
Gully erosion is a serious problem that threading the sustainability of agricultural area and rangeland and water in a large part of Iran. This type of water erosion is the main source of sedimentation in many catchment areas in the north of Iran. Since in many national assessment approaches just qualitative models were applied the aim of this study is to predict the spatial distribution of gully erosion processes by means of detail terrain analysis and GIS -based logistic regression in the loess deposition in a case study in the Golestan Province. This study the DEM with 25 meter result ion from ASTER data has been used. The Landsat ETM data have been used to mapping of land use. The TreeNet model as a stochastic modeling was applied to prediction the susceptible area for gully erosion. In this model ROC we have set 20 % of data as learning and 20 % as learning data. Therefore, applying the GIS and satellite image analysis techniques has been used to derive the input information for these stochastic models. The result of this study showed a high accurate map of potential for gully erosion.Keywords: TreeNet model, terrain analysis, Golestan Province, Iran
Procedia PDF Downloads 5373255 Evaluation of QSRR Models by Sum of Ranking Differences Approach: A Case Study of Prediction of Chromatographic Behavior of Pesticides
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
The present study deals with the selection of the most suitable quantitative structure-retention relationship (QSRR) models which should be used in prediction of the retention behavior of basic, neutral, acidic and phenolic pesticides which belong to different classes: fungicides, herbicides, metabolites, insecticides and plant growth regulators. Sum of ranking differences (SRD) approach can give a different point of view on selection of the most consistent QSRR model. SRD approach can be applied not only for ranking of the QSRR models, but also for detection of similarity or dissimilarity among them. Applying the SRD analysis, the most similar models can be found easily. In this study, selection of the best model was carried out on the basis of the reference ranking (“golden standard”) which was defined as the row average values of logarithm of retention time (logtr) defined by high performance liquid chromatography (HPLC). Also, SRD analysis based on experimental logtr values as reference ranking revealed similar grouping of the established QSRR models already obtained by hierarchical cluster analysis (HCA).Keywords: chemometrics, chromatography, pesticides, sum of ranking differences
Procedia PDF Downloads 3753254 A New Computational Tool for Noise Prediction of Rotating Surfaces (FACT)
Authors: Ana Vieira, Fernando Lau, João Pedro Mortágua, Luís Cruz, Rui Santos
Abstract:
The air transport impact on environment is more than ever a limitative obstacle to the aeronautical industry continuous growth. Over the last decades, considerable effort has been carried out in order to obtain quieter aircraft solutions, whether by changing the original design or investigating more silent maneuvers. The noise propagated by rotating surfaces is one of the most important sources of annoyance, being present in most aerial vehicles. Bearing this is mind, CEIIA developed a new computational chain for noise prediction with in-house software tools to obtain solutions in relatively short time without using excessive computer resources. This work is based on the new acoustic tool, which aims to predict the rotor noise generated during steady and maneuvering flight, making use of the flexibility of the C language and the advantages of GPU programming in terms of velocity. The acoustic tool is based in the Formulation 1A of Farassat, capable of predicting two important types of noise: the loading and thickness noise. The present work describes the most important features of the acoustic tool, presenting its most relevant results and framework analyses for helicopters and UAV quadrotors.Keywords: rotor noise, acoustic tool, GPU Programming, UAV noise
Procedia PDF Downloads 4023253 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers
Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice
Abstract:
In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.Keywords: churn prediction, data mining, decision-theoretic rough set, feature selection
Procedia PDF Downloads 449