Search results for: power flow optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12870

Search results for: power flow optimization

12000 Chemical Fingerprinting of Complex Samples With the Aid of Parallel Outlet Flow Chromatography

Authors: Xavier A. Conlan

Abstract:

Speed of analysis is a significant limitation to current high-performance liquid chromatography/mass spectrometry (HPLC/MS) and ultra-high-pressure liquid chromatography (UHPLC)/MS systems both of which are used in many forensic investigations. The flow rate limitations of MS detection require a compromise in the chromatographic flow rate, which in turn reduces throughput, and when using modern columns, a reduction in separation efficiency. Commonly, this restriction is combated through the post-column splitting of flow prior to entry into the mass spectrometer. However, this results in a loss of sensitivity and a loss in efficiency due to the post-extra column dead volume. A new chromatographic column format known as 'parallel segmented flow' involves the splitting of eluent flow within the column outlet end fitting, and in this study we present its application in order to interrogate the provenience of methamphetamine samples with mass spectrometry detection. Using parallel segmented flow, column flow rates as high as 3 mL/min were employed in the analysis of amino acids without post-column splitting to the mass spectrometer. Furthermore, when parallel segmented flow chromatography columns were employed, the sensitivity was more than twice that of conventional systems with post-column splitting when the same volume of mobile phase was passed through the detector. These finding suggest that this type of column technology will particularly enhance the capabilities of modern LC/MS enabling both high-throughput and sensitive mass spectral detection.

Keywords: chromatography, mass spectrometry methamphetamine, parallel segmented outlet flow column, forensic sciences

Procedia PDF Downloads 484
11999 Necro-Power, Paramilitarism, and Sovereignty: An Interpretation of Colombian Paramilitarism as Symptom of the Formation Process of the (Neo)Liberal Democratic State

Authors: Julian David Rios Acuna

Abstract:

This paper seeks to argue that the phenomenon of ‘paramilitarism’ in Colombia exhibits the role of violence as constitutive of the political process of state formation in the country. In order to do this, it takes as its point of departure a landmark moment in the long history of private armies known as the ‘paramilitary’ in Colombia. In 2001, paramilitary commanders, politicians, and members of the military and other branches of state power singed what is known as the ‘Pact of Ralito.’ In this pact, the paramilitary appropriated constitutional and legal language. The paper argues that this appropriation shows that the paramilitary and the state express the same claim to sovereign power and therefore have the same foundation. More precisely, paramilitary power shows itself to base its power on the same foundation as the legal order, namely, extreme forms of violence where death is generative of power. In this sense, the paper shows how, by sharing its foundation, Colombian paramilitarism exhibits that state power in Colombia can be characterized as necro-power as Achille Mbembe understands it. The paper argues that paramilitarism shows state power as necro-power by constituting itself as a symptom understood, following Zizek, as that which both shows and overthrows its own foundation. In this way, paramilitarism shows the foundation of the state, thereby reconfiguring this very state. This reconfiguration, explicitly based on necro-power, the paper concludes, transforms the state into a form more appropriate to the political demands of neo-liberalism. By exhibiting its foundation in necro-power through paramilitarism, the Colombian State turns from a liberal into a (neo)liberal democracy.

Keywords: necro-power, necropolitics, paramilitarism in Colombia, state formation, state power, sovereign power

Procedia PDF Downloads 132
11998 Measurement of Liquid Film Thickness in a Vertical Annular Two Phase Flow Changing the Gas-Liquid Density Ratio

Authors: Shoji Mori, Kunito Okuyama

Abstract:

Annular two phase flow is encountered in many industrial equipments, including flow near nuclear fuel rods in boiling water reactor (BWR). Especially, disturbance waves play important roles in the pressure drop, the generation of entrainments, and the dryout of the liquid film. Therefore, it is important to clarify the behavior of disturbance waves and base film. However, most of the previous studies have been performed under atmospheric pressure conditions that provides the properties of liquid and gas which are significantly different from those of a BWR. Therefore, the effect of properties in gas and liquid on liquid film characteristics should be clarified. In this paper we focus on the effect of gas-liquid density ratio on liquid film thickness characteristics. The experiments have been conducted at four density ratio conditions (ρL/ρG =763, 451, 231, and 31). As a result, it is found that and interfacial shear stress collapse not only tF ave but also tF max and tF min successfully under the same liquid mass flow rate conditions irrespective of ρL/ρG, and moreover a non-dimensional parameter tends to collapse tF max,tF ave,and tF min in the wide range of experimental conditions (ρL/ρG:31~763,We:10~1800,ReL:500 ~ 2200).

Keywords: two phase flow, liquid film, annular flow, disturbance wave

Procedia PDF Downloads 384
11997 Superordinated Control for Increasing Feed-in Capacity and Improving Power Quality in Low Voltage Distribution Grids

Authors: Markus Meyer, Bastian Maucher, Rolf Witzmann

Abstract:

The ever increasing amount of distributed generation in low voltage distribution grids (mainly PV and micro-CHP) can lead to reverse load flows from low to medium/high voltage levels at times of high feed-in. Reverse load flow leads to rising voltages that may even exceed the limits specified in the grid codes. Furthermore, the share of electrical loads connected to low voltage distribution grids via switched power supplies continuously increases. In combination with inverter-based feed-in, this results in high harmonic levels reducing overall power quality. Especially high levels of third-order harmonic currents can lead to neutral conductor overload, which is even more critical if lines with reduced neutral conductor section areas are used. This paper illustrates a possible concept for smart grids in order to increase the feed-in capacity, improve power quality and to ensure safe operation of low voltage distribution grids at all times. The key feature of the concept is a hierarchically structured control strategy that is run on a superordinated controller, which is connected to several distributed grid analyzers and inverters via broad band powerline (BPL). The strategy is devised to ensure both quick response time as well as the technically and economically reasonable use of the available inverters in the grid (PV-inverters, batteries, stepless line voltage regulators). These inverters are provided with standard features for voltage control, e.g. voltage dependent reactive power control. In addition they can receive reactive power set points transmitted by the superordinated controller. To further improve power quality, the inverters are capable of active harmonic filtering, as well as voltage balancing, whereas the latter is primarily done by the stepless line voltage regulators. By additionally connecting the superordinated controller to the control center of the grid operator, supervisory control and data acquisition capabilities for the low voltage distribution grid are enabled, which allows easy monitoring and manual input. Such a low voltage distribution grid can also be used as a virtual power plant.

Keywords: distributed generation, distribution grid, power quality, smart grid, virtual power plant, voltage control

Procedia PDF Downloads 264
11996 Passive Vibration Isolation Analysis and Optimization for Mechanical Systems

Authors: Ozan Yavuz Baytemir, Ender Cigeroglu, Gokhan Osman Ozgen

Abstract:

Vibration is an important issue in the design of various components of aerospace, marine and vehicular applications. In order not to lose the components’ function and operational performance, vibration isolation design involving the optimum isolator properties selection and isolator positioning processes appear to be a critical study. Knowing the growing need for the vibration isolation system design, this paper aims to present two types of software capable of implementing modal analysis, response analysis for both random and harmonic types of excitations, static deflection analysis, Monte Carlo simulations in addition to study of parameter and location optimization for different types of isolation problem scenarios. Investigating the literature, there is no such study developing a software-based tool that is capable of implementing all those analysis, simulation and optimization studies in one platform simultaneously. In this paper, the theoretical system model is generated for a 6-DOF rigid body. The vibration isolation system of any mechanical structure is able to be optimized using hybrid method involving both global search and gradient-based methods. Defining the optimization design variables, different types of optimization scenarios are listed in detail. Being aware of the need for a user friendly vibration isolation problem solver, two types of graphical user interfaces (GUIs) are prepared and verified using a commercial finite element analysis program, Ansys Workbench 14.0. Using the analysis and optimization capabilities of those GUIs, a real application used in an air-platform is also presented as a case study at the end of the paper.

Keywords: hybrid optimization, Monte Carlo simulation, multi-degree-of-freedom system, parameter optimization, location optimization, passive vibration isolation analysis

Procedia PDF Downloads 563
11995 Total Dissolved Solids and Total Iron in High Rate Activated Sludge System

Authors: M. Y. Saleh, G. M. ELanany, M. H. Elzahar, M. Z. Elshikhipy

Abstract:

Industrial wastewater discharge, which carries high concentrations of dissolved solids and iron, could be treated by high rate activated sludge stage of the multiple-stage sludge treatment plant, a system which is characterized by high treatment efficiency, optimal prices, and small areas compared with conventional activated sludge treatment plants. A pilot plant with an influent industrial discharge flow of 135 L/h was designed following the activated sludge system to simulate between the biological and chemical treatment with the addition of dosages 100, 150, 200 and 250 mg/L alum salt to the aeration tank. The concentrations of total dissolved solids (TDS) and iron (Fe) in industrial discharge flow had an average range of 140000 TDS and 4.5 mg/L iron. The optimization of the chemical-biological process using a dosage of 200 mg/L alum succeeded to improve the removal efficiency of TDS and total iron to 48.15% and 68.11% respectively.

Keywords: wastewater, activated sludge, TDS, total iron

Procedia PDF Downloads 292
11994 Experimental Study of the Modifications of the Bed of a River under Extreme Flow Conditions

Authors: A. Ghenaim, A. Terfous

Abstract:

In this work, degradation phenomena in fluvial beds having uniform sediments are explored experimentally under extreme flow conditions. Laboratory experiments were conducted in a rectangular cross-section channel for different flow conditions, channel characteristics, and sediment properties at the National Institute of Applied Sciences (Strasbourg, France). Tests were carried out in two conditions: (1) equilibrium condition, where, once the steady and uniform flow conditions were achieved for a given slope and discharge, the channel was fed with variable sediment discharges until the bed-load sediment transport achieved an equilibrium condition; and (2) nonequilibrium condition, where the sediment feeding was instantaneously stopped, and the bed levels were measured over time. Experimental results enabled assessing the erosion rates and determining the empirical mathematical model to predict the bed level changes.

Keywords: fluvial beds, sediment, uniform flow conditions, nonequilibrium condition, sediment disposition, erosion

Procedia PDF Downloads 90
11993 Study on Dynamic Stiffness Matching and Optimization Design Method of a Machine Tool

Authors: Lu Xi, Li Pan, Wen Mengmeng

Abstract:

The stiffness of each component has different influences on the stiffness of the machine tool. Taking the five-axis gantry machining center as an example, we made the modal analysis of the machine tool, followed by raising and lowering the stiffness of the pillar, slide plate, beam, ram and saddle so as to study the stiffness matching among these components on the standard of whether the stiffness of the modified machine tool changes more than 50% relative to the stiffness of the original machine tool. The structural optimization of the machine tool can be realized by changing the stiffness of the components whose stiffness is mismatched. For example, the stiffness of the beam is mismatching. The natural frequencies of the first six orders of the beam increased by 7.70%, 0.38%, 6.82%, 7.96%, 18.72% and 23.13%, with the weight increased by 28Kg, leading to the natural frequencies of several orders which had a great influence on the dynamic performance of the whole machine increased by 1.44%, 0.43%, 0.065%, which verified the correctness of the optimization method based on stiffness matching proposed in this paper.

Keywords: machine tool, optimization, modal analysis, stiffness matching

Procedia PDF Downloads 97
11992 An Application of Meta-Modeling Methods for Surrogating Lateral Dynamics Simulation in Layout-Optimization for Electric Drivetrains

Authors: Christian Angerer, Markus Lienkamp

Abstract:

Electric vehicles offer a high variety of possible drivetrain topologies with up to 4 motors. Multi-motor-designs can have several advantages regarding traction, vehicle dynamics, safety and even efficiency. With a rising number of motors, the whole drivetrain becomes more complex. All permutations of gearings, drivetrain-layouts, motor-types and –sizes lead up in a very large solution space. Single elements of this solution space can be analyzed by simulation methods. In addition to longitudinal vehicle behavior, which most optimization-approaches are restricted to, also lateral dynamics are important for vehicle dynamics, stability and efficiency. In order to compete large solution spaces and to find an optimal result, genetic algorithm based optimization is state-of-the-art. As lateral dynamics simulation is way more CPU-intensive, optimization takes much more time than in case of longitudinal-only simulation. Therefore, this paper shows an approach how to create meta-models from a 14-degree of freedom vehicle model in order to enable a numerically efficient drivetrain-layout optimization process under consideration of lateral dynamics. Different meta-modelling approaches such as neural networks or DoE are implemented and comparatively discussed.

Keywords: driving dynamics, drivetrain layout, genetic optimization, meta-modeling, lateral dynamicx

Procedia PDF Downloads 411
11991 A CMOS D-Band Power Amplifier in 22FDSOI Technology for 6G Applications

Authors: Karandeep Kaur

Abstract:

This paper presents the design of power amplifier (PA) for mmWave communication systems. The designed amplifier uses GlobalFoundries 22 FDX technology and works at an operational frequency of 140 GHz in the D-Band. With a supply voltage of 0.8V for the super low threshold voltage transistors, the amplifier is biased in class AB and has a total current consumption of 50 mA. The measured saturated output power from the power amplifier is 5.6 dBm with an output-referred 1dB-compression point of 1.6dBm. The measured gain of PA is 19 dB with 3 dB-bandwidth ranging from 120 GHz to 140 GHz. The chip occupies an area of 795µm × 410µm.

Keywords: mmWave communication system, power amplifiers, 22FDX, D-Band, cross-coupled capacitive neutralization

Procedia PDF Downloads 157
11990 Study of the Behavior and Similarities of Flow and Level Transmitters in the Industries

Authors: Valentina Alessandra Carvalho do Vale, Elmo Thiago Lins Cöuras Ford

Abstract:

In view of the requirements of the current industrial processes, the instrumentation plays a critical role. In this context, this work aims to raise some the operating characteristics of the level and flow transmitters, in addition to observing their similarities and possible limitations for certain configurations.

Keywords: flow, level, instrumentation, configurations of meters, method of choice of the meters, instrumentation in the industrial processes

Procedia PDF Downloads 574
11989 MPPT Control with (P&O) and (FLC) Algorithms of Solar Electric Generator

Authors: Dib Djalel, Mordjaoui Mourad

Abstract:

The current trend towards the exploitation of various renewable energy resources has become indispensable, so it is important to improve the efficiency and reliability of the GPV photovoltaic systems. Maximum Power Point Tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions. This paper presents a new fuzzy logic control based MPPT algorithm for solar panel. The solar panel is modeled and analyzed in Matlab/Simulink. The Solar panel can produce maximum power at a particular operating point called Maximum Power Point(MPP). To produce maximum power and to get maximum efficiency, the entire photovoltaic panel must operate at this particular point. Maximum power point of PV panel keeps on changing with changing environmental conditions such as solar irradiance and cell temperature. Thus, to extract maximum available power from a PV module, MPPT algorithms are implemented and Perturb and Observe (P&O) MPPT and fuzzy logic control FLC, MPPT are developed and compared. Simulation results show the effectiveness of the fuzzy control technique to produce a more stable power.

Keywords: MPPT, photovoltaic panel, fuzzy logic control, modeling, solar power

Procedia PDF Downloads 477
11988 T-S Fuzzy Modeling Based on Power Coefficient Limit Nonlinearity Applied to an Isolated Single Machine Load Frequency Deviation Control

Authors: R. S. Sheu, H. Usman, M. S. Lawal

Abstract:

Takagi-Sugeno (T-S) fuzzy model based control of a load frequency deviation in a single machine with limit nonlinearity on power coefficient is presented in the paper. Two T-S fuzzy rules with only rotor angle variable as input in the premise part, and linear state space models in the consequent part involving characteristic matrices determined from limits set on the power coefficient constant are formulated, state feedback control gains for closed loop control was determined from the formulated Linear Matrix Inequality (LMI) with eigenvalue optimization scheme for asymptotic and exponential stability (speed of esponse). Numerical evaluation of the closed loop object was carried out in Matlab. Simulation results generated of both the open and closed loop system showed the effectiveness of the control scheme in maintaining load frequency stability.

Keywords: T-S fuzzy model, state feedback control, linear matrix inequality (LMI), frequency deviation control

Procedia PDF Downloads 390
11987 Inducing Flow Experience in Mobile Learning: An Experiment Using a Spanish Learning Mobile Application

Authors: S. Jonsson, D. Millard, C. Bokhove

Abstract:

Smartphones are ubiquitous and frequently used as learning tools, which makes the design of educational apps an important area of research. A key issue is designing apps to encourage engagement while maintaining a focus on the educational aspects of the app. Flow experience is a promising method for addressing this issue, which refers to a mental state of cognitive absorption and positive emotion. Flow experience has been shown to be associated with positive emotion and increased learning performance. Studies have shown that immediate feedback is an antecedent to Flow. This experiment investigates the effect of immediate feedback on Flow experience. An app teaching Spanish phrases was developed, and 30 participants completed both a 10min session with immediate feedback and a 10min session with delayed feedback. The app contained a task where the user assembles Spanish phrases by pressing bricks with Spanish words. Immediate feedback was implemented by incorrect bricks recoiling, while correct brick moved to form part of the finished phrase. In the delayed feedback condition, the user did not know if the bricks they pressed were correct until the phrase was complete. The level of Flow experienced by the participants was measured after each session using the Flow Short Scale. The results showed that higher levels of Flow were experienced in the immediate feedback session. It was also found that 14 of the participants indicated that the demands of the task were ‘just right’ in the immediate feedback session, while only one did in the delayed feedback session. These results have implications for how to design educational technology and opens up questions for how Flow experience can be used to increase performance and engagement.

Keywords: feedback timing, flow experience, L2 language learning, mobile learning

Procedia PDF Downloads 125
11986 Spare Part Inventory Optimization Policy: A Study Literature

Authors: Zukhrof Romadhon, Nani Kurniati

Abstract:

Availability of Spare parts is critical to support maintenance tasks and the production system. Managing spare part inventory deals with some parameters and objective functions, as well as the tradeoff between inventory costs and spare parts availability. Several mathematical models and methods have been developed to optimize the spare part policy. Many researchers who proposed optimization models need to be considered to identify other potential models. This work presents a review of several pertinent literature on spare part inventory optimization and analyzes the gaps for future research. Initial investigation on scholars and many journal database systems under specific keywords related to spare parts found about 17K papers. Filtering was conducted based on five main aspects, i.e., replenishment policy, objective function, echelon network, lead time, model solving, and additional aspects of part classification. Future topics could be identified based on the number of papers that haven’t addressed specific aspects, including joint optimization of spare part inventory and maintenance.

Keywords: spare part, spare part inventory, inventory model, optimization, maintenance

Procedia PDF Downloads 56
11985 Reduction of Specific Energy Consumption in Microfiltration of Bacillus velezensis Broth by Air Sparging and Turbulence Promoter

Authors: Jovana Grahovac, Ivana Pajcin, Natasa Lukic, Jelena Dodic, Aleksandar Jokic

Abstract:

To obtain purified biomass to be used in the plant pathogen biocontrol or as soil biofertilizer, it is necessary to eliminate residual broth components at the end of the fermentation process. The main drawback of membrane separation techniques is permeate flux decline due to the membrane fouling. Fouling mitigation measures increase the pressure drop along membrane channel due to the increased resistance to flow of the feed suspension, thus increasing the hydraulic power drop. At the same time, these measures lead to an increase in the permeate flux due to the reduced resistance of the filtration cake on the membrane surface. Because of these opposing effects, the energy efficiency of fouling mitigation measures is limited, and the justification of its application is provided by information on a reducing specific energy consumption compared to a case without any measures employed. In this study, the influence of static mixer (Kenics) and air-sparging (two-phase flow) on reduction of specific energy consumption (ER) was investigated. Cultivation Bacillus velezensis was carried out in the 3-L bioreactor (Biostat® Aplus) containing 2 L working volume with two parallel Rushton turbines and without internal baffles. Cultivation was carried out at 28 °C on at 150 rpm with an aeration rate of 0.75 vvm during 96 h. The experiments were carried out in a conventional cross-flow microfiltration unit. During experiments, permeate and retentate were recycled back to the broth vessel to simulate continuous process. The single channel ceramic membrane (TAMI Deutschland) used had a nominal pore size 200 nm with the length of 250 mm and an inner/external diameter of 6/10 mm. The useful membrane channel surface was 4.33×10⁻³ m². Air sparging was brought by the pressurized air connected by a three-way valve to the feed tube by a simple T-connector without diffusor. The different approaches to flux improvement are compared in terms of energy consumption. Reduction of specific energy consumption compared to microfiltration without fouling mitigation is around 49% and 63%, for use of two-phase flow and a static mixer, respectively. In the case of a combination of these two fouling mitigation methods, ER is 60%, i.e., slightly lower compared to the use of turbulence promoter alone. The reason for this result can be found in the fact that flux increase is more affected by the presence of a Kenics static mixer while sparging results in an increase of energy used during microfiltration. By comparing combined method with turbulence promoter flux enhancement method ER is negative (-7%) which can be explained by increased power consumption for air flow with moderate contribution to the flux increase. Another confirmation for this fact can be found by comparing energy consumption values for combined method with energy consumption in the case of two-phase flow. In this instance energy reduction (ER) is 22% that demonstrates that turbulence promoter is more efficient compared to two phase flow. Antimicrobial activity of Bacillus velezensis biomass against phytopathogenic isolates Xanthomonas campestris was preserved under different fouling reduction methods.

Keywords: Bacillus velezensis, microfiltration, static mixer, two-phase flow

Procedia PDF Downloads 113
11984 Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds

Authors: Seyedehsomayeh Hosseini

Abstract:

Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds.

Keywords: Riemannian manifolds, nonsmooth optimization, lower semicontinuous functions, subdifferential

Procedia PDF Downloads 357
11983 Flow Control Optimisation Using Vortex Generators in Turbine Blade

Authors: J. Karthik, G. Vinayagamurthy

Abstract:

Aerodynamic flow control is achieved by interaction of flowing medium with corresponding structure so that its natural flow state is disturbed to delay the transition point. This paper explains the aerodynamic effect and optimized design of Vortex Generators on the turbine blade to achieve maximum flow control. The airfoil is chosen from NREL [National Renewable Energy Laboratory] S-series airfoil as they are characterized with good lift characteristics and lower noise. Vortex generators typically chosen are Ogival, Rectangular, Triangular and Tapered Fin shapes attached near leading edge. Vortex generators are typically distributed from the primary to tip of the blade section. The design wind speed is taken as 6m/s and the computational analysis is executed. The blade surface is simulated using k- ɛ SST model and results are compared with X-FOIL results. The computational results are validated using Wind Tunnel Testing of the blade corresponding to the design speed. The effect of Vortex generators on the flow characteristics is studied from the results of analysis. By comparing the computational and test results of all shapes of Vortex generators; the optimized design is achieved for effective flow control corresponding to the blade.

Keywords: flow control, vortex generators, design optimisation, CFD

Procedia PDF Downloads 401
11982 Investigation of the Kutta Condition Using Unsteady Flow

Authors: K. Bhojnadh, M. Fiddler, D. Cheshire

Abstract:

An investigation into the Kutta effect on the trailing edge of a subsonic aerofoil was conducted which led to an analysis using Ansys Fluent to determine the effect of flow separation over a NACA 0012 aerofoil. This aerofoil was subjected to oscillations to create an unsteady flow over the aerofoil, therefore, creating turbulence, with unsteady aerodynamics playing a key role to determine the flow regimes when the aerofoil is subjected to different angles of attack along with varying Reynolds numbers. Many theories were evolved to determine the flow parameters of a 2-D aerofoil in these unsteady conditions because they behave unpredictably at the trailing edge when subjected to a different angle of attack. The shear area observed in the boundary layer at the trailing edge tends towards an unsteady turbulent flow even at small angles of attack, creating drag as the flow separates, reducing the aerodynamic performance of aerofoil. In this paper, research was conducted to determine the effect of Kutta circulation over the aerofoil and the effect of that circulation in reducing the effect of pressure and boundary layer distribution over the aerofoil. The effect of circulation is observed by using Ansys Fluent by using varying flow parameters and differential schemes to observe the flow behaviour on the aerofoil. Initially, steady flow analysis was conducted on the aerofoil to determine the effect of circulation, and it was noticed that the effect of circulation could only be properly observed when the aerofoil is subjected to oscillations. Therefore, that was modelled by using Ansys user-defined functions, which define the motion of the aerofoil by creating a dynamic mesh on the aerofoil. Initial results were observed, and further development of the dynamic mesh functions in Ansys is taking place. This research will determine the overall basic principles of unsteady flow aerodynamics applied to the investigation of Kutta related circulation, and gives an indication regarding the generation of vortices which is discussed further in this paper.

Keywords: circulation, flow seperation, turbulence modelling, vortices

Procedia PDF Downloads 201
11981 Convective Brinkman-Forchiemer Extended Flow through Channel Filled with Porous Material: An Approximate Analytical Approach

Authors: Basant K. Jha, M. L. Kaurangini

Abstract:

An approximate analytical solution is presented for convective flow in a horizontal channel filled with porous material. The Brinkman-Forchheimer extension of Darcy equation is utilized to model the fluid flow while the energy equation is utilized to model temperature distribution in the channel. The solutions were obtained utilizing the newly suggested technique and compared with those obtained from an implicit finite-difference solution.

Keywords: approximate analytical, convective flow, porous material, Brinkman-Forchiemer

Procedia PDF Downloads 391
11980 Numerical Simulation of Erosion Control in Slurry Pump Casing by Geometrical Flow Pattern Modification Analysis

Authors: A. R. Momeninezhad

Abstract:

Erosion of Slurry Pumps in Related Industries, is one of the major costs in their production process. Many factories in extractive industries try to find ways to diminish this cost. In this paper, we consider the flow pattern modifications by geometric variations made of numerical simulation of flow inside pump casing, which is one of the most important parts analyzed for erosion. The mentioned pump is a cyclone centrifugal slurry pump, which is operating in Sarcheshmeh Copper Industries in Kerman-Iran, named and tagged as HM600 cyclone pump. Simulation shows many improvements in local wear information and situations for better and more qualified design of casing shape and impeller position, before and after geometric corrections. By theory of liquid-solid two-phase flow, the local wear defeats are analyzed and omitted.

Keywords: flow pattern, slurry pump, simulation, wear

Procedia PDF Downloads 450
11979 Flowsheet Development, Simulation and Optimization of Carbon-Di-Oxide Removal System at Natural Gas Reserves by Aspen–Hysys Process Simulator

Authors: Mohammad Ruhul Amin, Nusrat Jahan

Abstract:

Natural gas is a cleaner fuel compared to the others. But it needs some treatment before it is in a state to be used. So natural gas purification is an integral part of any process where natural gas is used as raw material or fuel. There are several impurities in natural gas that have to be removed before use. CO2 is one of the major contaminants. In this project we have removed CO2 by amine process by using MEA solution. We have built up the whole amine process for removing CO2 in Aspen Hysys and simulated the process. At the end of simulation we have got very satisfactory results by using MEA solution for the removal of CO2. Simulation result shows that amine absorption process enables to reduce CO2 content from NG by 58%. HYSYS optimizer allowed us to get a perfect optimized plant. After optimization the profit of existing plant is increased by 2.34 %.Simulation and optimization by Aspen-HYSYS simulator makes available us to enormous information which will help us to further research in future.

Keywords: Aspen–Hysys, CO2 removal, flowsheet development, MEA solution, natural gas optimization

Procedia PDF Downloads 493
11978 A Deep Learning Based Method for Faster 3D Structural Topology Optimization

Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury

Abstract:

Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.

Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder

Procedia PDF Downloads 169
11977 Conjunctive Management of Surface and Groundwater Resources under Uncertainty: A Retrospective Optimization Approach

Authors: Julius M. Ndambuki, Gislar E. Kifanyi, Samuel N. Odai, Charles Gyamfi

Abstract:

Conjunctive management of surface and groundwater resources is a challenging task due to the spatial and temporal variability nature of hydrology as well as hydrogeology of the water storage systems. Surface water-groundwater hydrogeology is highly uncertain; thus it is imperative that this uncertainty is explicitly accounted for, when managing water resources. Various methodologies have been developed and applied by researchers in an attempt to account for the uncertainty. For example, simulation-optimization models are often used for conjunctive water resources management. However, direct application of such an approach in which all realizations are considered at each iteration of the optimization process leads to a very expensive optimization in terms of computational time, particularly when the number of realizations is large. The aim of this paper, therefore, is to introduce and apply an efficient approach referred to as Retrospective Optimization Approximation (ROA) that can be used for optimizing conjunctive use of surface water and groundwater over a multiple hydrogeological model simulations. This work is based on stochastic simulation-optimization framework using a recently emerged technique of sample average approximation (SAA) which is a sampling based method implemented within the Retrospective Optimization Approximation (ROA) approach. The ROA approach solves and evaluates a sequence of generated optimization sub-problems in an increasing number of realizations (sample size). Response matrix technique was used for linking simulation model with optimization procedure. The k-means clustering sampling technique was used to map the realizations. The methodology is demonstrated through the application to a hypothetical example. In the example, the optimization sub-problems generated were solved and analysed using “Active-Set” core optimizer implemented under MATLAB 2014a environment. Through k-means clustering sampling technique, the ROA – Active Set procedure was able to arrive at a (nearly) converged maximum expected total optimal conjunctive water use withdrawal rate within a relatively few number of iterations (6 to 7 iterations). Results indicate that the ROA approach is a promising technique for optimizing conjunctive water use of surface water and groundwater withdrawal rates under hydrogeological uncertainty.

Keywords: conjunctive water management, retrospective optimization approximation approach, sample average approximation, uncertainty

Procedia PDF Downloads 229
11976 The Phenomena of Virtual World Adoption: Antecedents and Consequences of Virtual World Experience

Authors: Norita Ahmad, Reza Barkhi, Xiaobo Xu

Abstract:

We design an experimental study to learn about the cognitive implications of the use of avatars in a Virtual World (VW) (i.e., Second Life). The results support our proposed model, where a positive flow experience with VW influences the attitude towards VW, in turn influencing intention to use VW. Furthermore, VW flow experience can itself be impacted by perceived peer influence, familiarity with VW, and personality of the individuals behind the avatars in VW.

Keywords: avatar, flow experience, personality type, second life, virtual world

Procedia PDF Downloads 592
11975 Production Sharing Contracts Transparency Simulation

Authors: Chariton Christou, David Cornwell

Abstract:

Production Sharing Contract (PSC) is the type of contract that is being used widely in our time. The financial crisis made the governments tightfisted and they do not have the resources to participate in a development of a field. Therefore, more and more countries introduce the PSC. The companies have the power and the money to develop the field with their own way. The main problem is the transparency of oil and gas companies especially in the PSC and how this can be achieved. Many discussions have been made especially in the U.K. What we are suggesting is a dynamic financial simulation with the help of a flow meter. The flow meter will count the production of each field every day (it will be installed in a pipeline). The production will be the basic input of the simulation. It will count the profit, the costs and more according to the information of the flow meter. In addition it will include the terms of the contract and the costs that have been paid. By all these parameters the simulation will be able to present in real time the information of a field (taxes, employees, R-factor). By this simulation the company will share some information with the government but not all of them. The government will know the taxes that should be paid and what is the sharing percentage of it. All of the other information could be confidential for the company. Furthermore, oil company could control the R-factor by changing the production each day to maximize its sharing percentages and as a result of this the profit. This idea aims to change the way that governments 'control' oil companies and bring a transparency evolution in the industry. With the help of a simulation every country could be next to the company and have a better collaboration.

Keywords: production sharing contracts, transparency, simulation

Procedia PDF Downloads 370
11974 Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution

Authors: Tomoaki Hashimoto

Abstract:

In recent decades, probabilistic constrained optimal control problems have attracted much attention in many research field. Although probabilistic constraints are generally intractable in an optimization problem, several tractable methods haven been proposed to handle probabilistic constraints. In most methods, probabilistic constraints are reduced to deterministic constraints that are tractable in an optimization problem. However, there is a gap between the transformed deterministic constraints in case of known and unknown probability distribution. This paper examines the conservativeness of probabilistic constrained optimization method with the unknown probability distribution. The objective of this paper is to provide a quantitative assessment of the conservatism for tractable constraints in probabilistic constrained optimization with the unknown probability distribution.

Keywords: optimal control, stochastic systems, discrete time systems, probabilistic constraints

Procedia PDF Downloads 577
11973 Design of Optimal Proportional Integral Derivative Attitude Controller for an Uncoupled Flexible Satellite Using Particle Swarm Optimization

Authors: Martha C. Orazulume, Jibril D. Jiya

Abstract:

Flexible satellites are equipped with various appendages which vibrate under the influence of any excitation and make the attitude of the satellite to be unstable. Therefore, the system must be able to adjust to balance the effect of these appendages in order to point accurately and satisfactorily which is one of the most important problems in satellite design. Proportional Integral Derivative (PID) Controller is simple to design and computationally efficient to implement which is used to stabilize the effect of these flexible appendages. However, manual turning of the PID is time consuming, waste energy and money. Particle Swarm Optimization (PSO) is used to tune the parameters of PID Controller. Simulation results obtained show that PSO tuned PID Controller is able to re-orient the spacecraft attitude as well as dampen the effect of mechanical resonance and yields better performance when compared with manually tuned PID Controller.

Keywords: Attitude Control, Flexible Satellite, Particle Swarm Optimization, PID Controller and Optimization

Procedia PDF Downloads 396
11972 Pulsed Vortex Flow in Low–Temperature Range Heat Pipes

Authors: A. V. Seryakov

Abstract:

The work presents part calculation and part experimental research of the intensification of heat-transfer characteristics of medium-temperature heat pipes. Presented is a vapour jet nozzle, similar to the Laval nozzle, surrounded by a capillary-porous insert along the full length of the heat pipe axial to the direction of heat flow. This increases velocity of the vapour flow, heat-transfer coefficient and pulse rate of two-phase vapour flow.

Keywords: medium-temperature range heat pipes, capillary-porous insert, capillary steam injectors, Laval nozzle, condensation sensor

Procedia PDF Downloads 435
11971 Numerical Study on Parallel Rear-Spoiler on Super Cars

Authors: Anshul Ashu

Abstract:

Computers are applied to the vehicle aerodynamics in two ways. One of two is Computational Fluid Dynamics (CFD) and other is Computer Aided Flow Visualization (CAFV). Out of two CFD is chosen because it shows the result with computer graphics. The simulation of flow field around the vehicle is one of the important CFD applications. The flow field can be solved numerically using panel methods, k-ε method, and direct simulation methods. The spoiler is the tool in vehicle aerodynamics used to minimize unfavorable aerodynamic effects around the vehicle and the parallel spoiler is set of two spoilers which are designed in such a manner that it could effectively reduce the drag. In this study, the standard k-ε model of the simplified version of Bugatti Veyron, Audi R8 and Porsche 911 are used to simulate the external flow field. Flow simulation is done for variable Reynolds number. The flow simulation consists of three different levels, first over the model without a rear spoiler, second for over model with single rear spoiler, and third over the model with parallel rear-spoiler. The second and third level has following parameter: the shape of the spoiler, the angle of attack and attachment position. A thorough analysis of simulations results has been found. And a new parallel spoiler is designed. It shows a little improvement in vehicle aerodynamics with a decrease in vehicle aerodynamic drag and lift. Hence, it leads to good fuel economy and traction force of the model.

Keywords: drag, lift, flow simulation, spoiler

Procedia PDF Downloads 496