Search results for: multivariate time series data
38024 Additive Weibull Model Using Warranty Claim and Finite Element Analysis Fatigue Analysis
Authors: Kanchan Mondal, Dasharath Koulage, Dattatray Manerikar, Asmita Ghate
Abstract:
This paper presents an additive reliability model using warranty data and Finite Element Analysis (FEA) data. Warranty data for any product gives insight to its underlying issues. This is often used by Reliability Engineers to build prediction model to forecast failure rate of parts. But there is one major limitation in using warranty data for prediction. Warranty periods constitute only a small fraction of total lifetime of a product, most of the time it covers only the infant mortality and useful life zone of a bathtub curve. Predicting with warranty data alone in these cases is not generally provide results with desired accuracy. Failure rate of a mechanical part is driven by random issues initially and wear-out or usage related issues at later stages of the lifetime. For better predictability of failure rate, one need to explore the failure rate behavior at wear out zone of a bathtub curve. Due to cost and time constraints, it is not always possible to test samples till failure, but FEA-Fatigue analysis can provide the failure rate behavior of a part much beyond warranty period in a quicker time and at lesser cost. In this work, the authors proposed an Additive Weibull Model, which make use of both warranty and FEA fatigue analysis data for predicting failure rates. It involves modeling of two data sets of a part, one with existing warranty claims and other with fatigue life data. Hazard rate base Weibull estimation has been used for the modeling the warranty data whereas S-N curved based Weibull parameter estimation is used for FEA data. Two separate Weibull models’ parameters are estimated and combined to form the proposed Additive Weibull Model for prediction.Keywords: bathtub curve, fatigue, FEA, reliability, warranty, Weibull
Procedia PDF Downloads 7338023 Nonstationary Modeling of Extreme Precipitation in the Wei River Basin, China
Authors: Yiyuan Tao
Abstract:
Under the impact of global warming together with the intensification of human activities, the hydrological regimes may be altered, and the traditional stationary assumption was no longer satisfied. However, most of the current design standards of water infrastructures were still based on the hypothesis of stationarity, which may inevitably result in severe biases. Many critical impacts of climate on ecosystems, society, and the economy are controlled by extreme events rather than mean values. Therefore, it is of great significance to identify the non-stationarity of precipitation extremes and model the precipitation extremes in a nonstationary framework. The Wei River Basin (WRB), located in a continental monsoon climate zone in China, is selected as a case study in this study. Six extreme precipitation indices were employed to investigate the changing patterns and stationarity of precipitation extremes in the WRB. To identify if precipitation extremes are stationary, the Mann-Kendall trend test and the Pettitt test, which is used to examine the occurrence of abrupt changes are adopted in this study. Extreme precipitation indices series are fitted with non-stationary distributions that selected from six widely used distribution functions: Gumbel, lognormal, Weibull, gamma, generalized gamma and exponential distributions by means of the time-varying moments model generalized additive models for location, scale and shape (GAMLSS), where the distribution parameters are defined as a function of time. The results indicate that: (1) the trends were not significant for the whole WRB, but significant positive/negative trends were still observed in some stations, abrupt changes for consecutive wet days (CWD) mainly occurred in 1985, and the assumption of stationarity is invalid for some stations; (2) for these nonstationary extreme precipitation indices series with significant positive/negative trends, the GAMLSS models are able to capture well the temporal variations of the indices, and perform better than the stationary model. Finally, the differences between the quantiles of nonstationary and stationary models are analyzed, which highlight the importance of nonstationary modeling of precipitation extremes in the WRB.Keywords: extreme precipitation, GAMLSSS, non-stationary, Wei River Basin
Procedia PDF Downloads 12438022 Real-Time Observation of Concentration Distribution for Mix Liquids including Water in Micro Fluid Channel with Near-Infrared Spectroscopic Imaging Method
Authors: Hiroki Takiguchi, Masahiro Furuya, Takahiro Arai
Abstract:
In order to quantitatively comprehend thermal flow for some industrial applications such as nuclear and chemical reactors, detailed measurements for temperature and abundance (concentration) of materials at high temporal and spatial resolution are required. Additionally, rigorous evaluation of the size effect is also important for practical realization. This paper introduces a real-time spectroscopic imaging method in micro scale field, which visualizes temperature and concentration distribution of a liquid or mix liquids with near-infrared (NIR) wavelength region. This imaging principle is based on absorption of pre-selected narrow band from absorption spectrum peak or its dependence property of target liquid in NIR region. For example, water has a positive temperature sensitivity in the wavelength at 1905 nm, therefore the temperature of water can be measured using the wavelength band. In the experiment, the real-time imaging observation of concentration distribution in micro channel was demonstrated to investigate the applicability of micro-scale diffusion coefficient and temperature measurement technique using this proposed method. The effect of thermal diffusion and binary mutual diffusion was evaluated with the time-series visualizations of concentration distribution.Keywords: near-infrared spectroscopic imaging, micro fluid channel, concentration distribution, diffusion phenomenon
Procedia PDF Downloads 16138021 Heroin Withdrawal, Prison and Multiple Temporalities
Authors: Ian Walmsley
Abstract:
The aim of this paper is to explore the influence of time and temporality on the experience of coming off heroin in prison. The presentation draws on qualitative data collected during a small-scale pilot study of the role of self-care in the process of coming off drugs in prison. Time and temporality emerged as a key theme in the interview transcripts. Drug dependent prisoners experience of time in prison has not been recognized in the research literature. Instead, the literature on prison time typically views prisoners as a homogenous group or tends to focus on the influence of aging and gender on prison time. Furthermore, there is a tendency in the literature on prison drug treatment and recovery to conceptualize drug dependent prisoners as passive recipients of prison healthcare, rather than active agents. In building on these gaps, this paper argues that drug dependent prisoners experience multiple temporalities which involve an interaction between the body-times of the drug dependent prisoner and the economy of time in prison. One consequence of this interaction is the feeling that they are doing, at this point in their prison sentence, double prison time. The second part of the argument is that time and temporality were a means through which they governed their withdrawing bodies. In addition, this paper will comment on the challenges of prison research in England.Keywords: heroin withdrawal, time and temporality, prison, body
Procedia PDF Downloads 27638020 On Flexible Preferences for Standard Taxis, Electric Taxis, and Peer-to-Peer Ridesharing
Authors: Ricardo Daziano
Abstract:
In the analysis and planning of the mobility ecosystem, preferences for ride-hailing over incumbent street-hailing services need better understanding. In this paper, a seminonparametric discrete choice model that allows for flexible preference heterogeneity is fitted with data from a discrete choice experiment among adult commuters in Montreal, Canada (N=760). Participants chose among Uber, Teo (a local electric ride-hailing service that was in operation when data was collected in 2018), and a standard taxi when presented with information about cost, time (on-trip, waiting, walking), powertrain of the car (gasoline/hybrid) for Uber and taxi, and whether the available electric Teo was a Tesla (which was one of the actual features of the Teo fleet). The fitted flexible model offers several behavioral insights. Waiting time for ride-hailing services is associated with a statistically significant but low marginal disutility. For other time components, including on-ride, and street-hailing waiting and walking the estimates of the value of time show an interesting pattern: whereas in a conditional logit on-ride time reductions are valued higher, in the flexible LML specification means of the value of time follow the expected pattern of waiting and walking creating a higher disutility. At the same time, the LML estimates show the presence of important, multimodal unobserved preference heterogeneity.Keywords: discrete choice, electric taxis, ridehailing, semiparametrics
Procedia PDF Downloads 16238019 Reliable Method for Estimating Rating Curves in the Natural Rivers
Authors: Arash Ahmadi, Amirreza Kavousizadeh, Sanaz Heidarzadeh
Abstract:
Stage-discharge curve is one of the conventional methods for continuous river flow measurement. In this paper, an innovative approach is proposed for predicting the stage-discharge relationship using the application of isovel contours. Using the proposed method, it is possible to estimate the stage-discharge curve in the whole section with only using discharge information from just one arbitrary water level. For this purpose, multivariate relationships are used to determine the mean velocity in a cross-section. The unknown exponents of the proposed relationship have been obtained by using the second version of the Strength Pareto Evolutionary Algorithm (SPEA2), and the appropriate equation was selected by applying the TOPSIS (Technique for Order Preferences by Similarity to an Ideal Solution) approach. Results showed a close agreement between the estimated and observed data in the different cross-sections.Keywords: rating curves, SPEA2, natural rivers, bed roughness distribution
Procedia PDF Downloads 15938018 Interdialytic Acupuncture Is an Add-on Option for Preserving Residual Renal Function: A Case Series Report
Authors: Lai Tzu-Hsuan, Lai Jung-Nien, Lin Jaung-Geng, Kao Shung-Te, Hsuan-Kuang Jung
Abstract:
Background: Whether acupuncture therapy contributes to preserving residual renal function (RRF) remains largely unknown. This case series evidenced the potential beneficial effects of acupuncture for preserving RRF in five patients with the end-stage renal disease under hemodialysis (HD) treatment. Participants: Five patients on HD receiving eight sessions of weekly 30-min interdialytic acupuncture (Inter-A) with residual urine volume (rUV) and residual glomerular filtration rate (rGFR) recorded once every two weeks were included for analysis. Outcomes: Changes in rUV and rGFR calculated using 24-hour urine collection data were analyzed to assess RRF. Variations in hemoglobin, urea Kt/V and serum albumin levels measured monthly were analyzed to evaluate HD adequacy. Results: After eight Inter-A sessions, mean (standard deviation (SD)) rUV and rGFR increased from 612 (184) ml/day and 1.48 (.94) ml/min/1.73 m2 at baseline to 803(289) ml/day and 2.04(1.17) ml/min/1.73m2 at 2- and 4-week follow-up, respectively. The mean percentage difference increased by 31% in rUV and 38% in rGFR. Routine measurements on HD adequacy also showed improvement. Conclusions: Acupuncture might be an optional add-on treatment for HD population with poor control of water; however, further well-designed controlled trials are warranted.Keywords: end-stage renal disease, hemodialysis, acupuncture, residual renal function, residual urine volume
Procedia PDF Downloads 12938017 Transport Related Air Pollution Modeling Using Artificial Neural Network
Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar
Abstract:
Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling
Procedia PDF Downloads 52438016 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach
Authors: Elias K. Maragos, Petros E. Maravelakis
Abstract:
In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.Keywords: Dynamic Data Envelopment Analysis, DDEA, piecewise linear inputs, piecewise linear outputs
Procedia PDF Downloads 16138015 Decentralized Data Marketplace Framework Using Blockchain-Based Smart Contract
Authors: Meshari Aljohani, Stephan Olariu, Ravi Mukkamala
Abstract:
Data is essential for enhancing the quality of life. Its value creates chances for users to profit from data sales and purchases. Users in data marketplaces, however, must share and trade data in a secure and trusted environment while maintaining their privacy. The first main contribution of this paper is to identify enabling technologies and challenges facing the development of decentralized data marketplaces. The second main contribution is to propose a decentralized data marketplace framework based on blockchain technology. The proposed framework enables sellers and buyers to transact with more confidence. Using a security deposit, the system implements a unique approach for enforcing honesty in data exchange among anonymous individuals. Before the transaction is considered complete, the system has a time frame. As a result, users can submit disputes to the arbitrators which will review them and respond with their decision. Use cases are presented to demonstrate how these technologies help data marketplaces handle issues and challenges.Keywords: blockchain, data, data marketplace, smart contract, reputation system
Procedia PDF Downloads 15838014 Fueling Efficient Reporting And Decision-Making In Public Health With Large Data Automation In Remote Areas, Neno Malawi
Authors: Wiseman Emmanuel Nkhomah, Chiyembekezo Kachimanga, Julia Huggins, Fabien Munyaneza
Abstract:
Background: Partners In Health – Malawi introduced one of Operational Researches called Primary Health Care (PHC) Surveys in 2020, which seeks to assess progress of delivery of care in the district. The study consists of 5 long surveys, namely; Facility assessment, General Patient, Provider, Sick Child, Antenatal Care (ANC), primarily conducted in 4 health facilities in Neno district. These facilities include Neno district hospital, Dambe health centre, Chifunga and Matope. Usually, these annual surveys are conducted from January, and the target is to present final report by June. Once data is collected and analyzed, there are a series of reviews that take place before reaching final report. In the first place, the manual process took over 9 months to present final report. Initial findings reported about 76.9% of the data that added up when cross-checked with paper-based sources. Purpose: The aim of this approach is to run away from manually pulling the data, do fresh analysis, and reporting often associated not only with delays in reporting inconsistencies but also with poor quality of data if not done carefully. This automation approach was meant to utilize features of new technologies to create visualizations, reports, and dashboards in Power BI that are directly fished from the data source – CommCare hence only require a single click of a ‘refresh’ button to have the updated information populated in visualizations, reports, and dashboards at once. Methodology: We transformed paper-based questionnaires into electronic using CommCare mobile application. We further connected CommCare Mobile App directly to Power BI using Application Program Interface (API) connection as data pipeline. This provided chance to create visualizations, reports, and dashboards in Power BI. Contrary to the process of manually collecting data in paper-based questionnaires, entering them in ordinary spreadsheets, and conducting analysis every time when preparing for reporting, the team utilized CommCare and Microsoft Power BI technologies. We utilized validations and logics in CommCare to capture data with less errors. We utilized Power BI features to host the reports online by publishing them as cloud-computing process. We switched from sharing ordinary report files to sharing the link to potential recipients hence giving them freedom to dig deep into extra findings within Power BI dashboards and also freedom to export to any formats of their choice. Results: This data automation approach reduced research timelines from the initial 9 months’ duration to 5. It also improved the quality of the data findings from the original 76.9% to 98.9%. This brought confidence to draw conclusions from the findings that help in decision-making and gave opportunities for further researches. Conclusion: These results suggest that automating the research data process has the potential of reducing overall amount of time spent and improving the quality of the data. On this basis, the concept of data automation should be taken into serious consideration when conducting operational research for efficiency and decision-making.Keywords: reporting, decision-making, power BI, commcare, data automation, visualizations, dashboards
Procedia PDF Downloads 11638013 Factors Affecting Cesarean Section among Women in Qatar Using Multiple Indicator Cluster Survey Database
Authors: Sahar Elsaleh, Ghada Farhat, Shaikha Al-Derham, Fasih Alam
Abstract:
Background: Cesarean section (CS) delivery is one of the major concerns both in developing and developed countries. The rate of CS deliveries are on the rise globally, and especially in Qatar. Many socio-economic, demographic, clinical and institutional factors play an important role for cesarean sections. This study aims to investigate factors affecting the prevalence of CS among women in Qatar using the UNICEF’s Multiple Indicator Cluster Survey (MICS) 2012 database. Methods: The study has focused on the women’s questionnaire of the MICS, which was successfully distributed to 5699 participants. Following study inclusion and exclusion criteria, a final sample of 761 women aged 19- 49 years who had at least one delivery of giving birth in their lifetime before the survey were included. A number of socio-economic, demographic, clinical and institutional factors, identified through literature review and available in the data, were considered for the analyses. Bivariate and multivariate logistic regression models, along with a multi-level modeling to investigate clustering effect, were undertaken to identify the factors that affect CS prevalence in Qatar. Results: From the bivariate analyses the study has shown that, a number of categorical factors are statistically significantly associated with the dependent variable (CS). When identifying the factors from a multivariate logistic regression, the study found that only three categorical factors -‘age of women’, ‘place at delivery’ and ‘baby weight’ appeared to be significantly affecting the CS among women in Qatar. Although the MICS dataset is based on a cluster survey, an exploratory multi-level analysis did not show any clustering effect, i.e. no significant variation in results at higher level (households), suggesting that all analyses at lower level (individual respondent) are valid without any significant bias in results. Conclusion: The study found a statistically significant association between the dependent variable (CS delivery) and age of women, frequency of TV watching, assistance at birth and place of birth. These results need to be interpreted cautiously; however, it can be used as evidence-base for further research on cesarean section delivery in Qatar.Keywords: cesarean section, factors, multiple indicator cluster survey, MICS database, Qatar
Procedia PDF Downloads 11638012 The Maximum Throughput Analysis of UAV Datalink 802.11b Protocol
Authors: Inkyu Kim, SangMan Moon
Abstract:
This IEEE 802.11b protocol provides up to 11Mbps data rate, whereas aerospace industry wants to seek higher data rate COTS data link system in the UAV. The Total Maximum Throughput (TMT) and delay time are studied on many researchers in the past years This paper provides theoretical data throughput performance of UAV formation flight data link using the existing 802.11b performance theory. We operate the UAV formation flight with more than 30 quad copters with 802.11b protocol. We may be predicting that UAV formation flight numbers have to bound data link protocol performance limitations.Keywords: UAV datalink, UAV formation flight datalink, UAV WLAN datalink application, UAV IEEE 802.11b datalink application
Procedia PDF Downloads 39238011 Data Disorders in Healthcare Organizations: Symptoms, Diagnoses, and Treatments
Authors: Zakieh Piri, Shahla Damanabi, Peyman Rezaii Hachesoo
Abstract:
Introduction: Healthcare organizations like other organizations suffer from a number of disorders such as Business Sponsor Disorder, Business Acceptance Disorder, Cultural/Political Disorder, Data Disorder, etc. As quality in healthcare care mostly depends on the quality of data, we aimed to identify data disorders and its symptoms in two teaching hospitals. Methods: Using a self-constructed questionnaire, we asked 20 questions in related to quality and usability of patient data stored in patient records. Research population consisted of 150 managers, physicians, nurses, medical record staff who were working at the time of study. We also asked their views about the symptoms and treatments for any data disorders they mentioned in the questionnaire. Using qualitative methods we analyzed the answers. Results: After classifying the answers, we found six main data disorders: incomplete data, missed data, late data, blurred data, manipulated data, illegible data. The majority of participants believed in their important roles in treatment of data disorders while others believed in health system problems. Discussion: As clinicians have important roles in producing of data, they can easily identify symptoms and disorders of patient data. Health information managers can also play important roles in early detection of data disorders by proactively monitoring and periodic check-ups of data.Keywords: data disorders, quality, healthcare, treatment
Procedia PDF Downloads 43338010 Multi-Scale Modelling of Thermal Wrinkling of Thin Membranes
Authors: Salim Belouettar, Kodjo Attipou
Abstract:
The thermal wrinkling behavior of thin membranes is investigated. The Fourier double scale series are used to deduce the macroscopic membrane wrinkling equations. The obtained equations account for the global and local wrinkling modes. Numerical examples are conducted to assess the validity of the approach developed. Compared to the finite element full model, the present model needs only few degrees of freedom to recover accurately the bifurcation curves and wrinkling paths. Different parameters such as membrane’s aspect ratio, wave number, pre-stressed membranes are discussed from a numerical point of view and the properties of the wrinkles (critical load, wavelength, size and location) are presented.Keywords: wrinkling, thermal stresses, Fourier series, thin membranes
Procedia PDF Downloads 39138009 Assessment Power and Oscillation Damping Using the POD Controller and Proposed FOD Controller
Authors: Tohid Rahimi, Yahya Naderi, Babak Yousefi, Seyed Hossein Hoseini
Abstract:
Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. However, FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. However, Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper, firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. Therefore, FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.Keywords: power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA)
Procedia PDF Downloads 47638008 Modelling Consistency and Change of Social Attitudes in 7 Years of Longitudinal Data
Authors: Paul Campbell, Nicholas Biddle
Abstract:
There is a complex, endogenous relationship between individual circumstances, attitudes, and behaviour. This study uses longitudinal panel data to assess changes in social and political attitudes over a 7-year period. Attitudes are captured with the question 'what is the most important issue facing Australia today', collected at multiple time points in a longitudinal survey of 2200 Australians. Consistency of attitudes, and factors predicting change over time, are assessed. The consistency of responses has methodological implications for data collection, specifically how often such questions ought to be asked of a population. When change in attitude is observed, this study assesses the extent to which individual demographic characteristics, personality traits, and broader societal events predict change.Keywords: attitudes, longitudinal survey analysis, personality, social values
Procedia PDF Downloads 13338007 Expanding the Evaluation Criteria for a Wind Turbine Performance
Authors: Ivan Balachin, Geanette Polanco, Jiang Xingliang, Hu Qin
Abstract:
The problem of global warming raised up interest towards renewable energy sources. To reduce cost of wind energy is a challenge. Before building of wind park conditions such as: average wind speed, direction, time for each wind, probability of icing, must be considered in the design phase. Operation values used on the setting of control systems also will depend on mentioned variables. Here it is proposed a procedure to be include in the evaluation of the performance of a wind turbine, based on the amplitude of wind changes, the number of changes and their duration. A generic study case based on actual data is presented. Data analysing techniques were applied to model the power required for yaw system based on amplitude and data amount of wind changes. A theoretical model between time, amplitude of wind changes and angular speed of nacelle rotation was identified.Keywords: field data processing, regression determination, wind turbine performance, wind turbine placing, yaw system losses
Procedia PDF Downloads 39038006 Predicting Survival in Cancer: How Cox Regression Model Compares to Artifial Neural Networks?
Authors: Dalia Rimawi, Walid Salameh, Amal Al-Omari, Hadeel AbdelKhaleq
Abstract:
Predication of Survival time of patients with cancer, is a core factor that influences oncologist decisions in different aspects; such as offered treatment plans, patients’ quality of life and medications development. For a long time proportional hazards Cox regression (ph. Cox) was and still the most well-known statistical method to predict survival outcome. But due to the revolution of data sciences; new predication models were employed and proved to be more flexible and provided higher accuracy in that type of studies. Artificial neural network is one of those models that is suitable to handle time to event predication. In this study we aim to compare ph Cox regression with artificial neural network method according to data handling and Accuracy of each model.Keywords: Cox regression, neural networks, survival, cancer.
Procedia PDF Downloads 20038005 Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System
Authors: Zhou Mo, Dennis Chow
Abstract:
In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing protocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turn out to reduce the energy consumption of nodes and increase the efficiency of data delivery.Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols
Procedia PDF Downloads 52438004 Foreign Investment, Technological Diffusion and Competiveness of Exports: A Case for Textile Industry in Pakistan
Authors: Syed Toqueer Akhter, Muhammad Awais
Abstract:
Pakistan is a country which is gifted by naturally abundant resources these resources are a pioneer towards a prospect and developed country. Pakistan is the fourth largest exporter of the textile in the world and with the passage of time the competitiveness of these exports is subject to a decline. With a lot of International players in the textile world like China, Bangladesh, India, and Sri Lanka, Pakistan needs to put up a lot of effort to compete with these countries. This research paper would determine the impact of Foreign Direct Investment upon technological diffusion and that how significantly it may be affecting on export performance of the country. It would also demonstrate that with the increase in Foreign Direct Investment, technological diffusion, strong property rights, and using different policy tools, export competitiveness of the country could be improved. The research has been carried out using time series data from 1995 to 2013 and the results have been estimated by using competing Econometrics modes such as Robust regression and Generalized least squares so that to consolidate the impact of the Foreign Investments and Technological diffusion upon export competitiveness comprehensively. Distributed Lag model has also been used to encompass the lagged effect of policy tools variables used by the government. Model estimates entail that 'FDI' and 'Technological Diffusion' do have a significant impact on the competitiveness of the exports of Pakistan. It may also be inferred that competitiveness of Textile Sector requires integrated policy framework, primarily including the reduction in interest rates, providing subsides, and manufacturing of value added products.Keywords: high technology export, robust regression, patents, technological diffusion, export competitiveness
Procedia PDF Downloads 50138003 Consultation Time and Its Impact on Length of Stay in the Emergency Department
Authors: Esam Roshdy, Saleh AlRashdi, Turki Alharbi, Rawan Eskandarani, Zurina Cabilo
Abstract:
Introduction/ background: Consultation in the Emergency Department constitute a major part of the work flow every day. Any delay in the consultation process have a major impact on the length of stay and patient disposition and thus affect the total waiting time of patients in the ED. King Fahad medical City in Riyadh City, Saudi Arabia is considered a major Tertiary hospital where there is high flow of patients of different categories visiting the ED. The importance of decreasing consultation time and decision for final disposition of patients was recognized and interpreted in this project to find ways to improve the patient flow in the department and thus the total patient disposition and outcome. Aim / Objectives: 1. To monitor the time of consultation for patients in the Emergency department and its impact on the length of stay of patients in the ED. 2. To detect and assess the problems that lead to long consultation times in the ED, and reach a targeted time of 2 hours for final disposition of patients, according to recognized international and our institutional consultation policy, to reach the final goal of decreasing total length of stay and thus improve the patient flow in the ED. Methods: Data was collected retrospectively for a 92 charts of consultations done in the ED over 2 month’s period. The data was analyzed to get the median of Total Consultation Time. A survey was conducted among all ED staff to determine the level of knowledge about the total consultation time and the compliance to the institutional policy target of 2 hours. A second Data sample of 168 chart was collected after awareness campaign and education of all ED staff about the importance of reaching the target consultation time and compliance to the institutional policy. Results: We have found that there is room for improvement in our overall consultation time. This was found to be more frequent with certain specialties. Our surveys have showed that many ED staff are not familiar or not compliant with our consultation policy which was not clear for everyone. Post-intervention data have showed that awareness of the importance to decrease the total consultation time and compliance alone to the targeted goal have had a huge impact on overall improvement and decreasing the time of final decision and disposition of the patient and the overall patient length of stay in the ED. Conclusion: Working on improving Consultation time in the Emergency Department is a major factor in improving overall length of stay and patient flow. This improvement helps in the overall patient disposition and satisfaction. Plan: As a continuation of our project we are planning to focus on the conflict of admission cases where more than one specialty is involved in the care of patients. We are planning to collect data on the time it takes to resolve and reach final disposition of those patients, and its impact on the length of stay and our department flow and the overall patient outcome and satisfaction.Keywords: consultation time, impact, length of stay, in the ED
Procedia PDF Downloads 28938002 Factor Associated with Uncertainty Undergoing Hematopoietic Stem Cell Transplantation
Authors: Sandra Adarve, Jhon Osorio
Abstract:
Uncertainty has been studied in patients with different types of cancer, except in patients with hematologic cancer and undergoing transplantation. The purpose of this study was to identify factors associated with uncertainty in adults patients with malignant hemato-oncology diseases who are scheduled to undergo hematopoietic stem cell transplantation based on Merle Mishel´s Uncertainty theory. This was a cross-sectional study with an analytical purpose. The study sample included 50 patients with leukemia, myeloma, and lymphoma selected by non-probability sampling by convenience and intention. Sociodemographic and clinical variables were measured. Mishel´s Scale of Uncertainty in Illness was used for the measurement of uncertainty. A bivariate and multivariate analyses were performed to explore the relationships and associations between the different variables and uncertainty level. For this analysis, the distribution of the uncertainty scale values was evaluated through the Shapiro-Wilk normality test to identify statistical tests to be used. A multivariate analysis was conducted through a logistic regression using step-by-step technique. Patients were 18-74 years old, with a mean age of 44.8. Over time, the disease course had a median of 9.5 months, an opportunity was found in the performance of the transplantation of < 20 days for 50% of the patients. Regarding the uncertainty scale, a mean score of 95.46 was identified. When the dimensions of the scale were analyzed, the mean score of the framework of stimuli was 25.6, of cognitive ability was 47.4 and structure providers was 22.8. Age was identified to correlate with the total uncertainty score (p=0.012). Additionally, a statistically significant difference was evidenced between different religious creeds and uncertainty score (p=0.023), education level (p=0.012), family history of cancer (p=0.001), the presence of comorbidities (p=0.023) and previous radiotherapy treatment (p=0.022). After performing logistic regression, previous radiotherapy treatment (OR=0.04 IC95% (0.004-0.48)) and family history of cancer (OR=30.7 IC95% (2.7-349)) were found to be factors associated with the high level of uncertainty. Uncertainty is present in high levels in patients who are going to be subjected to bone marrow transplantation, and it is the responsibility of the nurse to assess the levels of uncertainty and the presence of factors that may contribute to their presence. Once it has been valued, the uncertainty must be intervened from the identified associated factors, especially all those that have to do with the cognitive capacity. This implies the implementation and design of intervention strategies to improve the knowledge related to the disease and the therapeutic procedures to which the patients will be subjected. All interventions should favor the adaptation of these patients to their current experience and contribute to seeing uncertainty as an opportunity for growth and transcendence.Keywords: hematopoietic stem cell transplantation, hematologic diseases, nursing, uncertainty
Procedia PDF Downloads 16638001 Integrating Wearable-Textiles Sensors and IoT for Continuous Electromyography Monitoring
Authors: Bulcha Belay Etana, Benny Malengier, Debelo Oljira, Janarthanan Krishnamoorthy, Lieva Vanlangenhove
Abstract:
Electromyography (EMG) is a technique used to measure the electrical activity of muscles. EMG can be used to assess muscle function in a variety of settings, including clinical, research, and sports medicine. The aim of this study was to develop a wearable textile sensor for EMG monitoring. The sensor was designed to be soft, stretchable, and washable, making it suitable for long-term use. The sensor was fabricated using a conductive thread material that was embroidered onto a fabric substrate. The sensor was then connected to a microcontroller unit (MCU) and a Wi-Fi-enabled module. The MCU was programmed to acquire the EMG signal and transmit it wirelessly to the Wi-Fi-enabled module. The Wi-Fi-enabled module then sent the signal to a server, where it could be accessed by a computer or smartphone. The sensor was able to successfully acquire and transmit EMG signals from a variety of muscles. The signal quality was comparable to that of commercial EMG sensors. The development of this sensor has the potential to improve the way EMG is used in a variety of settings. The sensor is soft, stretchable, and washable, making it suitable for long-term use. This makes it ideal for use in clinical settings, where patients may need to wear the sensor for extended periods of time. The sensor is also small and lightweight, making it ideal for use in sports medicine and research settings. The data for this study was collected from a group of healthy volunteers. The volunteers were asked to perform a series of muscle contractions while the EMG signal was recorded. The data was then analyzed to assess the performance of the sensor. The EMG signals were analyzed using a variety of methods, including time-domain analysis and frequency-domain analysis. The time-domain analysis was used to extract features such as the root mean square (RMS) and average rectified value (ARV). The frequency-domain analysis was used to extract features such as the power spectrum. The question addressed by this study was whether a wearable textile sensor could be developed that is soft, stretchable, and washable and that can successfully acquire and transmit EMG signals. The results of this study demonstrate that a wearable textile sensor can be developed that meets the requirements of being soft, stretchable, washable, and capable of acquiring and transmitting EMG signals. This sensor has the potential to improve the way EMG is used in a variety of settings.Keywords: EMG, electrode position, smart wearable, textile sensor, IoT, IoT-integrated textile sensor
Procedia PDF Downloads 7538000 Strabismus Management in Retinoblastoma Survivors
Authors: Babak Masoomian, Masoud Khorrami Nejad, Hamid Riazi Esfahani
Abstract:
Purpose: To report the result of strabismus surgery in eye-salvaged retinoblastoma (Rb) patients. Methods: A retrospective case series including 18 patients with Rb and strabismus who underwent strabismus surgery after completing tumor treatment by a single pediatric ophthalmologist. Results: A total of 18 patients (10 females and 8 males) were included with a mean age of 13.3 ± 3.0 (range, 2-39) months at the time tumor presentation and 6.0 ± 1.5 (range, 4-9) years at the time of strabismus surgery. Ten (56%) patients had unilateral, and 8(44%) had bilateral involvement, and the most common worse eye tumor’s group was D (n=11), C (n=4), B (n=2) and E (n=1). Macula was involved by the tumors in 12 (67%) patients. The tumors were managed by intravenous chemotherapy (n=8, 47%), intra-arterial chemotherapy (n=7, 41%) and both (n=3, 17%). After complete treatment, the average time to strabismus surgery was 29.9 ± 20.5 (range, 12-84) months. Except for one, visual acuity was equal or less than 1.0 logMAR (≤ 20/200) in the affected eye. Seven (39%) patients had exotropia, 11(61%) had esotropia (P=0.346) and vertical deviation was found in 8 (48%) cases. The angle of deviation was 42.0 ± 10.4 (range, 30-60) prism diopter (PD) for esotropic and 35.7± 7.9 (range, 25-50) PD for exotropic patients (P=0.32) that after surgery significantly decreased to 8.5 ± 5.3 PD in esotropic cases and 5.9±6.7 PD in exotropic cases (P<0.001). The mean follow-up after surgery was 15.2 ± 2.0 (range, 10-24) months, in which 3 (17%) patients needed a second surgery. Conclusion: Strabismus surgery in treated Rb is safe, and results of the surgeries are acceptable and close to the general population. There was not associated with tumor recurrence or metastasis.Keywords: retinoblastoma, strabismus, chemotherapy, surgery
Procedia PDF Downloads 6137999 Designing and Implementing a Tourist-Guide Web Service Based on Volunteer Geographic Information Using Open-Source Technologies
Authors: Javad Sadidi, Ehsan Babaei, Hani Rezayan
Abstract:
The advent of web 2.0 gives a possibility to scale down the costs of data collection and mapping, specifically if the process is done by volunteers. Every volunteer can be thought of as a free and ubiquitous sensor to collect spatial, descriptive as well as multimedia data for tourist services. The lack of large-scale information, such as real-time climate and weather conditions, population density, and other related data, can be considered one of the important challenges in developing countries for tourists to make the best decision in terms of time and place of travel. The current research aims to design and implement a spatiotemporal web map service using volunteer-submitted data. The service acts as a tourist-guide service in which tourists can search interested places based on their requested time for travel. To design the service, three tiers of architecture, including data, logical processing, and presentation tiers, have been utilized. For implementing the service, open-source software programs, client and server-side programming languages (such as OpenLayers2, AJAX, and PHP), Geoserver as a map server, and Web Feature Service (WFS) standards have been used. The result is two distinct browser-based services, one for sending spatial, descriptive, and multimedia volunteer data and another one for tourists and local officials. Local official confirms the veracity of the volunteer-submitted information. In the tourist interface, a spatiotemporal search engine has been designed to enable tourists to find a tourist place based on province, city, and location at a specific time of interest. Implementing the tourist-guide service by this methodology causes the following: the current tourists participate in a free data collection and sharing process for future tourists, a real-time data sharing and accessing for all, avoiding a blind selection of travel destination and significantly, decreases the cost of providing such services.Keywords: VGI, tourism, spatiotemporal, browser-based, web mapping
Procedia PDF Downloads 9837998 Thermal Fatigue Behavior of 400 Series Ferritic Stainless Steels
Authors: Seok Hong Min, Tae Kwon Ha
Abstract:
In this study, thermal fatigue properties of 400 series ferritic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. It has been revealed that load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. Thermal fatigue resistance of 430J1L stainless steel is found to be superior to the other steels.Keywords: ferritic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation
Procedia PDF Downloads 34537997 Water Balance Components under Climate Change in Croatia
Authors: Jelena Bašić, Višnjica Vučetić, Mislav Anić, Tomislav Bašić
Abstract:
Lack of precipitation combined with high temperatures causes great damage to the agriculture and economy in Croatia. Therefore, it is important to understand water circulation and balance. We decided to gain a better insight into the spatial distribution of water balance components (WBC) and their long-term changes in Croatia. WBC are precipitation (P), potential evapotranspiration (PET), actual evapotranspiration (ET), soil moisture content (S), runoff (RO), recharge (R), and soil moisture loss (L). Since measurements of the mentioned components in Croatia are very rare, the Palmer model has been applied to estimate them. We refined method by setting into the account the corrective factor to include influence effects of the wind as well as a maximum soil capacity for specific soil types. We will present one hundred years’ time series of PET and ET showing the trends at few meteorological stations and a comparison of components of two climatological periods. The meteorological data from 109 stations have been used for the spatial distribution map of the WBC of Croatia.Keywords: croatia, long-term trends, the palmer method, water balance components
Procedia PDF Downloads 14137996 A Comparison of Methods for Neural Network Aggregation
Authors: John Pomerat, Aviv Segev
Abstract:
Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning
Procedia PDF Downloads 16237995 Introducing Thermodynamic Variables through Scientific Inquiry for Engineering Students
Authors: Paola Utreras, Yazmina Olmos, Loreto Sanhueza
Abstract:
This work shows how the learning of physics is enriched with scientific inquiry practices, achieving learning that results in the use of higher-level cognitive skills. The activities, which were carried out with students of the 3rd semester of the courses of the Faculty of Sciences of the Engineering of the Austral University of Chile, focused on the understanding of the nature of the thermodynamic variables and how they relate to each other. This, through the analysis of atmospheric data obtained in the meteorological station Miraflores, located on the campus. The proposed activities consisted of the elaboration of time series, linear analysis of variables, as well as the analysis of frequencies and periods. From their results, the students reached conclusions associated with the nature of the thermodynamic variables studied and the relationships between them, to finally make public their results in a report using scientific writing standards. It is observed that introducing topics that are close to them, interesting and which affect their daily lives allows a better understanding of the subjects, which is reflected in higher levels of approval and motivation for the subject.Keywords: basic sciences, inquiry-based learning, scientific inquiry, thermodynamics
Procedia PDF Downloads 258