Search results for: microbial fuel cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5733

Search results for: microbial fuel cell

4863 Illumina MiSeq Sequencing for Bacteria Identification on Audio-Visual Materials

Authors: Tereza Branyšová, Martina Kračmarová, Kateřina Demnerová, Michal Ďurovič, Hana Stiborová

Abstract:

Microbial deterioration threatens all objects of cultural heritage, including audio-visual materials. Fungi are commonly known to be the main factor in audio-visual material deterioration. However, although being neglected, bacteria also play a significant role. In addition to microbial contamination of materials, it is also essential to analyse air as a possible contamination source. This work aims to identify bacterial species in the archives of the Czech Republic that occur on audio-visual materials as well as in the air in the archives. For sampling purposes, the smears from the materials were taken by sterile polyurethane sponges, and the air was collected using a MAS-100 aeroscope. Metagenomic DNA from all collected samples was immediately isolated and stored at -20 °C. DNA library for the 16S rRNA gene was prepared using two-step PCR and specific primers and the concentration step was included due to meagre yields of the DNA. After that, the samples were sent to the University of Fairbanks, Alaska, for Illumina MiSeq sequencing. Subsequently, the analysis of the sequences was conducted in R software. The obtained sequences were assigned to the corresponding bacterial species using the DADA2 package. The impact of air contamination and the impact of different photosensitive layers that audio-visual materials were made of, such as gelatine, albumen, and collodion, were evaluated. As a next step, we will take a deeper focus on air contamination. We will select an appropriate culture-dependent approach along with a culture-independent approach to observe a metabolically active species in the air. Acknowledgment: This project is supported by grant no. DG18P02OVV062 of the Ministry of Culture of the Czech Republic.

Keywords: cultural heritage, Illumina MiSeq, metagenomics, microbial identification

Procedia PDF Downloads 135
4862 Performance Optimization of Polymer Materials Thanks to Sol-Gel Chemistry for Fuel Cells

Authors: Gondrexon, Gonon, Mendil-Jakani, Mareau

Abstract:

Proton Exchange Membrane Fuel Cells (PEMFCs) seems to be a promising device used for converting hydrogen into electricity. PEMFC is made of a Membrane Electrode Assembly (MEA) composed of a Proton Exchange Membrane (PEM) sandwiched by two catalytic layers. Nowadays, specific performances are targeted in order to ensure the long-term expansion of this technology. Current polymers used (perfluorinated as Nafion®) are unsuitable (loss of mechanical properties) for the high-temperature range. To overcome this issue, sulfonated polyaromatic polymers appear to be a good alternative since it has very good thermomechanical properties. However, their proton conductivity and chemical stability (oxidative resistance to H2O2 formed during fuel cell (FC) operating) are very low. In our team, we patented an original concept of hybrid membranes able to fulfill the specific requirements for PEMFC. This idea is based on the improvement of commercialized polymer membrane via an easy and processable stabilization thanks to sol-gel (SG) chemistry with judicious embeded chemical functions. This strategy is thus breaking up with traditional approaches (design of new copolymers, use of inorganic charges/additives). In 2020, we presented the elaboration and functional properties of a 1st generation of hybrid membranes with promising performances and durability. The latter was made by self-condensing a SG phase with 3(mercaptopropyl)trimethoxysilane (MPTMS) inside a commercial sPEEK host membrane. The successful in-situ condensation reactions of the MPTMS was demonstrated by measures of mass uptakes, FTIR spectroscopy (presence of C-Haliphatics) and solid state NMR 29Si (T2 & T3 signals of self-condensation products). The ability of the SG phase to prevent the oxidative degradation of the sPEEK phase (thanks to thiol chemical functions) was then proved with H2O2 accelerating tests and FC operating tests. A 2nd generation made of thiourea functionalized SG precursors (named HTU & TTU) was made after. By analysing in depth the morphologies of these different hybrids by direct space analysis (AFM/SEM/TEM) and reciprocal space analysis (SANS/SAXS/WAXS), we highlighted that both SG phase morphology and its localisation into the host has a huge impact on the PEM functional properties observed. This relationship is also dependent on the chemical function embedded. The hybrids obtained have shown very good chemical resistance during aging test (exposed to H2O2) compared to the commercial sPEEK. But the chemical function used is considered as “sacrificial” and cannot react indefinitely with H2O2. Thus, we are now working on a 3rd generation made of both sacrificial/regenerative chemical functions which are expected to inhibit the chemical aging of sPEEK more efficiently. With this work, we are confident to reach a predictive approach of the key parameters governing the final properties.

Keywords: fuel cells, ionomers, membranes, sPEEK, chemical stability

Procedia PDF Downloads 57
4861 Effects of Injector Nozzle Geometry on Spray Atomization Characteristics

Authors: Arya Pirooz

Abstract:

Air and fuel must be mixed correctly so that there is perfect combustion, which calls for fuel atomization by injection. In this study, the effects of different parameters such as number of orifices, length and diameter of orifices, diameter of nozzle sac and the angle of needle seat in injectors were investigated with the use of rate of injection and sac pressure. The unit pump of the OM-457 diesel engine was modelled on Avl-Hydsim. The results illustrate that the sac pressure decreased by 46% when the number of holes were doubled, although the rate of injection had an immense change. Also, the sac pressure increased up to 60% when the diameter of orifices decreased by 40% in spite of the semi-constant injection rate.

Keywords: injection, OM-457 engine, nozzle geometry, atomization

Procedia PDF Downloads 484
4860 Study on the Heavy Oil Degradation Performance and Kinetics of Immobilized Bacteria on Modified Zeolite

Authors: Xiao L Dai, Wen X Wei, Shuo Wang, Jia B Li, Yan Wei

Abstract:

Heavy oil pollution generated from both natural and anthropogenic sources could cause significant damages to the ecological environment, due to the toxicity of some of its constituents. Nowadays, microbial remediation is becoming a promising technology to treat oil pollution owing to its low cost and prevention of secondary pollution; microorganisms are key players in the process. Compared to the free microorganisms, immobilized microorganisms possess several advantages, including high metabolic activity rates, strong resistance to toxic chemicals and natural competition with the indigenous microorganisms, and effective resistance to washing away (in open water system). Many immobilized microorganisms have been successfully used for bioremediation of heavy oil pollution. Considering the broad choices, low cost, simple process, large specific surface area and less impact on microbial activity, modified zeolite were selected as a bio-carrier for bacteria immobilization. Three strains of heavy oil-degrading bacteria Bacillus sp. DL-13, Brevibacillus sp. DL-1 and Acinetobacter sp. DL-34 were immobilized on the modified zeolite under mild conditions, and the bacterial load (bacteria /modified zeolite) was 1.12 mg/g, 1.11 mg/g, and 1.13 mg/g, respectively. SEM results showed that the bacteria mainly adsorbed on the surface or punctured in the void of modified zeolite. The heavy oil degradation efficiency of immobilized bacteria was 62.96%, higher than that of the free bacteria (59.83%). The heavy oil degradation process of immobilized bacteria accords with the first-order reaction equation, and the reaction rate constant is 0.1483 d⁻¹, which was significantly higher than the free bacteria (0.1123 d⁻¹), suggesting that the immobilized bacteria can rapidly start up the heavy oil degradation and has a high activity of heavy oil degradation. The results suggested that immobilized bacteria are promising technology for bioremediation of oil pollution.

Keywords: heavy oil pollution, microbial remediation, modified zeolite, immobilized bacteria

Procedia PDF Downloads 132
4859 Gasification of Trans-4-Hydroxycinnamic Acid with Ethanol at Elevated Temperatures

Authors: Shyh-Ming Chern, Wei-Ling Lin

Abstract:

Lignin is a major constituent of woody biomass, and exists abundantly in nature. It is the major byproducts from the paper industry and bioethanol production processes. The byproducts are mainly used for low-valued applications. Instead, lignin can be converted into higher-valued gaseous fuel, thereby helping to curtail the ever-growing price of oil and to slow down the trend of global warming. Although biochemical treatment is capable of converting cellulose into liquid ethanol fuel, it cannot be applied to the conversion of lignin. Alternatively, it is possible to convert lignin into gaseous fuel thermochemically. In the present work, trans-4-hydroxycinnamic acid, a model compound for lignin, which closely resembles the basic building blocks of lignin, is gasified in an autoclave with ethanol at elevated temperatures and pressures, that are above the critical point of ethanol. Ethanol, instead of water, is chosen, because ethanol dissolves trans-4-hydroxycinnamic acid easily and helps to convert it into lighter gaseous species relatively well. The major operating parameters for the gasification reaction include temperature (673-873 K), reaction pressure (5-25 MPa) and feed concentration (0.05-0.3 M). Generally, more than 80% of the reactant, including trans-4-hydroxycinnamic acid and ethanol, were converted into gaseous products at an operating condition of 873 K and 5 MPa.

Keywords: ethanol, gasification, lignin, supercritical

Procedia PDF Downloads 224
4858 Antimicrobial Agents Produced by Yeasts

Authors: T. Büyüksırıt, H. Kuleaşan

Abstract:

Natural antimicrobials are used to preserve foods that can be found in plants, animals, and microorganisms. Antimicrobial substances are natural or artificial agents that produced by microorganisms or obtained semi/total chemical synthesis are used at low concentrations to inhibit the growth of other microorganisms. Food borne pathogens and spoilage microorganisms are inactivated by the use of antagonistic microorganisms and their metabolites. Yeasts can produce toxic proteins or glycoproteins (toxins) that cause inhibition of sensitive bacteria and yeast species. Antimicrobial substance producing phenotypes belonging different yeast genus were isolated from different sources. Toxins secreted by many yeast strains inhibiting the growth of other yeast strains. These strains show antimicrobial activity, inhibiting the growth of mold and bacteria. The effect of antimicrobial agents produced by yeasts can be extremely fast, and therefore may be used in various treatment procedures. Rapid inhibition of microorganisms is possibly caused by microbial cell membrane lipopolysaccharide binding and in activation (neutralization) effect. Antimicrobial agents inhibit the target cells via different mechanisms of action.

Keywords: antimicrobial agents, yeast, toxic protein, glycoprotein

Procedia PDF Downloads 345
4857 Distracted Driving among Young Drivers in Qatar

Authors: Khaled Shaaban

Abstract:

Distracted driving, which includes anything that distracts a driver from the main task of driving, is one of the main causes of traffic accidents in modern societies. The objective of this research was to understand the type of activities that young drivers perform while driving in Qatar and to identify which activities cause the most distraction to the driver based on their experience. The data was collected through administered questionnaires in the city of Doha, Qatar. According to the participants, the majority reported that they use their cell phone all the time or occasionally while driving. Other significantly cited activities while driving included listening to music or radio, talking with passengers, and eating, drinking or smoking. When asked about the activities that distract the driver, using cell phone was listed as the most distracting activity followed by mental activities and adjusting GPS and audio device vehicle.

Keywords: driver distraction, young drivers, cell phone use, Qatar

Procedia PDF Downloads 475
4856 Numerical Studies on Bypass Thrust Augmentation Using Convective Heat Transfer in Turbofan Engine

Authors: R. Adwaith, J. Gopinath, Vasantha Kohila B., R. Chandru, Arul Prakash R.

Abstract:

The turbofan engine is a type of air breathing engine that is widely used in aircraft propulsion produces thrust mainly from the mass-flow of air bypassing the engine core. The present research has developed an effective method numerically by increasing the thrust generated from the bypass air. This thrust increase is brought about by heating the walls of the bypass valve from the combustion chamber using convective heat transfer method. It is achieved computationally by the use external heat to enhance the velocity of bypass air of turbofan engines. The bypass valves are either heated externally using multicell tube resistor which convert electricity generated by dynamos into heat or heat is transferred from the combustion chamber. This increases the temperature of the flow in the valves and thereby increase the velocity of the flow that enters the nozzle of the engine. As a result, mass-flow of air passing the core engine for producing more thrust can be significantly reduced thereby saving considerable amount of Jet fuel. Numerical analysis has been carried out on a scaled down version of a typical turbofan bypass valve, where the valve wall temperature has been increased to 700 Kelvin. It is observed from the analysis that, the exit velocity contributing to thrust has significantly increased by 10 % due to the heating of by-pass valve. The degree of optimum increase in the temperature, and the corresponding effect in the increase of jet velocity is calculated to determine the operating temperature range for efficient increase in velocity. The technique used in the research increases the thrust by using heated by-pass air without extracting much work from the fuel and thus improve the efficiency of existing turbofan engines. Dimensional analysis has been carried to prove the accuracy of the results obtained numerically.

Keywords: turbofan engine, bypass valve, multi-cell tube, convective heat transfer, thrust

Procedia PDF Downloads 342
4855 Culturable Microbial Diversity of Agave Artisanal Fermentations from Central Mexico

Authors: Thalía Moreno-García Malo, Santiago Torres-Ríos, María G. González-Cruz, María M. Hernández-Arroyo, Sergio R. Trejo-Estrada

Abstract:

Agave atrovirens is the main source of agave sap, the raw material for the production of pulque, an artisanal fermented beverage, traditional since prehispanic times in the highlands of central Mexico. Agave sap is rich in glucose, sucrose and fructooligosaccharides, and strongly differs from agave syrup from A. tequilana, which is mostly a high molecular weight fructan. Agave sap is converted into pulque by a highly diverse microbial community which includes bacteria, yeast and even filamentous fungi. The bacterial diversity has been recently studied. But the composition of consortia derived from directed enrichments differs sharply from the whole fermentative consortium. Using classical microbiology methods, and selective liquid and solid media formulations, either bacterial or fungal consortia were developed and analyzed. Bacterial consortia able to catabolize specific prebiotic saccharides were selected and preserved for future developments. Different media formulations, selective for bacterial genera such as Bifidobacterium, Lactobacillus, Pediococcus, Lactococcus and Enterococcus were also used. For yeast, specific media, osmotic pressure and unique carbon sources were used as selective agents. Results show that most groups are represented in the enrichment cultures; although very few are recoverable from the whole consortium in artisanal pulque. Diversity and abundance vary among consortia. Potential bacterial probiotics obtained from agave sap and agave juices show tolerance to hydrochloric acid, as well as strong antimicrobial activity.

Keywords: Agave, pulque, microbial consortia, prebiotic activity

Procedia PDF Downloads 379
4854 Agroforestry Practices on Soil Microbial Biomass Carbon and Organic Carbon in Southern Ethiopia

Authors: Nebiyou Masebo

Abstract:

The rapid conversion of an old aged agroforestry (AF) based agricultural system to monocropping farming system in southern Ethiopia is increasing. The consequence of this, combined with climate change, has been impaired biodiversity, soil microbial biomass carbon (MBC), and soil organic carbon (SOC). The AF system could curb such problems due it is an ecologically and economically sustainable strategies. This study was aimed to investigate different agroforestry practices (AFPs) on MBC and SOC in southern Ethiopia. Soil samples were collected from homegarden based agroforestry practice (HAFP), crop land based agroforestry practice (ClAFP), woodlot based agroforestry practice (WlAFP), and trees on soil and water conservation based agroforestry practice (TSWAFP) using two depth layer (0-30 & 30-60 cm) by systematic sampling. Moreover, woody species inventorywas also collected. The chloroform fumigation extraction method was employed to determine MBC from different AFP types. In this study, the value of MBC and SOC decreased significantly with soil depth (p< 0.05). Besides, AFP type, soil depth, woody species diversity, and key soil properties also strongly influenced MBC and SOC (p< 0.05). In this study, the MBC was the highest (786 mg kg⁻¹ soil) in HAFP, followed by WlAFP (592 mg kg⁻¹ soil), TSWAFP (421 mg kg⁻¹ soil), and ClAFP (357 mg kg⁻¹ soil). The highest mean value of SOC (43.5Mg C ha⁻¹) was recorded in HAFP, followed by WlAFP (35.1Mg C ha⁻¹), TSWAFP (22.3 Mg C ha⁻¹), while the lowest (21.8 Mg C ha⁻¹) was recorded in ClAFP. The HAFP had high woody species diversity, and the lowest was recorded in ClAFP. The finding indicated that SOC and MBC were significantly affected by land management practices, and HAFP has the potential to improve MBC and SOC through good management practices of AFP.

Keywords: agroforestry practices, microbial biomass carbon, soil carbon, rapid conversion

Procedia PDF Downloads 84
4853 Investigation of Stabilized Turbulent Diffusion Flames Using Synthesis Fuel with Different Burner Configurations

Authors: Moataz Medhat, Essam Khalil, Hatem Haridy

Abstract:

The present study investigates the flame structure of turbulent diffusion flame of synthesis fuel in a 300 KW swirl-stabilized burner. The three-dimensional model adopts a realizable k-ε turbulent scheme interacting with two-dimensional PDF combustion scheme by applying flamelet concept. The study reveals more characteristics on turbulent diffusion flame of synthesis fuel when changing the inlet air swirl number and the burner quarl angle. Moreover, it concerns with studying the effect of flue gas recirculation and staging with taking radiation effect into consideration. The comparison with natural gas was investigated. The study showed two zones of recirculation, the primary one is at the center of the furnace, and the location of the secondary one varies by changing the quarl angle of the burner. The results revealed an increase in temperature in the external recirculation zone as a result of increasing the swirl number of the inlet air stream. Also, it was found that recirculating part of the combustion products decreases pollutants formation especially nitrogen monoxide. The predicted results showed a great agreement when compared with the experiments.

Keywords: gas turbine, syngas, analysis, recirculation

Procedia PDF Downloads 261
4852 Synthesis and Antiproliferative Activity of 5-Phenyl-N3-(4-fluorophenyl)-4H-1,2,4-triazole-3,4-diamine Derivatives

Authors: L. Mallesha, P. Mallu, B. Veeresh

Abstract:

In the present study, 2, 6-diflurobenzohydrazide and 4-fluorophenylisothiocyanate were used as the starting materials to synthesize 5-phenyl-N3-(4-fluorophenyl)-4H-1, 2, 4-triazole-3, 4-diamine. Further, compound 5-phenyl-N3-(4-fluorophenyl)-4H-1, 2, 4-triazole-3,4-diamine reacted with fluoro substituted benzaldehydes to yield a series of Schiff bases. All the final compounds were characterized using IR, 1H NMR, 13C NMR, MS and elemental analyses. New compounds were evaluated for their antiproliferative effect using the MTT assay method against four human cancer cell lines (K562, COLO-205, MDA-MB231, and IMR-32) for the time period of 24 h. Among the series, few compounds showed good activity on all cell lines, whereas the other compounds in the series exhibited moderate activity.

Keywords: Schiff bases, MTT assay, antiproliferative activity, human cancer cell lines, 1, 2, 4-triazoles

Procedia PDF Downloads 353
4851 A Single Cell Omics Experiments as Tool for Benchmarking Bioinformatics Oncology Data Analysis Tools

Authors: Maddalena Arigoni, Maria Luisa Ratto, Raffaele A. Calogero, Luca Alessandri

Abstract:

The presence of tumor heterogeneity, where distinct cancer cells exhibit diverse morphological and phenotypic profiles, including gene expression, metabolism, and proliferation, poses challenges for molecular prognostic markers and patient classification for targeted therapies. Understanding the causes and progression of cancer requires research efforts aimed at characterizing heterogeneity, which can be facilitated by evolving single-cell sequencing technologies. However, analyzing single-cell data necessitates computational methods that often lack objective validation. Therefore, the establishment of benchmarking datasets is necessary to provide a controlled environment for validating bioinformatics tools in the field of single-cell oncology. Benchmarking bioinformatics tools for single-cell experiments can be costly due to the high expense involved. Therefore, datasets used for benchmarking are typically sourced from publicly available experiments, which often lack a comprehensive cell annotation. This limitation can affect the accuracy and effectiveness of such experiments as benchmarking tools. To address this issue, we introduce omics benchmark experiments designed to evaluate bioinformatics tools to depict the heterogeneity in single-cell tumor experiments. We conducted single-cell RNA sequencing on six lung cancer tumor cell lines that display resistant clones upon treatment of EGFR mutated tumors and are characterized by driver genes, namely ROS1, ALK, HER2, MET, KRAS, and BRAF. These driver genes are associated with downstream networks controlled by EGFR mutations, such as JAK-STAT, PI3K-AKT-mTOR, and MEK-ERK. The experiment also featured an EGFR-mutated cell line. Using 10XGenomics platform with cellplex technology, we analyzed the seven cell lines together with a pseudo-immunological microenvironment consisting of PBMC cells labeled with the Biolegend TotalSeq™-B Human Universal Cocktail (CITEseq). This technology allowed for independent labeling of each cell line and single-cell analysis of the pooled seven cell lines and the pseudo-microenvironment. The data generated from the aforementioned experiments are available as part of an online tool, which allows users to define cell heterogeneity and generates count tables as an output. The tool provides the cell line derivation for each cell and cell annotations for the pseudo-microenvironment based on CITEseq data by an experienced immunologist. Additionally, we created a range of pseudo-tumor tissues using different ratios of the aforementioned cells embedded in matrigel. These tissues were analyzed using 10XGenomics (FFPE samples) and Curio Bioscience (fresh frozen samples) platforms for spatial transcriptomics, further expanding the scope of our benchmark experiments. The benchmark experiments we conducted provide a unique opportunity to evaluate the performance of bioinformatics tools for detecting and characterizing tumor heterogeneity at the single-cell level. Overall, our experiments provide a controlled and standardized environment for assessing the accuracy and robustness of bioinformatics tools for studying tumor heterogeneity at the single-cell level, which can ultimately lead to more precise and effective cancer diagnosis and treatment.

Keywords: single cell omics, benchmark, spatial transcriptomics, CITEseq

Procedia PDF Downloads 94
4850 The Study of Blood Consumption for Stem Cell Transplant Patients in Shahid Ghazi Tabatabaei Hospital, Tabriz, Iran

Authors: Naser Shagerdi Esmaeli, Mohsen Hamidpour, Parisa Hasankhani Tehrani

Abstract:

Background And Objective: Haematopoietic stem cell transplant is a potentially curative treatment option in various benign and malignant haematological diseases. Patients undergoing stem cell transplant procedure require blood transfusion on a daily basis. Currently, there is paucity of data from developing countries on transfusion practices. This audit was undertaken to determine the consumption of packed red blood cells (PRBCs) transfusion in the bone marrow transplant unit of the Shahid Ghazi Tabatabaei Hospital, Tabriz, Iran. Subjects And Methods: A retrospective audit was conducted for packed red cell transfusion ordering practice over a period from March 2017 to march 2018. All consecutive patients admitted for stem cell transplant procedure for various underlying diseases were included. Outcome measures used in this study were (i) cross match to transfusion (C: T) ratio and (ii) transfusion trigger. Results: During the study period, n=13 patients underwent a haematopoietic stem cell transplant. There were n=10 males and n=3 females. One patient was less than 15 years of age, while rests were adults. Median age±SD was 26.5±14.5 years (12∼54 years). The underlying diagnosis included Aplastic anemia (n=4), Thalassemia major (n=1), Multiple Myeloma (n=3), Acute leukemia (n=3), Hodgkin's lymphoma (n=1), PRCA (n=1). Grand total consumption of PRBCs during the study period was 204, while 258 products were crossmatch. The C:T ratio was 1.26. The transfusion trigger was Hb level of less than 8 gr/dl. Conclusion: The results of our BMT unit indicate that the C:T ratio and transfusion trigger is comparable to the international criteria and pioneer country in BMT transplantation. Also, we hope that our blood consumption become less than it is now.

Keywords: blood consumption, C: T ratio, PRBCs, stem cell transplant, tabriz, Iran

Procedia PDF Downloads 104
4849 The Effects of Metformin And PCL-sorafenib Nanoparticles Co-treatment on MCF-7 Cell Culture Model of Breast Cancer

Authors: Emad Heydarnia, Aref Sepasi, Nika Asefi, Sara Khakshournia, Javad Mohammadnejad

Abstract:

Background: Despite breakthrough therapeutics in breast cancer, it is one of the main causes of mortality among women worldwide. Thus, drug therapies for treating breast cancer have recently been developed by scientists. Metformin and Sorafenib are well-known therapeutic in breast cancer. In the present study, we combined Sorafenib and PCL-sorafenib with metformin to improve drug absorption and promote therapeutic efficiency. Methods: The MCF-7 cells were treated with Metformin, Sorafenib, or PCL-sorafenib. The growth inhibitory effect of these drugs and cell viability were assessed using MTT and flow cytometry assays, respectively. The expression of targeted genes involved in cell proliferation, signaling, and the cell cycle was measured by Real-time PCR. Results: The results showed that MCF-7 cells treated with Metformin/Sorafenib and PCL-sorafenib/Metformin co-treatment contributed to 50% viability compared to untreated group. Moreover, PI and Annexin V staining tests showed that the cells viability for Metformin/Sorafenib and PCL-sorafenib/Metformin was 38% and 17%, respectively. Furthermore, Sorafenib/Metformin and PCL-sorafenib/Metformin leads to p53 gene expression increase by which they can increase ROS, thereby decreasing GPX4 gene expression. In addition, they affected the expression of BCL2, and BAX genes and altered the cell cycle. Conclusion: Together, the combination of PCL-sorafenib/Metformin and Sorafenib/Metformin increased Sorafenib absorption at lower doses and also leads to apoptosis and oxidative stress increases in MCF-7 cells.

Keywords: breast cancer, metformin, nanotechnology, sorafenib

Procedia PDF Downloads 52
4848 The Effect of Fuel Type on Synthesis of CeO2-MgO Nano-Powder by Combustion Method

Authors: F. Ghafoori-Najafabadi, R. Sarraf-Mamoory, N. Riahi-Noori

Abstract:

In this study, nanocrystalline CeO2-MgO powders were synthesized by combustion reactions using citric acid, ethylene glycol, and glycine as different fuels and nitrate as an oxidant. The powders obtained with different kinds of fuels are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The size and morphology of the particles and the extent of agglomeration in the powders were studied using SEM analysis. It is observed that the variation of fuel has an intense influence on the particle size and morphology of the resulting powder. X-ray diffraction revealed that any combined phases were observed, and that MgO and CeO2 phases were formed, separately.

Keywords: nanoparticle, combustion synthesis, CeO2-MgO, nano-powder

Procedia PDF Downloads 401
4847 Effects of Feed Forms on Growth Pattern, Behavioural Responses and Fecal Microbial Load of Pigs Fed Diets Supplemented with Saccaromyces cereviseae Probiotics

Authors: O. A. Adebiyi, A. O. Oni, A. O. K. Adeshehinwa, I. O. Adejumo

Abstract:

In forty nine (49) days, twenty four (24) growing pigs (Landrace x Large white) with an average weight of 17 ±2.1kg were allocated to four experimental treatments T1 (dry mash without probiotics), T2 (wet feed without probiotics), T3 (dry mash + Saccaromyces cereviseae probiotics) and T4 (wet feed + Saccaromyces cereviseae probiotics) which were replicated three times with two pigs per replicate in a completely randomised design. The basal feed (dry feed) was formulated to meet the nutritional requirement of the animal with crude protein of 18.00% and metabolisable energy of 2784.00kcal/kgME. Growth pattern, faecal microbial load and behavioural activities (eating, drinking, physical pen interaction and frequency of visiting the drinking troughs) were accessed. Pigs fed dry mash without probiotics (T1) had the highest daily feed intake among the experimental animals (1.10kg) while pigs on supplemented diets (T3 and T4) had an average daily feed intake of 0.95kg. However, the feed conversion ratio was significantly (p < 0.05) affected with pigs on T3 having least value of 6.26 compared those on T4 (wet feed + Saccaromyces cereviseae) with means of 7.41. Total organism counts varied significantly (p < 0.05) with pigs on T1, T2, T3 and T4 with mean values of 179.50 x106cfu; 132.00 x 106cfu; 32.00 x 106cfu and 64.50 x 106cfu respectively. Coliform count was also significantly (p < 0.05) different among the treatments with corresponding values of 117.50 x 106cfu; 49.00 x 106cfu, 8.00 x 106cfu for pigs in T1, T2 and T4 respectively. The faecal Saccaromyces cereviseae was significantly lower in pigs fed supplemented diets compared to their counterparts on unsupplemented diets. This could be due to the inability of yeast organisms to be voided easily through feaces. The pigs in T1 spent the most time eating (7.88%) while their counterparts on T3 spent the least time eating. The corresponding physical pen interaction times expressed in percentage of a day for pigs in T1, T2, T3 and T4 are 6.22%, 5.92%, 4.04% and 4.80% respectively. These behavioural responses exhibited by these pigs (T3) showed that little amount of dry feed supplemented with probiotics is needed for better performance. The water intake increases as a result of the dryness of the feed with consequent decrease in pen interaction and more time was spent resting than engaging in other possible vice-habit like fighting or tail biting. Pigs fed dry feed (T3) which was supplemented with Saccaromyces cereviseae probiotics had a better overall performance, least faecal microbial load than wet fed pigs either supplemented with Saccaromyces cereviseae or non-supplemented.

Keywords: behaviour, feed forms, feed utilization, growth, microbial

Procedia PDF Downloads 332
4846 PNIPAAm-MAA Nanoparticles as Delivery Vehicles for Curcumin Against MCF-7 Breast Cancer Cells

Authors: H. Tayefih, F. farajzade ahari, F. Zarghami, V. Zeighamian, N. Zarghami, Y. Pilehvar-soltanahmadi

Abstract:

Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility. On the other hand, previous studies have stated that drug delivery using nanoparticles might improve the therapeutic response to anticancer drugs. Poly (N-isopropylacrylamide-co-methacrylic acid) (PNIPAAm–MAA) is one of the hydrogel copolymers utilized in the drug delivery system for cancer therapy. The aim of this study was to examine the cytotoxic potential of curcumin encapsulated within the NIPAAm-MAA nanoparticle, on the MCF-7 breast cancer cell line. In this work, polymeric nanoparticles were synthesized through the free radical mechanism, and curcumin was encapsulated into NIPAAm-MAA nanoparticles. Then, the cytotoxic effect of curcumin-loaded NIPAAm-MAA on the MCF-7 breast cancer cell line was measured by MTT assays. The evaluation of the results showed that curcumin-loaded NIPAAm-MAA has more cytotoxic effect on the MCF-7 cell line and efficiently inhibited the growth of the breast cancer cell population, compared with free curcumin. In conclusion, this study indicates that curcumin-loaded NIPAAm-MAA suppresses the growth of the MCF-7 cell line. Overall, it is concluded that encapsulating curcumin into the NIPAAm-MAA copolymer could open up new avenues for breast cancer treatment.

Keywords: PNIPAAm-MAA, breast cancer, curcumin, drug delivery

Procedia PDF Downloads 360
4845 The Effect of Street Dust on Urban Environment

Authors: Turki M. Habeebullah, Abdel Hameed A. A. Awad, Said Munir, Atif M. F. Mohammed, Essam A. Morsy, Abdulaziz R. Seroji

Abstract:

Street dust has been knoweldged as an important source of air pollution. It does not remain deposited in a place for long, as it is easily resuspended back into the atmosphere. Street dust is a complex mixture derived from different sources: Deposited dust, traffic, tire, and brake wear, construction and demolition processes. The present study aims to evaluate the elementals ”iron, calcium, lead, cadmium, nickel, silicon, and selenium” and microbial “bacteria and fungi” contents associated street dust at the holy mosque areas. The street dust was collected by sweeping an arera~1m2 along the both sides of the road. The particles with diameter ≤ 1.7 µm constitued the highest percentages of the total particulate ≤45 µm. Moreover, The crustal species: iron and calcium were found in the highest concentrations, and proof that demolition and constricution were the main source of street dust. Also, the low biodiversity of microorganisms is attributed to severe weather conditions and characteristics of the arid environment.

Keywords: dust, microbial, environment, street

Procedia PDF Downloads 530
4844 Reducing Weight and Fuel Consumption of Civil Aircraft by EML

Authors: Luca Bertola, Tom Cox, Pat Wheeler, Seamus Garvey, Herve Morvan

Abstract:

Electromagnetic launch systems have been proposed for military applications to accelerate jet planes on aircraft carriers. This paper proposes the implementation of similar technology to aid civil aircraft take-off, which can provide significant economic, environmental and technical benefits. Assisted launch has the potential of reducing ground noise and emissions near airports and improving overall aircraft efficiency through reducing engine thrust requirements. This paper presents a take-off performance analysis for an Airbus A320-200 taking off with and without the assistance of the electromagnetic catapult. Assisted take-off allows for a significant reduction in take-off field length, giving more capacity with existing airport footprints and reducing the necessary footprint of new airports, which will both reduce costs and increase the number of suitable sites. The electromagnetic catapult may allow the installation of smaller engines with lower rated thrust. The consequent fuel consumption and operational cost reduction are estimated. The potential of reducing the aircraft operational costs and the runway length required making electromagnetic launch system an attractive solution to the air traffic growth in busy airports.

Keywords: electromagnetic launch, fuel consumption, take-off analysis, weight reduction

Procedia PDF Downloads 317
4843 Based on MR Spectroscopy, Metabolite Ratio Analysis of MRI Images for Metastatic Lesion

Authors: Hossain A, Hossain S.

Abstract:

Introduction: In a small cohort, we sought to assess the magnetic resonance spectroscopy's (MRS) ability to predict the presence of metastatic lesions. Method: A Popular Diagnostic Centre Limited enrolled patients with neuroepithelial tumors. The 1H CSI MRS of the brain allows us to detect changes in the concentration of specific metabolites caused by metastatic lesions. Among these metabolites are N-acetyl-aspartate (NNA), creatine (Cr), and choline (Cho). For Cho, NAA, Cr, and Cr₂, the metabolic ratio was calculated using the division method. Results: The NAA values were 0.63 and 5.65 for tumor cells, 1.86 and 5.66 for normal cells, and 1.86 and 5.66 for normal cells 2. NAA values for normal cells 1 were 1.84, 10.6, and 1.86 for normal cells 2, respectively. Cho levels were as low as 0.8 and 10.53 in the tumor cell, compared to 1.12 and 2.7 in the normal cell 1 and 1.24 and 6.36 in the normal cell 2. Cho/Cr₂ barely distinguished itself from the other ratios in terms of significance. For tumor cells, the ratios of Cho/NAA, Cho/Cr₂, NAA/Cho, and NAA/Cr₂ were significant. Normal cell 1 had significant Cho/NAA, Cho/Cr, NAA/Cho, and NAA/Cr ratios. Conclusion: The clinical result can be improved by using 1H-MRSI to guide the size of resection for metastatic lesions. Even though it is non-invasive and doesn't present any difficulties during the procedure, MRS has been shown to predict the detection of metastatic lesions.

Keywords: metabolite ratio, MRI images, metastatic lesion, MR spectroscopy, N-acetyl-aspartate

Procedia PDF Downloads 80
4842 Level of Awareness of Genetic Counselling in Benue State Nigeria: Its Advocacy on the Inheritance of Sickle Cell Disease

Authors: Agi Sunday

Abstract:

A descriptive analysis of reported cases of sickle cell disease and the level of awareness about genetic counselling in 30 hospitals were carried out. Additionally, 150 individuals between ages 16-45 were randomly selected for evaluation of genetic counselling awareness. The main tools for this study were questionnaires which were taken to hospitals, and individuals completed the others. The numbers of reported cases of sickle cell disease recorded in private, public and teaching hospitals were 14 and 57; 143 and 89; 272 and 57 for the periods of 1995-2000 and 2001-2005, respectively. A general informal genetic counselling took place mostly in the hospitals visited. 122 (86%) individuals had the knowledge of genetic disease and only 43 (30.3%) individuals have been exposed to genetic counselling. 64% of individuals agreed that genetic counselling would help in the prevention of genetic disease.

Keywords: sickle disease, genetic counseling, genetic testing, advocacy

Procedia PDF Downloads 372
4841 Chemical Composition of Essential Oil and in vitro Antibacterial and Anticancer Activity of the Hydroalcolic Extract from Coronilla varia

Authors: A. A. Dehpour, B. Eslami, S. Rezaie, S. F. Hashemian, F. Shafie, M. Kiaie

Abstract:

The aims of study were investigation on chemical composition essential oil and the effect of extract of Coronilla varia on antimicrobial and cytotoxicity activity. The essential oils of Coronilla varia is obtained by hydrodistillation and analyzed by (GC/MS) for determining their chemical composition and identification of their components. Antibacterial activity of plant extract was determined by disc diffusion method. The effect of hydroalcolic extracts from Cornilla varia investigated on MCF7 cancer cell line by MTT assay. The major components were Caryophyllene Oxide (60.19%), Alphacadinol (4.13%) and Homoadantaneca Robexylic Acid (3.31%). The extracts from Coronilla varia had interesting activity against Proteus mirabilis in the concentration of 700 µg/disc and did not show any activity against Staphylococus aureus, Bacillus subtillis, Klebsiella pneumonia and Entrobacter cloacae. The positive control, Ampicillin, Chloramphenicol and Cenphalothin had shown zone of inhibition resistant all bacteria. Corohilla varia ethanol extract could inhibit the proliferation of MCF7 cell line in RPMI 1640 medium. IC50 5(mg/ml) was the optimum concentration of extract from Coronilla varia inhibition of cell line growth. The MCF7 cancer cell line and Proteus mirabilis were more sensitive to Coronilla varia ethanol extract.

Keywords: Coronilla varia, essential oil, antibacterial, anticancer, hela cell line

Procedia PDF Downloads 377
4840 Combustion Improvements by C4/C5 Bio-Alcohol Isomer Blended Fuels Combined with Supercharging and EGR in a Diesel Engine

Authors: Yasufumi Yoshimoto, Enkhjargal Tserenochir, Eiji Kinoshita, Takeshi Otaka

Abstract:

Next generation bio-alcohols produced from non-food based sources like cellulosic biomass are promising renewable energy sources. The present study investigates engine performance, combustion characteristics, and emissions of a small single cylinder direct injection diesel engine fueled by four kinds of next generation bio-alcohol isomer and diesel fuel blends with a constant blending ratio of 3:7 (mass). The tested bio-alcohol isomers here are n-butanol and iso-butanol (C4 alcohol), and n-pentanol and iso-pentanol (C5 alcohol). To obtain simultaneous reductions in NOx and smoke emissions, the experiments employed supercharging combined with EGR (Exhaust Gas Recirculation). The boost pressures were fixed at two conditions, 100 kPa (naturally aspirated operation) and 120 kPa (supercharged operation) provided with a roots blower type supercharger. The EGR rates were varied from 0 to 25% using a cooled EGR technique. The results showed that both with and without supercharging, all the bio-alcohol blended diesel fuels improved the trade-off relation between NOx and smoke emissions at all EGR rates while maintaining good engine performance, when compared with diesel fuel operation. It was also found that regardless of boost pressure and EGR rate, the ignition delays of the tested bio-alcohol isomer blends are in the order of iso-butanol > n-butanol > iso-pentanol > n-pentanol. Overall, it was concluded that, except for the changes in the ignition delays the influence of bio-alcohol isomer blends on the engine performance, combustion characteristics, and emissions are relatively small.

Keywords: alternative fuel, butanol, diesel engine, EGR (Exhaust Gas Recirculation), next generation bio-alcohol isomer blended fuel, pentanol, supercharging

Procedia PDF Downloads 150
4839 Evaluation of Anticancer and Antioxidant Activity of Purified Lovastatin from Aspergillus terreus (KM017963)

Authors: Bhargavi Santebennur Dwarakanath, Praveen Vadakke Kamath, Savitha Janakiraman

Abstract:

Cervical cancer is one of the leading causes of mortality in women and is the second most common malignancy worldwide. Lovastatin, a non polar, anticholesterol drug which also exerts antitumour activity in vitro. In the present study, lovastatin from Aspergillus terreus (KM017963) was purified by adsoprtion chromatography and evaluated for its anticancer and anti-oxidant properties in human cervical cancer cell lines (HeLa). The growth inhibitory and proapoptotic effects of purified lovastatin on HeLa cell lines were investigated by determining its influence on cytotoxicity, Mitochondrial Membrane Potential (MMP), DNA fragmentation and antioxidant property (Hydroxy radical scavenging effect and the levels of total reduced glutathione). Flow cytometry analysis by propidium iodide staining confirmed the induction of apoptotic cell death and revealed cell cycle arrest at G0/G1 phase. Results of the study give leads for anticancer effects of lovastatin and its potential efficacy in the chemotherapy of cervical cancer.

Keywords: apoptosis, Aspergillus terreus, cervical cancer, lovastatin

Procedia PDF Downloads 292
4838 Introduction of Microbial Symbiosis in Genus of Tridacna and Kiwaidae with Insights into Aquaculture

Authors: Jincao Guo

Abstract:

Aquaculture plays a significant role in the diet of people in many regions. However, problems such as bioaccumulation have risen with the rapidly growing industry due to a lack of control in the feeding process, which brings uncertainty to the quality of the products. The paper tackles the problem by introducing the symbiosis of the Giant Clam (Tridacna) with photosynthetic algae and Yeti Crab (Kiwaidae) with chemosynthetic bacteria in molecular and developmental details. By combing the knowledge gained from the two models and past studies, innovative ideas such as using mass selection methods to domesticate and farm those symbiotic species, as well as improvements for the current farming methods, such as introducing algae feeding, are discussed. Further studies are needed, but experiments are worth conducting since it increases the variety of choices for consumers and can potentially improve the quality and efficiency of aquaculture.

Keywords: the giant clam Tridacna, yeti crab Kiwaidae, autotroph microbes, microbial symbiosis, aquaculture, bivalves, crustaceans, mollusk, photosynthesis, chemosynthesis

Procedia PDF Downloads 59
4837 The Effects of Highly Active Antiretroviral Therapy (HAART) on the Expression of Muc1 and P65 in a Cervical Cancer Cell Line, HCS-2

Authors: K. R. Thabethe, G. A. Adefolaju, M. J. Hosie

Abstract:

Cervical cancer is the third most commonly diagnosed cancer globally and it is one of three AIDS defining malignancies. Highly active antiretroviral therapy (HAART) is a combination of three or more antiretroviral drugs and has been shown to play a significant role in reducing the incidence of some AIDS defining malignancies, although its effect on cervical cancer is still unclear. The aim of this study was to investigate the relationship between cervical cancer and HAART. This was achieved by studying the expression of two signalling molecules expressed in cervical cancer; MUC1 and P65. Following the 24 hour treatment of a cervical cancer cell line, HCS-2, with drugs which are commonly used as part of HAART at their clinical plasma concentrations, real-time qPCR and immunofluorescence were used in order to study gene and protein expression. A one way ANOVA followed by a Tukey Kramer Post Hoc test was conducted using JMP 11 software on both sets of data. The drug classified as a protease inhibitor (PI) (i.e. LPV/r) reduced MUC1 and P65 gene and protein expression more than the other drug tested. PIs are known to play a significant role in cell death, therefore the cells were thought to be more susceptible to cell death following treatment with PIs. In conclusion, the drugs used, especially the PI showed some anticancer effects by facilitating cell death through decreased gene and protein expression of MUC1 and P65 and present promising agents for cancer treatment.

Keywords: cervical cancer, haart, MUC1, P65

Procedia PDF Downloads 319
4836 Physiological Normoxia and Cellular Adhesion of Diffuse Large B-Cell Lymphoma Primary Cells: Real-Time PCR and Immunohistochemistry Study

Authors: Kamila Duś-Szachniewicz, Kinga M. Walaszek, Paweł Skiba, Paweł Kołodziej, Piotr Ziółkowski

Abstract:

Cell adhesion is of fundamental importance in the cell communication, signaling, and motility, and its dysfunction occurs prevalently during cancer progression. The knowledge of the molecular and cellular processes involved in abnormalities in cancer cells adhesion has greatly increased, and it has been focused mainly on cellular adhesion molecules (CAMs) and tumor microenvironment. Unfortunately, most of the data regarding CAMs expression relates to study on cells maintained in standard oxygen condition of 21%, while the emerging evidence suggests that culturing cells in ambient air is far from physiological. In fact, oxygen in human tissues ranges from 1 to 11%. The aim of this study was to compare the effects of physiological lymph node normoxia (5% O2), and hyperoxia (21% O2) on the expression of cellular adhesion molecules of primary diffuse large B-cell lymphoma cells (DLBCL) isolated from 10 lymphoma patients. Quantitative RT-PCR and immunohistochemistry were used to confirm the differential expression of several CAMs, including ICAM, CD83, CD81, CD44, depending on the level of oxygen. Our findings also suggest that DLBCL cells maintained at ambient O2 (21%) exhibit reduced growth rate and migration ability compared to the cells growing in normoxia conditions. Taking into account all the observations, we emphasize the need to identify the optimal human cell culture conditions mimicking the physiological aspects of tumor growth and differentiation.

Keywords: adhesion molecules, diffuse large B-cell lymphoma, physiological normoxia, quantitative RT-PCR

Procedia PDF Downloads 264
4835 Effects of Nitrogen Addition on Litter Decomposition and Nutrient Release in a Temperate Grassland in Northern China

Authors: Lili Yang, Jirui Gong, Qinpu Luo, Min Liu, Bo Yang, Zihe Zhang

Abstract:

Anthropogenic activities have increased nitrogen (N) inputs to grassland ecosystems. Knowledge of the impact of N addition on litter decomposition is critical to understand ecosystem carbon cycling and their responses to global climate change. The aim of this study was to investigate the effects of N addition and litter types on litter decomposition of a semi-arid temperate grassland during growing and non-growing seasons in Inner Mongolia, northern China, and to identify the relation between litter decomposition and C: N: P stoichiometry in the litter-soil continuum. Six levels of N addition were conducted: CK, N1 (0 g Nm−2 yr−1), N2 (2 g Nm−2 yr−1), N3 (5 g Nm−2 yr−1), N4 (10 g Nm−2 yr−1) and N5 (25 g Nm−2 yr−1). Litter decomposition rates and nutrient release differed greatly among N addition gradients and litter types. N addition promoted litter decomposition of S. grandis, but exhibited no significant influence on L. chinensis litter, indicating that the S. grandis litter decomposition was more sensitive to N addition than L. chinensis. The critical threshold for N addition to promote mixed litter decomposition was 10 -25g Nm−2 yr−1. N addition altered the balance of C: N: P stoichiometry between litter, soil and microbial biomass. During decomposition progress, the L. chinensis litter N: P was higher in N2-N4 plots compared to CK, while the S. grandis litter C: N was lower in N3 and N4 plots, indicating that litter N or P content doesn’t satisfy microbial decomposers with the increasing of N addition. As a result, S. grandis litter exhibited net N immobilization, while L. chinensis litter net P immobilization. Mixed litter C: N: P stoichiometry satisfied the demand of microbial decomposers, showed net mineralization during the decomposition process. With the increasing N deposition in the future, mixed litter would potentially promote C and nutrient cycling in grassland ecosystem by increasing litter decomposition and nutrient release.

Keywords: C: N: P stoichiometry, litter decomposition, nitrogen addition, nutrient release

Procedia PDF Downloads 469
4834 Forest Soil Greenhouse Gas Real-Time Analysis Using Quadrupole Mass Spectrometry

Authors: Timothy L. Porter, T. Randy Dillingham

Abstract:

Vegetation growth and decomposition, along with soil microbial activity play a complex role in the production of greenhouse gases originating in forest soils. The absorption or emission (respiration) of these gases is a function of many factors relating to the soils themselves, the plants, and the environment in which the plants are growing. For this study, we have constructed a battery-powered, portable field mass spectrometer for use in analyzing gases in the soils surrounding trees, plants, and other areas. We have used the instrument to sample in real-time the greenhouse gases carbon dioxide and methane in soils where plant life may be contributing to the production of gases such as methane. Gases such as isoprene, which may help correlate gas respiration to microbial activity have also been measured. The instrument is composed of a quadrupole mass spectrometer with part per billion or better sensitivity, coupled to battery-powered turbo and diaphragm pumps. A unique ambient air pressure differentially pumped intake apparatus allows for the real-time sampling of gases in the soils from the surface to several inches below the surface. Results show that this instrument is capable of instant, part-per-billion sensitivity measurement of carbon dioxide and methane in the near surface region of various forest soils. We have measured differences in soil respiration resulting from forest thinning, forest burning, and forest logging as compared to pristine, untouched forests. Further studies will include measurements of greenhouse gas respiration as a function of temperature, microbial activity as measured by isoprene production, and forest restoration after fire.

Keywords: forest, soil, greenhouse, quadrupole

Procedia PDF Downloads 101