Search results for: link data
25156 Machine Learning Data Architecture
Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap
Abstract:
Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning
Procedia PDF Downloads 6525155 A Comparison of Image Data Representations for Local Stereo Matching
Authors: André Smith, Amr Abdel-Dayem
Abstract:
The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.Keywords: colour data, local stereo matching, stereo correspondence, disparity map
Procedia PDF Downloads 37125154 Public-Public Partnership and Tourism Development Strategy: The Case of Municipality of Gazi Baba in Macedonia
Authors: Dejan Metodijeski, Elizabeta Mitreva, Nako Taskov, Oliver Filiposki
Abstract:
Tourism development strategies are an important link in the tourism policy that is used to make its management better and easier. A public-public partnership (PUP) is a partnership between two or more public authorities or between a public authority and any non-profit organization with the goal of providing services and facilities or transferring technical skills. The paper presents this kind of partnership between two public authorities in Macedonia, the Municipality of Gazi Baba on one hand, and the University of Goce Delcev on the other. The main idea of this partnership is the development of a tourism strategy for the Municipality of Gazi Baba by the University on one side, and on the other, the construction of a mini park in the court of the University by the Municipality. This paper presents the causes and analyzes the procedures relating to this partnership and the methodology of the tourism development strategy. It contains a relevant literature review related to PUPs and tourism development strategy. The results and benefits of this partnership are presented with figures.Keywords: public-public partnership, tourism development strategy, municipality of Gazi Baba, Macedonia
Procedia PDF Downloads 36525153 A Folk’s Theory of the MomConnect (mHealth) Initiative in South Africa
Authors: Eveline Muika Kabongo, Peter Delobelle, Ferdinand Mukumbang, Edward Nicol
Abstract:
Introduction: Studies have been conducted to establish the effect of the MomConnect program in South Africa, but these studies did not focus on the stakeholders' and implementers' perspectives and the underlying program theory of the MomConnect initiative program. We strived to obtain stakeholders’ perspectives and assumptions on the MomConnect program and develop an initial program theory (IPT) of how the MomConnect initiative was expected to work. Methods: A realist-informed explanatory design used. The interviewer was performed with 10 key informants selected purposively among MomConnect key informants at the a national level of NDoH South Africa. The interview was done via zoom and lasted for 30 to 60 minutes. Introduction and abduction inferencing approaches were applied. The deductive and inductive approaches were performed during the analysis. ICAMO hereustic framework was used to analysed the data in order to get key informants expectations on how the MomConnect will work or not. Results: We developed three folk’s theories illustrating how the key informants’ expected the MomConnect to work. These theories showed that the MomConnect intended to provide users with health information and education that will empower and motivate them with knowledge which will allow the improvement of health services delivery among HCPs and improvement of the uptake of MCH services among pregnant women and mothers and decrease the rate of maternal and child mortality in the country. The lack of an updated mechanism to link women to the outcome was an issue. Another problem enlightened was the introduction of the WhatsApp program instead of SMS messaging, which was free of charge to women. Conclusion: The Folk’s theory developed from this study provided an insight into how the MomConnect was expected to work and what did not work. The folk’s theory will be merged with information from candidate theories on synthesis review and document review to develop our initial program theory of the MomConnect initiative.Keywords: mHealth, MomConnect program, realist evaluation, maternal and child health, maternal and child health services, introduction, theory-driven
Procedia PDF Downloads 19925152 Influence of Spirituality on Health Outcomes and General Well-Being in Patients with End-Stage Renal Disease
Authors: Ali A Alshraifeen, Josie Evans, Kathleen Stoddart
Abstract:
End-stage renal disease (ESRD) introduces physical, psychological, social, emotional and spiritual challenges into patients’ lives. Spirituality has been found to contribute to improved health outcomes, mainly in the areas of quality of life (QOL) and well-being. No studies exist to explore the influence of spirituality on the health outcomes and general well-being in patients with end-stage renal disease receiving hemodialysis (HD) treatment in Scotland. This study was conducted to explore spirituality in the daily lives of among these patients and how it may influence their QOL and general well-being. The study employed a qualitative method. Data were collected using semi-structured interviews with a sample of 21 patients. A thematic approach using Framework Analysis informed the qualitative data analysis. Participants were recruited from 11 dialysis units across four Health Boards in Scotland. The participants were regular patients attending the dialysis units three times per week. Four main themes emerged from the qualitative interviews: ‘Emotional and Psychological Turmoil’, ‘Life is Restricted’, ‘Spirituality’ and ‘Other Coping Strategies’. The findings suggest that patients’ QOL might be affected because of the physical challenges such as unremitting fatigue, disease unpredictability and being tied down to a dialysis machine, or the emotional and psychological challenges imposed by the disease into their lives such as wholesale changes, dialysis as a forced choice and having a sense of indebtedness. The findings also revealed that spirituality was an important coping strategy for the majority of participants who took part in the qualitative component (n=16). Different meanings of spirituality were identified including connection with God or Supernatural Being, connection with the self, others and nature/environment. Spirituality encouraged participants to accept their disease and offered them a sense of protection, instilled hope in them and helped them to maintain a positive attitude to carry on with their daily lives, which may have had a positive influence on their health outcomes and general well-being. The findings also revealed that humor was another coping strategy that helped to diffuse stress and anxiety for some participants and encouraged them to carry on with their lives. The findings from this study provide a significant contribution to a very limited body of work. The study contributes to our understanding of spirituality and how people receiving dialysis treatment use it to manage their daily lives. Spirituality is of particular interest due to its connection with health outcomes in patients with chronic illnesses. The link between spirituality and many chronic illnesses has gained some recognition, yet the identification of its influence on the health outcomes and well-being in patients with ESRD is still evolving. There is a need to understand patients’ experiences and examine the factors that influence their QOL and well-being to ensure that the services available are adequately tailored to them. Hence, further research is required to obtain a better understanding of the influence of spirituality on the health outcomes and general well-being of patients with ESRD.Keywords: end-stage renal disease, general well-being, quality of life, spirituality
Procedia PDF Downloads 22625151 Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System
Authors: Karima Qayumi, Alex Norta
Abstract:
The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets.Keywords: agent-oriented modeling (AOM), business intelligence model (BIM), distributed data mining (DDM), multi-agent system (MAS)
Procedia PDF Downloads 43225150 Timing and Noise Data Mining Algorithm and Software Tool in Very Large Scale Integration (VLSI) Design
Authors: Qing K. Zhu
Abstract:
Very Large Scale Integration (VLSI) design becomes very complex due to the continuous integration of millions of gates in one chip based on Moore’s law. Designers have encountered numerous report files during design iterations using timing and noise analysis tools. This paper presented our work using data mining techniques combined with HTML tables to extract and represent critical timing/noise data. When we apply this data-mining tool in real applications, the running speed is important. The software employs table look-up techniques in the programming for the reasonable running speed based on performance testing results. We added several advanced features for the application in one industry chip design.Keywords: VLSI design, data mining, big data, HTML forms, web, VLSI, EDA, timing, noise
Procedia PDF Downloads 25425149 Introduction of Electronic Health Records to Improve Data Quality in Emergency Department Operations
Authors: Anuruddha Jagoda, Samiddhi Samarakoon, Anil Jasinghe
Abstract:
In its simplest form, data quality can be defined as 'fitness for use' and it is a concept with multi-dimensions. Emergency Departments(ED) require information to treat patients and on the other hand it is the primary source of information regarding accidents, injuries, emergencies etc. Also, it is the starting point of various patient registries, databases and surveillance systems. This interventional study was carried out to improve data quality at the ED of the National Hospital of Sri Lanka (NHSL) by introducing an e health solution to improve data quality. The NHSL is the premier trauma care centre in Sri Lanka. The study consisted of three components. A research study was conducted to assess the quality of data in relation to selected five dimensions of data quality namely accuracy, completeness, timeliness, legibility and reliability. The intervention was to develop and deploy an electronic emergency department information system (eEDIS). Post assessment of the intervention confirmed that all five dimensions of data quality had improved. The most significant improvements are noticed in accuracy and timeliness dimensions.Keywords: electronic health records, electronic emergency department information system, emergency department, data quality
Procedia PDF Downloads 27625148 Data Presentation of Lane-Changing Events Trajectories Using HighD Dataset
Authors: Basma Khelfa, Antoine Tordeux, Ibrahima Ba
Abstract:
We present a descriptive analysis data of lane-changing events in multi-lane roads. The data are provided from The Highway Drone Dataset (HighD), which are microscopic trajectories in highway. This paper describes and analyses the role of the different parameters and their significance. Thanks to HighD data, we aim to find the most frequent reasons that motivate drivers to change lanes. We used the programming language R for the processing of these data. We analyze the involvement and relationship of different variables of each parameter of the ego vehicle and the four vehicles surrounding it, i.e., distance, speed difference, time gap, and acceleration. This was studied according to the class of the vehicle (car or truck), and according to the maneuver it undertook (overtaking or falling back).Keywords: autonomous driving, physical traffic model, prediction model, statistical learning process
Procedia PDF Downloads 26225147 A Configurational Approach to Understand the Effect of Organizational Structure on Absorptive Capacity: Results from PLS and fsQCA
Authors: Murad Ali, Anderson Konan Seny Kan, Khalid A. Maimani
Abstract:
Based on the theory of organizational design and the theory of knowledge, this study uses complexity theory to explain and better understand the causal impacts of various patterns of organizational structural factors stimulating absorptive capacity (ACAP). Organizational structure can be thought of as heterogeneous configurations where various components are often intertwined. This study argues that impact of the traditional variables which define a firm’s organizational structure (centralization, formalization, complexity and integration) on ACAP is better understood in terms of set-theoretic relations rather than correlations. This study uses a data sample of 347 from a multiple industrial sector in South Korea. The results from PLS-SEM support all the hypothetical relationships among the variables. However, fsQCA results suggest the possible configurations of centralization, formalization, complexity, integration, age, size, industry and revenue factors that contribute to high level of ACAP. The results from fsQCA demonstrate the usefulness of configurational approaches in helping understand equifinality in the field of knowledge management. A recent fsQCA procedure based on a modeling subsample and holdout subsample is use in this study to assess the predictive validity of the model under investigation. The same type predictive analysis is also made through PLS-SEM. These analyses reveal a good relevance of causal solutions leading to high level of ACAP. In overall, the results obtained from combining PLS-SEM and fsQCA are very insightful. In particular, they could help managers to link internal organizational structural with ACAP. In other words, managers may comprehend finely how different components of organizational structure can increase the level of ACAP. The configurational approach may trigger new insights that could help managers prioritize selection criteria and understand the interactions between organizational structure and ACAP. The paper also discusses theoretical and managerial implications arising from these findings.Keywords: absorptive capacity, organizational structure, PLS-SEM, fsQCA, predictive analysis, modeling subsample, holdout subsample
Procedia PDF Downloads 33225146 Evaluation of Golden Beam Data for the Commissioning of 6 and 18 MV Photons Beams in Varian Linear Accelerator
Authors: Shoukat Ali, Abdul Qadir Jandga, Amjad Hussain
Abstract:
Objective: The main purpose of this study is to compare the Percent Depth dose (PDD) and In-plane and cross-plane profiles of Varian Golden beam data to the measured data of 6 and 18 MV photons for the commissioning of Eclipse treatment planning system. Introduction: Commissioning of treatment planning system requires an extensive acquisition of beam data for the clinical use of linear accelerators. Accurate dose delivery require to enter the PDDs, Profiles and dose rate tables for open and wedges fields into treatment planning system, enabling to calculate the MUs and dose distribution. Varian offers a generic set of beam data as a reference data, however not recommend for clinical use. In this study, we compared the generic beam data with the measured beam data to evaluate the reliability of generic beam data to be used for the clinical purpose. Methods and Material: PDDs and Profiles of Open and Wedge fields for different field sizes and at different depths measured as per Varian’s algorithm commissioning guideline. The measurement performed with PTW 3D-scanning water phantom with semi-flex ion chamber and MEPHYSTO software. The online available Varian Golden Beam Data compared with the measured data to evaluate the accuracy of the golden beam data to be used for the commissioning of Eclipse treatment planning system. Results: The deviation between measured vs. golden beam data was in the range of 2% max. In PDDs, the deviation increases more in the deeper depths than the shallower depths. Similarly, profiles have the same trend of increasing deviation at large field sizes and increasing depths. Conclusion: Study shows that the percentage deviation between measured and golden beam data is within the acceptable tolerance and therefore can be used for the commissioning process; however, verification of small subset of acquired data with the golden beam data should be mandatory before clinical use.Keywords: percent depth dose, flatness, symmetry, golden beam data
Procedia PDF Downloads 49025145 Variable-Fidelity Surrogate Modelling with Kriging
Authors: Selvakumar Ulaganathan, Ivo Couckuyt, Francesco Ferranti, Tom Dhaene, Eric Laermans
Abstract:
Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy.Keywords: Kriging, CoKriging, Surrogate modelling, Variable- fidelity modelling, Gradients
Procedia PDF Downloads 55825144 Robust Barcode Detection with Synthetic-to-Real Data Augmentation
Authors: Xiaoyan Dai, Hsieh Yisan
Abstract:
Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.Keywords: barcode detection, data augmentation, deep learning, image-based processing
Procedia PDF Downloads 17425143 Numerical Investigation of Seismic Behaviour of Building
Authors: Tinebeb Tefera Ashene
Abstract:
Glass facade systems have gained popularity in recent times. During an earthquake, building frames suffer large inter-story drifts, causing racking of building facade systems. A facade system is highly vulnerable and fails more frequently than a building with significant devastating effects. The usage of Metallic yield damper connections (Added Damping Stiffness) is proposed in this study to mitigate the aforementioned problems. Results showed as compared to control, usage of Metallic yield damper connections (Added-Damping-And-Stiffness) exhibited a reduction of connection deformation and axial force; differential displacement between frame and facade; and facade distortion by 44.35%, 43.33%, and 51.45% respectively. Also, employing proposed energy-absorbing connections reduced inter-story link joint drift by 71.11% and mitigated detrimental seismic effects on the entire building facade system.Keywords: damper, energy dissipation, metallic yield, facades
Procedia PDF Downloads 5325142 Models of Start-Ups Created in Cooperation with a State University
Authors: Roman Knizek, Denisa Knizkova, Ludmila Fridrichova
Abstract:
The academic environment in Central Europe has recently been transforming itself and is trying to link its research and development with the private sector. However, compared to Western countries, there is a lack of history and continuity because of the centrally controlled economy from the end of the Second World War until the early 1990s. There are two basic models of how to carry out technology transfer between the academic and the business world. The first is to develop something new and then find a suitable private sector partner; the second is to find a partner who has the basic idea and then develop something new in collaboration. This study, unlike some other ones, describes two specific cases that took place in cooperation with the Technical University of Liberec, Faculty of Textiles. As was said before, in one case, a product was first developed, and after that, an investor was sought, and in the other case, there was an investor who wanted a specific product and wanted to help with its development. The study describes the various advantages and disadvantages, including a practical example of the creation of a subsequent start-up.Keywords: start-up, state university, academic environment, licensing agreement
Procedia PDF Downloads 1825141 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander
Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas
Abstract:
Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link
Procedia PDF Downloads 35225140 Analysis of Delivery of Quad Play Services
Authors: Rahul Malhotra, Anurag Sharma
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: FTTH, quad play, play service, access networks, data rate
Procedia PDF Downloads 41725139 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network
Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson
Abstract:
The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0
Procedia PDF Downloads 18225138 Denoising Transient Electromagnetic Data
Authors: Lingerew Nebere Kassie, Ping-Yu Chang, Hsin-Hua Huang, , Chaw-Son Chen
Abstract:
Transient electromagnetic (TEM) data plays a crucial role in hydrogeological and environmental applications, providing valuable insights into geological structures and resistivity variations. However, the presence of noise often hinders the interpretation and reliability of these data. Our study addresses this issue by utilizing a FASTSNAP system for the TEM survey, which operates at different modes (low, medium, and high) with continuous adjustments to discretization, gain, and current. We employ a denoising approach that processes the raw data obtained from each acquisition mode to improve signal quality and enhance data reliability. We use a signal-averaging technique for each mode, increasing the signal-to-noise ratio. Additionally, we utilize wavelet transform to suppress noise further while preserving the integrity of the underlying signals. This approach significantly improves the data quality, notably suppressing severe noise at late times. The resulting denoised data exhibits a substantially improved signal-to-noise ratio, leading to increased accuracy in parameter estimation. By effectively denoising TEM data, our study contributes to a more reliable interpretation and analysis of underground structures. Moreover, the proposed denoising approach can be seamlessly integrated into existing ground-based TEM data processing workflows, facilitating the extraction of meaningful information from noisy measurements and enhancing the overall quality and reliability of the acquired data.Keywords: data quality, signal averaging, transient electromagnetic, wavelet transform
Procedia PDF Downloads 8625137 Supply Chain Optimization Based on Advanced Planning and Scheduling Technology in Manufacturing Industry: A Case Study
Authors: Wenqian Shi, Xie He, Ziyin Huang, Zi Yu
Abstract:
The dramatic changes in the global economic situation have produced dramatic changes to companies’ supply chain systems. A variety of opportunities and challenges make the traditional manufacturing industry feel pressured, and the manufacturing industry must seek a new way out as soon as possible. This paper presents a case study of the advanced planning and scheduling technology problem encountered by an electrical and electronics manufacturer. The objective is to seek the minimum cost of production planning and order management. Digitalization is applied to the problem, and the results demonstrate that significant production performances can be achieved in the face of the existing production of each link and order management systems to analyze and optimize. This paper can also provide some practical implications in various manufacturing industries. Finally, future research directions are discussed.Keywords: advanced planning and scheduling, case study, production planning, supply chain optimization
Procedia PDF Downloads 10125136 Attribute Analysis of Quick Response Code Payment Users Using Discriminant Non-negative Matrix Factorization
Authors: Hironori Karachi, Haruka Yamashita
Abstract:
Recently, the system of quick response (QR) code is getting popular. Many companies introduce new QR code payment services and the services are competing with each other to increase the number of users. For increasing the number of users, we should grasp the difference of feature of the demographic information, usage information, and value of users between services. In this study, we conduct an analysis of real-world data provided by Nomura Research Institute including the demographic data of users and information of users’ usages of two services; LINE Pay, and PayPay. For analyzing such data and interpret the feature of them, Nonnegative Matrix Factorization (NMF) is widely used; however, in case of the target data, there is a problem of the missing data. EM-algorithm NMF (EMNMF) to complete unknown values for understanding the feature of the given data presented by matrix shape. Moreover, for comparing the result of the NMF analysis of two matrices, there is Discriminant NMF (DNMF) shows the difference of users features between two matrices. In this study, we combine EMNMF and DNMF and also analyze the target data. As the interpretation, we show the difference of the features of users between LINE Pay and Paypay.Keywords: data science, non-negative matrix factorization, missing data, quality of services
Procedia PDF Downloads 13125135 Developing Guidelines for Public Health Nurse Data Management and Use in Public Health Emergencies
Authors: Margaret S. Wright
Abstract:
Background/Significance: During many recent public health emergencies/disasters, public health nursing data has been missing or delayed, potentially impacting the decision-making and response. Data used as evidence for decision-making in response, planning, and mitigation has been erratic and slow, decreasing the ability to respond. Methodology: Applying best practices in data management and data use in public health settings, and guided by the concepts outlined in ‘Disaster Standards of Care’ models leads to the development of recommendations for a model of best practices in data management and use in public health disasters/emergencies by public health nurses. As the ‘patient’ in public health disasters/emergencies is the community (local, regional or national), guidelines for patient documentation are incorporated in the recommendations. Findings: Using model public health nurses could better plan how to prepare for, respond to, and mitigate disasters in their communities, and better participate in decision-making in all three phases bringing public health nursing data to the discussion as part of the evidence base for decision-making.Keywords: data management, decision making, disaster planning documentation, public health nursing
Procedia PDF Downloads 22325134 An Embarrassingly Simple Semi-supervised Approach to Increase Recall in Online Shopping Domain to Match Structured Data with Unstructured Data
Authors: Sachin Nagargoje
Abstract:
Complete labeled data is often difficult to obtain in a practical scenario. Even if one manages to obtain the data, the quality of the data is always in question. In shopping vertical, offers are the input data, which is given by advertiser with or without a good quality of information. In this paper, an author investigated the possibility of using a very simple Semi-supervised learning approach to increase the recall of unhealthy offers (has badly written Offer Title or partial product details) in shopping vertical domain. The author found that the semisupervised learning method had improved the recall in the Smart Phone category by 30% on A=B testing on 10% traffic and increased the YoY (Year over Year) number of impressions per month by 33% at production. This also made a significant increase in Revenue, but that cannot be publicly disclosed.Keywords: semi-supervised learning, clustering, recall, coverage
Procedia PDF Downloads 12225133 Genodata: The Human Genome Variation Using BigData
Authors: Surabhi Maiti, Prajakta Tamhankar, Prachi Uttam Mehta
Abstract:
Since the accomplishment of the Human Genome Project, there has been an unparalled escalation in the sequencing of genomic data. This project has been the first major vault in the field of medical research, especially in genomics. This project won accolades by using a concept called Bigdata which was earlier, extensively used to gain value for business. Bigdata makes use of data sets which are generally in the form of files of size terabytes, petabytes, or exabytes and these data sets were traditionally used and managed using excel sheets and RDBMS. The voluminous data made the process tedious and time consuming and hence a stronger framework called Hadoop was introduced in the field of genetic sciences to make data processing faster and efficient. This paper focuses on using SPARK which is gaining momentum with the advancement of BigData technologies. Cloud Storage is an effective medium for storage of large data sets which is generated from the genetic research and the resultant sets produced from SPARK analysis.Keywords: human genome project, Bigdata, genomic data, SPARK, cloud storage, Hadoop
Procedia PDF Downloads 25925132 Industrial and Environmental Safety in the Integrated Security Policy of the Industry: A Corporation and an Enterprise
Authors: Vladimir A. Grachev
Abstract:
Today, in the context of rapidly developing technosphere and hourly emerging new technologies, the industrial and environmental safety issue is ever more pressing. The article is devoted to the relationship of social, environmental, and industrial policies with industrial safety, occupational health and safety, environmental safety, and environmental protection. The author assesses the up-to-day situation through system analysis and on the basis of the existing practices. A complex system of the policies implementation without "gaps" and missing links ensures preservation of human lives, health and a favorable living environment. The author demonstrates that absence of an "environmental safety" high-priority link can lead to a significant loss of human lives and health and the global changes in the environment. The role of implementing the environmental policy of enterprises and organizations, and of economic sectors in the implementation of national environmental policy is shown. It was established that the system for implementing environmental policy should be based on a system analysis.Keywords: environmental protection, environmental safety, industrial safety, occupational health and safety
Procedia PDF Downloads 21925131 Ontology for a Voice Transcription of OpenStreetMap Data: The Case of Space Apprehension by Visually Impaired Persons
Authors: Said Boularouk, Didier Josselin, Eitan Altman
Abstract:
In this paper, we present a vocal ontology of OpenStreetMap data for the apprehension of space by visually impaired people. Indeed, the platform based on produsage gives a freedom to data producers to choose the descriptors of geocoded locations. Unfortunately, this freedom, called also folksonomy leads to complicate subsequent searches of data. We try to solve this issue in a simple but usable method to extract data from OSM databases in order to send them to visually impaired people using Text To Speech technology. We focus on how to help people suffering from visual disability to plan their itinerary, to comprehend a map by querying computer and getting information about surrounding environment in a mono-modal human-computer dialogue.Keywords: TTS, ontology, open street map, visually impaired
Procedia PDF Downloads 29725130 Analysis the Impacts of WeChat Mobile Payment in China Teens' Online Purchasing Behaviors
Authors: Lok Yi Joyce Poon
Abstract:
China's mobile payment market has boomed in the past few years. WeChat (Chinese name as Weixin) owned by Tencent is known as the fastest growing all-in-one social messaging platforms. The company has launched the WeChat Pay in 2013, in which users can link their credit card to their user account and make payments within the app’s built in digital wallet. WeChat Payment is a one-stop payment tool that can provide a seamless online experience for the shoppers to transfer money between WeChat users (peer-to-peer) and make payments online by scanning a QR code, a prominent facilitator for transactions in WeChat, to complete the payment with the app without directing the users to the external websites. The aims of this study are to examine the effectiveness of WeChat mobile payment in China as well as the impacts of the China teen’s online purchasing behavior since the establishment of WeChat Payment. The research method of this study is conducted by both online survey on Sojump, a popular online survey platform in China. A total of 120 respondents among 18 to 25 teens in China completed the survey. Data sources included participants’ response to an end-of-session questionnaire, encompassing with the types of multiple choice, open-ended questions. To have an in-depth analysis, a face-to-face interview with a Chinese teen who is a frequent user of the WeChat Pay. The main finding of the study shows that the majority of the teenagers frequently use the WeChat payment tool because of its convenience, user-friendliness and the scenarios offered within the WeChat Wallet. The respondents claimed that they will settle the bills in their daily lives via WeChat Pay. However, the respondents in the age group of 40 or above will not use the WeChat Pay due to the security concern and they do not see the app as a platform for commercial activities like online shopping. Throughout the study, it is recommended WeChat should put more efforts on the security issue and improve the payment technology by adopting the near-field communication terminals instead of requiring users to scan QR codes before they complete the transaction.Keywords: digital wallet, mobile payment, online purchasing behavior, WeChat Pay
Procedia PDF Downloads 39325129 Design and Development of a Platform for Analyzing Spatio-Temporal Data from Wireless Sensor Networks
Authors: Walid Fantazi
Abstract:
The development of sensor technology (such as microelectromechanical systems (MEMS), wireless communications, embedded systems, distributed processing and wireless sensor applications) has contributed to a broad range of WSN applications which are capable of collecting a large amount of spatiotemporal data in real time. These systems require real-time data processing to manage storage in real time and query the data they process. In order to cover these needs, we propose in this paper a Snapshot spatiotemporal data model based on object-oriented concepts. This model allows saving storing and reducing data redundancy which makes it easier to execute spatiotemporal queries and save analyzes time. Further, to ensure the robustness of the system as well as the elimination of congestion from the main access memory we propose a spatiotemporal indexing technique in RAM called Captree *. As a result, we offer an RIA (Rich Internet Application) -based SOA application architecture which allows the remote monitoring and control.Keywords: WSN, indexing data, SOA, RIA, geographic information system
Procedia PDF Downloads 25625128 Dynamic Marketing Capabilities; From Marketing to Product Development and Technological Change: An Exploratory Study of Independent Companies of the Swiss Luxury Watchmaking Industry
Authors: Maria Bashutkina
Abstract:
In seeking to identify marketing factors that influence company’s performance, product management as well as new technology configuration, this study adopts resource based theory and applies it to the Swiss watchmaking companies. This paper presents results of qualitative research based on semi-structured interviews with CEO and marketing managers among watchmaking companies. This paper provides empirical evidences illustrating the link between the use of dynamic marketing capabilities and competitive advantage. We also present a set of propositions that outline how dynamic marketing capabilities could benefit product management and technological change in the Swiss independent watchmaking company, revealing competitive advantage in the highly competitive and turbulent market.Keywords: dynamic marketing capabilities, luxury marketing, resource based theory, product management, Swiss watchmaking
Procedia PDF Downloads 21325127 The Potential of Renewable Energy in Tunisia and Its Impact on Economic Growth
Authors: Assaad Ghazouani
Abstract:
Tunisia is ranked among the countries with low energy diversification, but this configuration makes the country too dependent on fossil fuel exporting countries and therefore extremely sensitive to any oil crises, many measures to diversify electricity production must be taken in making use of other forms of renewable and nuclear energy. One of the solutions required to escape this dependence is the liberalization of the electricity industry which can lead to an improvement of supply, energy diversification, and reducing some of the negative effects of the trade balance. This paper examines the issue of renewable electricity and economic growth in Tunisia consumption. The main objective is to study and analyze the causal link between renewable energy consumption and economic growth in Tunisia over the period 1980-2010. To examine the relationship in the short and in the long terms, we used a multidimensional approach to cointegration based on recent advances in time series econometrics (test Zivot - Andrews, Test of Cointegration Johannsen, Granger causality test, error correction model (ECM)).Keywords: renewable electricity, economic growth, VECM, cointegration, Tunisia
Procedia PDF Downloads 544