Search results for: high energy materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29404

Search results for: high energy materials

28534 Evaluation of an Air Energy Recovery System in Greenhouse Fed by an Axial Air Extractor

Authors: Eugueni Romantchik, Gilbero Lopez, Diego Terrazas

Abstract:

The residual wind energy recovery from axial air extractors in greenhouses represents a constant source of clean energy production, which reduces production costs by reducing energy consumption costs. The objective of this work is to design, build and evaluate a residual wind energy recovery system. This system consists of a wind turbine placed at an optimal distance, a cone in the air discharge and a mechanism to vary the blades angle of the wind turbine. The system energy balance was analyzed, measuring the main energy parameters such as voltage, amperage, air velocities and angular speeds of the rotors. Tests were carried in a greenhouse with extractor Multifan 130 (1.2 kW, 550 rpm and 1.3 m of diameter) without cone and with cone, with the wind turbine (3 blades with 1.2 m in diameter). The implementation of the system allowed recovering up to 55% of the motor's energy. With the cone installed, the electric energy recovered was increased by 10%. Experimentally, it was shown that changing in 3 degrees the original angle of the wind turbine blades, the angular velocity increases 17.7%.

Keywords: air energy, exhaust fan, greenhouse, wind turbine

Procedia PDF Downloads 163
28533 Critical Review of Clean Energy Mix as Means of Boosting Power Generation in Nigeria

Authors: B. Adebayo, A. A. Adebayo

Abstract:

Adequate power generation and supply are enormous challenges confronting Nigeria state today. This is a powerful mechanism that drives industrial development and socio-economy of any nation. The present level of power generation and supply have become national embarrassment to both government and the citizens of Nigeria, where over 60% of the population have no access to electricity. This paper is set to review the abundant clean energy alternative sources available in abundance that are capable of boosting power generation. The clean energy sources waiting to be exploited include: nuclear, solar and wind energy. The environmental benefits of these sources of power generation are identified. Nuclear energy is a powerful clean energy source. However, Africa accounted for 20% of known recoverable reserve and uranium produces heat of 500,000 MJ/kg. Moreover, Nigeria receives average daily solar radiation of over 5.249 kWh/m2/day. Researchers have shown that wind speed and power flux densities varied from 1.5 – 4.1 m/s and 5.7 – 22.5 W/m2 respectively. It is a fact that the cost of doing business in Nigeria is very high, leading to winding up of the multi-national companies and then led to increase unemployment level. More importantly, readily available vast quantity of energy will reduce cost of running industries. Hence, more industries will come on board, goods, services, and more job creation will be achieved. This clean source of power generation is devoid of production of green house gases, elimination of environmental pollution, and reduced waste disposal. Then Nigerians will live in harmony with the environment.

Keywords: power, generation, energy, mix, clean, industrial

Procedia PDF Downloads 310
28532 Dependence of the Photoelectric Exponent on the Source Spectrum of the CT

Authors: Rezvan Ravanfar Haghighi, V. C. Vani, Suresh Perumal, Sabyasachi Chatterjee, Pratik Kumar

Abstract:

X-ray attenuation coefficient [µ(E)] of any substance, for energy (E), is a sum of the contributions from the Compton scattering [ μCom(E)] and photoelectric effect [µPh(E)]. In terms of the, electron density (ρe) and the effective atomic number (Zeff) we have µCom(E) is proportional to [(ρe)fKN(E)] while µPh(E) is proportional to [(ρeZeffx)/Ey] with fKN(E) being the Klein-Nishina formula, with x and y being the exponents for photoelectric effect. By taking the sample's HU at two different excitation voltages (V=V1, V2) of the CT machine, we can solve for X=ρe, Y=ρeZeffx from these two independent equations, as is attempted in DECT inversion. Since µCom(E) and µPh(E) are both energy dependent, the coefficients of inversion are also dependent on (a) the source spectrum S(E,V) and (b) the detector efficiency D(E) of the CT machine. In the present paper we tabulate these coefficients of inversion for different practical manifestations of S(E,V) and D(E). The HU(V) values from the CT follow: <µ(V)>=<µw(V)>[1+HU(V)/1000] where the subscript 'w' refers to water and the averaging process <….> accounts for the source spectrum S(E,V) and the detector efficiency D(E). Linearity of μ(E) with respect to X and Y implies that (a) <µ(V)> is a linear combination of X and Y and (b) for inversion, X and Y can be written as linear combinations of two independent observations <µ(V1)>, <µ(V2)> with V1≠V2. These coefficients of inversion would naturally depend upon S(E, V) and D(E). We numerically investigate this dependence for some practical cases, by taking V = 100 , 140 kVp, as are used for cardiological investigations. The S(E,V) are generated by using the Boone-Seibert source spectrum, being superposed on aluminium filters of different thickness lAl with 7mm≤lAl≤12mm and the D(E) is considered to be that of a typical Si[Li] solid state and GdOS scintilator detector. In the values of X and Y, found by using the calculated inversion coefficients, errors are below 2% for data with solutions of glycerol, sucrose and glucose. For low Zeff materials like propionic acid, Zeffx is overestimated by 20% with X being within1%. For high Zeffx materials like KOH the value of Zeffx is underestimated by 22% while the error in X is + 15%. These imply that the source may have additional filtering than the aluminium filter specified by the manufacturer. Also it is found that the difference in the values of the inversion coefficients for the two types of detectors is negligible. The type of the detector does not affect on the DECT inversion algorithm to find the unknown chemical characteristic of the scanned materials. The effect of the source should be considered as an important factor to calculate the coefficients of inversion.

Keywords: attenuation coefficient, computed tomography, photoelectric effect, source spectrum

Procedia PDF Downloads 400
28531 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm

Authors: Amir Hossein Hejazi, Nima Amjady

Abstract:

In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.

Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm

Procedia PDF Downloads 572
28530 Reduce the Environmental Impacts of the Intensive Use of Glass in New Buildings in Khartoum, Sudan

Authors: Sawsan Domi

Abstract:

Khartoum is considering as one of the hottest cities all over the world, the mean monthly outdoor temperature remains above 30 ºC. Solar Radiation on Building Surfaces considered within the world highest values. Buildings in Khartoum is receiving huge amounts of watts/m2. Northern, eastern and western facades always receive a greater amount than the south ones. Therefore, these facades of the building must be better protected than the others. One of the most important design limits affecting indoor thermal comfort and energy conservation are building envelope design, self-efficiency in building materials and optical and thermo-physical properties of the building envelope. A small sun-facing glazing area is very important to provide thermal comfort in hot dry climates because of the intensive sunshine. This study aims to propose a work plan to help minimize the negative environmental effect of the climate on buildings taking the intensive use of glazing. In the last 15 years, there was a rapid growth in building sector in Khartoum followed by many of wrong strategies getting away of being environmental friendly. The intensive use of glazing on facades increased to commercial, industrial and design aspects, while the glass envelope led to quick increase in temperature by the reflection affects the sun on faces, cars and bodies. Logically, being transparent by using glass give a sense of open spaces, allowing natural lighting and sometimes natural ventilation keeping dust and insects away. In the other hand, it costs more and give more overheated. And this is unsuitable for a hot dry climate city like Khartoum. Many huge projects permitted every year from the Ministry of Planning in Khartoum state, with a design based on the intensive use of glazing on facades. There are no Laws or Regulations to control using materials in construction, the last building code -building code 2008- Khartoum state- only focused in using sustainable materials with no consider to any environmental aspects. Results of the study will help increase the awareness for architects, engineers and public about this environmentally problem. Objectives vary between Improve energy performance in buildings and Provide high levels of thermal comfort in the inner environment. As a future project, what are the changes that can happen in building permits codes and regulations. There could be recommendations for the governmental sector such as Obliging the responsible authorities to version environmental friendly laws in building construction fields and Support Renewable energy sector in buildings.

Keywords: building envelope, building regulations, glazed facades, solar radiation

Procedia PDF Downloads 219
28529 Microwave Sintering and Its Application on Cemented Carbides

Authors: Rumman M. D. Raihanuzzaman, Lee Chang Chuan, Zonghan Xie, Reza Ghomashchi

Abstract:

Cemented carbides, owing to their excellent mechanical properties, have been of immense interest in the field of hard materials for the past few decades. A number of processing techniques have been developed to obtain high quality carbide tools, with a wide range of grain size depending on the application and requirements. Microwave sintering is one of the heating processes, which has been used on a wide range of materials including ceramics. The complete understanding of microwave sintering and its contribution towards control of grain growth and on deformation of the resulting carbide materials needs further studies and attention. In addition, the effect of binder materials and their behaviour as a function of microwave sintering is another area that requires clear understanding. This review aims to focus on microwave sintering, providing information of how the process works and what type of materials it is best suited for. In addition, a closer look at some microwave sintered Tungsten Carbide-Cobalt samples will be taken and discussed, addressing some of the key issues and challenges faced in the research.

Keywords: cemented carbides, consolidation, microwave sintering, mechanical properties

Procedia PDF Downloads 595
28528 Fatigue Life Evaluation of Al6061/Al2O3 and Al6061/SiC Composites under Uniaxial and Multiaxial Loading Conditions

Authors: C. E. Sutton, A. Varvani-Farahani

Abstract:

Fatigue damage and life prediction of particle metal matrix composites (PMMCs) under uniaxial and multiaxial loading conditions were investigated. Three PMM composite materials of Al6061/Al2O3/20p-T6, Al6061/Al2O3/22p-T6 and Al6061/SiC/17w-T6 tested under tensile, torsion, and combined tension-torsion fatigue cycling were evaluated with various fatigue damage models. The fatigue damage models of Smith-Watson-Topper (S. W. T.), Ellyin, Brown-Miller, Fatemi-Socie, and Varvani were compared for their capability to assess the fatigue damage of materials undergoing various loading conditions. Fatigue life predication results were then evaluated by implementing material-dependent coefficients that factored in the effects of the particle reinforcement in the earlier developed Varvani model. The critical plane-energy approach incorporated the critical plane as the plane of crack initiation and early stage of crack growth. The strain energy density was calculated on the critical plane incorporating stress and strain components acting on the plane. This approach successfully evaluated fatigue damage values versus fatigue lives within a narrower band for both uniaxial and multiaxial loading conditions as compared with other damage approaches studied in this paper.

Keywords: fatigue damage, life prediction, critical plane approach, energy approach, PMM composites

Procedia PDF Downloads 403
28527 Mechanical Behavior of Recycled Mortars Manufactured from Moisture Correction Using the Halogen Light Thermogravimetric Balance as an Alternative to the Traditional ASTM C 128 Method

Authors: Diana Gomez-Cano, J. C. Ochoa-Botero, Roberto Bernal Correa, Yhan Paul Arias

Abstract:

To obtain high mechanical performance, the fresh conditions of a mortar are decisive. Measuring the absorption of aggregates used in mortar mixes is a fundamental requirement for proper design of the mixes prior to their placement in construction sites. In this sense, absorption is a determining factor in the design of a mix because it conditions the amount of water, which in turn affects the water/cement ratio and the final porosity of the mortar. Thus, this work focuses on the mechanical behavior of recycled mortars manufactured from moisture correction using the Thermogravimetric Balancing Halogen Light (TBHL) technique in comparison with the traditional ASTM C 128 International Standard method. The advantages of using the TBHL technique are favorable in terms of reduced consumption of resources such as materials, energy, and time. The results show that in contrast to the ASTM C 128 method, the TBHL alternative technique allows obtaining a higher precision in the absorption values of recycled aggregates, which is reflected not only in a more efficient process in terms of sustainability in the characterization of construction materials but also in an effect on the mechanical performance of recycled mortars.

Keywords: alternative raw materials, halogen light, recycled mortar, resources optimization, water absorption

Procedia PDF Downloads 114
28526 Magnetic Properties of Nickel Oxide Nanoparticles in Superparamagnetic State

Authors: Navneet Kaur, S. D. Tiwari

Abstract:

Superparamagnetism is an interesting phenomenon and observed in small particles of magnetic materials. It arises due to a reduction in particle size. In the superparamagnetic state, as the thermal energy overcomes magnetic anisotropy energy, the magnetic moment vector of particles flip their magnetization direction between states of minimum energy. Superparamagnetic nanoparticles have been attracting the researchers due to many applications such as information storage, magnetic resonance imaging, biomedical applications, and sensors. For information storage, thermal fluctuations lead to loss of data. So that nanoparticles should have high blocking temperature. And to achieve this, nanoparticles should have a higher magnetic moment and magnetic anisotropy constant. In this work, the magnetic anisotropy constant of the antiferromagnetic nanoparticles system is determined. Magnetic studies on nanoparticles of NiO (nickel oxide) are reported well. This antiferromagnetic nanoparticle system has high blocking temperature and magnetic anisotropy constant of order 105 J/m3. The magnetic study of NiO nanoparticles in the superparamagnetic region is presented. NiO particles of two different sizes, i.e., 6 and 8 nm, are synthesized using the chemical route. These particles are characterized by an x-ray diffractometer, transmission electron microscope, and superconducting quantum interference device magnetometry. The magnetization vs. applied magnetic field and temperature data for both samples confirm their superparamagnetic nature. The blocking temperature for 6 and 8 nm particles is found to be 200 and 172 K, respectively. Magnetization vs. applied magnetic field data of NiO is fitted to an appropriate magnetic expression using a non-linear least square fit method. The role of particle size distribution and magnetic anisotropy is taken in to account in magnetization expression. The source code is written in Python programming language. This fitting provides us the magnetic anisotropy constant for NiO and other magnetic fit parameters. The particle size distribution estimated matches well with the transmission electron micrograph. The value of magnetic anisotropy constants for 6 and 8 nm particles is found to be 1.42 X 105 and 1.20 X 105 J/m3, respectively. The obtained magnetic fit parameters are verified using the Neel model. It is concluded that the effect of magnetic anisotropy should not be ignored while studying the magnetization process of nanoparticles.

Keywords: anisotropy, superparamagnetic, nanoparticle, magnetization

Procedia PDF Downloads 134
28525 Wind Energy Resources Assessment and Micrositting on Different Areas of Libya: The Case Study in Darnah

Authors: F. Ahwide, Y. Bouker, K. Hatem

Abstract:

This paper presents long term wind data analysis in terms of annual and diurnal variations at different areas of Libya. The data of the wind speed and direction are taken each ten minutes for a period, at least two years, are used in the analysis. ‘WindPRO’ software and Excel workbook were used for the wind statistics and energy calculations. As for Derna, average speeds are 10 m, 20 m, and 40 m, and respectively 6.57 m/s, 7.18 m/s, and 8.09 m/s. Highest wind speeds are observed at SSW, followed by S, WNW and NW sectors. Lowest wind speeds are observed between N and E sectors. Most frequent wind directions are NW and NNW. Hence, wind turbines can be installed against these directions. The most powerful sector is NW (29.4 % of total expected wind energy), followed by 19.9 % SSW, 11.9% NNW, 8.6% WNW and 8.2% S. Furthermore in Al-Maqrun: the most powerful sector is W (26.8 % of total expected wind energy), followed by 12.3 % WSW and 9.5% WNW. While in Goterria: the most powerful sector is S (14.8 % of total expected wind energy), followed by SSE, SE, and WSW. And Misalatha: the most powerful sector is S, by far represents 28.5% of the expected power, followed by SSE and SE. As for Tarhuna, it is by far SSE and SE, representing each one two times the expected energy of the third powerful sector (NW). In Al-Asaaba: it is SSE by far represents 50% of the expected power, followed by S. It can to be noted that the high frequency of the south direction winds, that come from the desert could cause a high frequency of dust episodes. This fact then, should be taken into account in order to take appropriate measures to prevent wind turbine deterioration. In Excel workbook, an estimation of annual energy yield at position of Derna, Al-Maqrun, Tarhuna, and Al-Asaaba meteorological mast has been done, considering a generic wind turbine of 1.65 MW. (mtORRES, TWT 82-1.65MW) in position of meteorological mast. Three other turbines have been tested. At 80 m, the estimation of energy yield for Derna, Al-Maqrun, Tarhuna, and Asaaba is 6.78 GWh or 3390 equivalent hours, 5.80 GWh or 2900 equivalent hours, 4.91 GWh or 2454 equivalent hours and 5.08 GWh or 2541 equivalent hours respectively. It seems a fair value in the context of a possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Furthermore, an estimation of annual energy yield at positions of Misalatha, Azizyah and Goterria meteorological mast has been done, considering a generic wind turbine of 2 MW. We found that, at 80 m, the estimation of energy yield is 3.12 GWh or 1557 equivalent hours, 4.47 GWh or 2235 equivalent hours and 4.07GWh or 2033 respectively . It seems a very poor value in the context of possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Anyway, more data and a detailed wind farm study would be necessary to draw conclusions.

Keywords: wind turbines, wind data, energy yield, micrositting

Procedia PDF Downloads 187
28524 Optimization of the Energy Consumption of the Pottery Kilns by the Use of Heat Exchanger as Recovery System and Modeling of Heat Transfer by Conduction Through the Walls of the Furnace

Authors: Maha Bakakri, Rachid Tadili, Fatiha Lemmini

Abstract:

Morocco is one of the few countries that have kept their traditional crafts, despite the competition of modern industry and its impact on manual labor. Therefore the optimization of energy consumption becomes an obligation and this is the purpose of this document. In this work we present some characteristics of the furnace studied, its operating principle and the experimental measurements of the evolutions of the temperatures inside and outside the walls of the furnace, values which will be used later in the calculation of its thermal losses. In order to determine the major source of the thermal losses of the furnace we have established the heat balance of the furnace. The energy consumed, the useful energy and the thermal losses through the walls and the chimney of the furnace are calculated thanks to the experimental measurements which we realized for several firings. The results show that the energy consumption of this type of furnace is very high and that the main source of energy loss is mainly due to the heat losses of the combustion gases that escape from the furnace by the chimney while the losses through the walls are relatively small. it have opted for energy recovery as a solution where we can recover some of the heat lost through the use of a heat exchanger system using a double tube introduced into the flue gas exhaust stack compartment. The study on the heat recovery system is presented and the heat balance inside the exchanger is established. In this paper we also present the numerical modeling of heat transfer by conduction through the walls of the furnace. A numerical model has been established based on the finite volume method and the double scan method. It makes it possible to determine the temperature profile of the furnace and thus to calculate the thermal losses of its walls and to deduce the thermal losses due to the combustion gases. Validation of the model is done using the experimental measurements carried out on the furnace. The results obtained in this work, relating to the energy consumed during the operation of the furnace are important and are part of the energy efficiency framework that has become a key element in global energy policies. It is the fastest and cheapest way to solve energy, environmental and economic security problems.

Keywords: energy cunsumption, energy recovery, modeling, energy eficiency

Procedia PDF Downloads 73
28523 Towards the Rapid Synthesis of High-Quality Monolayer Continuous Film of Graphene on High Surface Free Energy Existing Plasma Modified Cu Foil

Authors: Maddumage Don Sandeepa Lakshad Wimalananda, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Graphene is an extraordinary 2D material that shows superior electrical, optical, and mechanical properties for the applications such as transparent contacts. Further, chemical vapor deposition (CVD) technique facilitates to synthesizing of large-area graphene, including transferability. The abstract is describing the use of high surface free energy (SFE) and nano-scale high-density surface kinks (rough) existing Cu foil for CVD graphene growth, which is an opposite approach to modern use of catalytic surfaces for high-quality graphene growth, but the controllable rough morphological nature opens new era to fast synthesis (less than the 50s with a short annealing process) of graphene as a continuous film over conventional longer process (30 min growth). The experiments were shown that high SFE condition and surface kinks on Cu(100) crystal plane existing Cu catalytic surface facilitated to synthesize graphene with high monolayer and continuous nature because it can influence the adsorption of C species with high concentration and which can be facilitated by faster nucleation and growth of graphene. The fast nucleation and growth are lowering the diffusion of C atoms to Cu-graphene interface, which is resulting in no or negligible formation of bilayer patches. High energy (500W) Ar plasma treatment (inductively Coupled plasma) was facilitated to form rough and high SFE existing (54.92 mJm-2) Cu foil. This surface was used to grow the graphene by using CVD technique at 1000C for 50s. The introduced kink-like high SFE existing point on Cu(100) crystal plane facilitated to faster nucleation of graphene with a high monolayer ratio (I2D/IG is 2.42) compared to another different kind of smooth morphological and low SFE existing Cu surfaces such as Smoother surface, which is prepared by the redeposit of Cu evaporating atoms during the annealing (RRMS is 13.3nm). Even high SFE condition was favorable to synthesize graphene with monolayer and continuous nature; It fails to maintain clean (surface contains amorphous C clusters) and defect-free condition (ID/IG is 0.46) because of high SFE of Cu foil at the graphene growth stage. A post annealing process was used to heal and overcome previously mentioned problems. Different CVD atmospheres such as CH4 and H2 were used, and it was observed that there is a negligible change in graphene nature (number of layers and continuous condition) but it was observed that there is a significant difference in graphene quality because the ID/IG ratio of the graphene was reduced to 0.21 after the post-annealing with H2 gas. Addition to the change of graphene defectiveness the FE-SEM images show there was a reduction of C cluster contamination of the surface. High SFE conditions are favorable to form graphene as a monolayer and continuous film, but it fails to provide defect-free graphene. Further, plasma modified high SFE existing surface can be used to synthesize graphene within 50s, and a post annealing process can be used to reduce the defectiveness.

Keywords: chemical vapor deposition, graphene, morphology, plasma, surface free energy

Procedia PDF Downloads 244
28522 Valorization of the Algerian Plaster and Dune Sand in the Building Sector

Authors: S. Dorbani, F. Kharchi, F. Salem, K. Arroudj, N. Chioukh

Abstract:

The need for thermal comfort of buildings, with the aim of saving energy, has always generated a big interest during the development of methods, to improve the mode of construction. In the present paper, which is concerned by the valorization of locally abundant materials, mixtures of plaster and dune sand have been studied. To point out the thermal performances of these mixtures, a comparative study has been established between this product and the two materials most commonly used in construction, the concrete and hollow brick. The results showed that optimal mixture is made with 1/3 plaster and 2/3 dune sand. This mortar achieved significant increases in the mechanical strengths, which allow it to be used as a carrier element for buildings, of up to two levels. The element obtained offers an acceptable thermal insulation, with a decrease the outer-wall construction thickness.

Keywords: local materials, mortar, plaster, dune sand, compaction, mechanical performance, thermal performance

Procedia PDF Downloads 483
28521 Survey on Energy Efficient Routing Protocols in Mobile Ad-Hoc Networks

Authors: Swapnil Singh, Sanjoy Das

Abstract:

Mobile Ad-Hoc Network (MANET) is infrastructure less networks dynamically formed by autonomous system of mobile nodes that are connected via wireless links. Mobile nodes communicate with each other on the fly. In this network each node also acts as a router. The battery power and the bandwidth are very scarce resources in this network. The network lifetime and connectivity of nodes depends on battery power. Therefore, energy is a valuable constraint which should be efficiently used. In this paper, we survey various energy efficient routing protocol. The energy efficient routing protocols are classified on the basis of approaches they use to minimize the energy consumption. The purpose of this paper is to facilitate the research work and combine the existing solution and to develop a more energy efficient routing mechanism.

Keywords: delaunay triangulation, deployment, energy efficiency, MANET

Procedia PDF Downloads 615
28520 Performance Analysis of Solar Assisted Air Condition Using Carbon Dioxide as Refrigerant

Authors: Olusola Bamisile, Ferdinard Dika, Mustafa Dagbasi, Serkan Abbasoglu

Abstract:

The aim of this study was to model an air conditioning system that brings about effective cooling and reduce fossil fuel consumption with solar energy as an alternative source of energy. The objective of the study is to design a system with high COP, low usage of electricity and to integrate solar energy into AC systems. A hybrid solar assisted air conditioning system is designed to produce 30kW cooling capacity and R744 (CO₂) is used as a refrigerant. The effect of discharge pressure on the performance of the system is studied. The subcool temperature, evaporating temperature (5°C) and suction gas return temperature (12°C) are kept constant for the four different discharge pressures considered. The cooling gas temperature is set at 25°C, and the discharge pressure includes 80, 85, 90 and 95 bars. Copeland Scroll software is used for the simulation. A pressure-enthalpy graph is also used to deduce each enthalpy point while numerical methods were used in making other calculations. From the result of the study, it is observed that a higher COP is achieved with the use of solar assisted systems. As much as 46% of electricity requirements will be save using solar input at compressor stage.

Keywords: air conditioning, solar energy, performance, energy saving

Procedia PDF Downloads 146
28519 Enhancing Anode Performance in Li-S Batteries via Coating with Waste Battery-Derived Materials

Authors: Mohsen Hajian Foroushani, Samane Maroufi, Rasoul Khayyam Nekouei, Veena Sahajwalla

Abstract:

Lithium (Li) metal possesses outstanding characteristics, with the highest specific capacity (3860 mAh g-1) and the lowest electrochemical potential (-3.04 V vs. SHE) among available metal anodes. The collaborative impact of Li and sulfur, featuring a specific capacity of 1670 mAh g-1, positions Li–S batteries (LSBs) as highly promising contenders for the next generation of high-energy-density batteries. However, the comprehensive commercialization of LSBs relies on addressing various challenges inherent to these batteries. One of the most formidable hurdles is the widespread issue of Li dendrite nucleation and growth on the anode surface, stemming from the inherent instability of the solid electrolyte interphase (SEI) layer. In this study, we employed a Zn-based coating derived from waste materials, significantly enhancing the performance of the symmetrical cell across various current densities. The applied coating not only improved the cyclability of the cell by more than fourfold but also reduced the charge transfer resistance from over 300 to less than 10 before cycling. Examination through SEM micrographs of both samples revealed the successful suppression of Li dendrites by the applied coating.

Keywords: Li-S batteries, Li dendrite, sustainability, Li anode

Procedia PDF Downloads 73
28518 Thermal Analysis and Experimental Procedure of Integrated Phase Change Material in a Storage Tank

Authors: Chargui Ridha, Agrebi Sameh

Abstract:

The integration of phase change materials (PCM) for the storage of thermal energy during the period of sunshine before being released during the night is a complement of free energy to improve the system formed by a solar collector, tank storage, and a heat exchanger. This paper is dedicated to the design of a thermal storage tank based on a PCM-based heat exchanger. The work is divided into two parts: an experimental part using paraffin as PCM was carried out within the Laboratory of Thermal Processes of Borj Cedria in order to improve the performance of the system formed by the coupling of a flat solar collector and a thermal storage tank and to subsequently determine the influence of PCM on the whole system. This phase is based on the measurement instrumentation, namely, a differential scanning calorimeter (DSC) and the thermal analyzer (hot disk: HOT DISK) in order to determine the physical properties of the paraffin (PCM), which has been chosen. The second phase involves the detailed design of the PCM heat exchanger, which is incorporated into a thermal storage tank and coupled with a solar air collector installed at the Research and Technology Centre of Energy (CRTEn). A numerical part based on the TRANSYS and Fluent software, as well as the finite volume method, was carried out for the storage reservoir systems in order to determine the temperature distribution in each chosen system.

Keywords: phase change materials, storage tank, heat exchanger, flat plate collector

Procedia PDF Downloads 94
28517 A Review of Energy in the Democratic Republic of Congo

Authors: Kanzumba Kusakana

Abstract:

The Democratic Republic of Congo (DRC) is currently experiencing a general energy crisis due to lack of proper investment and management in the energy sector. 93, 6% of the country is highly dependent on wood fuels as main source of energy having severe impacts such as deforestation and general degradation of the environment. On the other hand, the major share of the electricity produced mainly from ill-conditioned hydro and thermal power stations is principally used to supply the industrial sector as well as very few urban areas. Nevertheless, DRC possesses huge potential in renewable resources such as hydropower, biomass, methane gas, solar geothermal and moderate wind potential that can be used for energy generation. Recently the country has initiated projects to build decentralized micro hydropower station to supply remotes and isolated areas; to rehabilitate its existent main hydropower plants and transmission lines as well as to extend its current generation capacity by building new hydropower stations able to respond to a major part of the African continent energy needs. This paper presents a comprehensive review of current energy resources as well as of the electricity situation in DRC. Recent energy projects, the energy policy as well as the energy challenges in the DRC are also presented.

Keywords: energy, biomass, hydro power, renewable energy, energy policy, Democratic Republic of Congo

Procedia PDF Downloads 337
28516 Sectoral Energy Consumption in South Africa and Its Implication for Economic Growth

Authors: Kehinde Damilola Ilesanmi, Dev Datt Tewari

Abstract:

South Africa is in its post-industrial era moving from the primary and secondary sector to the tertiary sector. The study investigated the impact of the disaggregated energy consumption (coal, oil, and electricity) on the primary, secondary and tertiary sectors of the economy between 1980 and 2012 in South Africa. Using vector error correction model, it was established that South Africa is an energy dependent economy, and that energy (especially electricity and oil) is a limiting factor of growth. This implies that implementation of energy conservation policies may hamper economic growth. Output growth is significantly outpacing energy supply, which has necessitated load shedding. To meet up the excess energy demand, there is a need to increase the generating capacity which will necessitate increased investment in the electricity sector as well as strategic steps to increase oil production. There is also need to explore more renewable energy sources, in order to meet the growing energy demand without compromising growth and environmental sustainability. Policy makers should also pursue energy efficiency policies especially at sectoral level of the economy.

Keywords: causality, economic growth, energy consumption, hypothesis, sectoral output

Procedia PDF Downloads 470
28515 Comparative Fracture Parameters of Khaya ivorensis and Magnolia obovata: Outlooks for the Development of Sustainable Mobility Materials

Authors: Riccardo Houngbegnon, Loic Chrislin Nguedjio, Valery Doko, José Xavier, Miran Merhar, Rostand Moutou Pitti

Abstract:

Against a backdrop of heightened awareness of environmental impact and the reduction of space debris, the use of sustainable materials for mobility applications is emerging as a promising solution to minimize the environmental footprint of our technologies. Among recent innovative developments in the use of wood, the Japanese species Magnolia obovata attracted particular interest when it was used in the design of the first wooden satellite launched in November 2024. The aim of this project is to explore new species that could replace M. obovata in a mobile context. Khaya ivorensis, a tropical African species, was selected and compared to M. obovata in terms of resistance to cracking, a key criterion in the durability of mobility infrastructures. Prior to the cracking tests, K. ivorensis and M. obovata were characterized to determine their basic mechanical properties. The results presented here relate to this characterization phase, in particular the four-point bending, compression and BING tests, which provided us with strengths and moduli. These results were compared with those found in the literature, which allowed us to observe a number of differences. CHARPY resilience tests were also performed and compare to critical energy release rate in order to estimate the ability of the two species to absorb energy, particularly following impacts and various shocks.

Keywords: energy release rate, Khaya ivorensis, magnolia obovata, wood for mobility

Procedia PDF Downloads 3
28514 Designing of Nano-materials for Waste Heat Conversion into Electrical Energy Thermoelectric generator

Authors: Wiqar Hussain Shah

Abstract:

The electrical and thermal properties of the doped Tellurium Telluride (Tl10Te6) chalcogenide nano-particles are mainly characterized by a competition between metallic (hole doped concentration) and semi-conducting state. We have studied the effects of Sn doping on the electrical and thermoelectric properties of Tl10-xSnxTe6 (1.00 ≤x≤ 2.00), nano-particles, prepared by solid state reactions in sealed silica tubes and ball milling method. Structurally, all these compounds were found to be phase pure as confirmed by the x-rays diffractometery (XRD) and energy dispersive X-ray spectroscopy (EDS) analysis. Additionally crystal structure data were used to model the data and support the findings. The particles size was calculated from the XRD data by Scherrer’s formula. The EDS was used for an elemental analysis of the sample and declares the percentage of elements present in the system. The thermo-power or Seebeck co-efficient (S) was measured for all these compounds which show that S increases with increasing temperature from 295 to 550 K. The Seebeck coefficient is positive for the whole temperature range, showing p-type semiconductor characteristics. The electrical conductivity was investigated by four probe resistivity techniques revealed that the electrical conductivity decreases with increasing temperature, and also simultaneously with increasing Sn concentration. While for Seebeck coefficient the trend is opposite which is increases with increasing temperature. These increasing behavior of Seebeck coefficient leads to high power factor which are increases with increasing temperature and Sn concentration except For Tl8Sn2Te6 because of lowest electrical conductivity but its power factor increases well with increasing temperature.

Keywords: Sn doping in Tellurium Telluride nano-materials, electron holes competition, Seebeck co-efficient, effects of Sn doping on Electrical conductivity, effects on Power factor

Procedia PDF Downloads 44
28513 Fabrication of Porous Materials for the Removal of Lead from Waste Water

Authors: Marcia Silva, Jayme Kolarik, Brennon Garthwait, William Lee, Hai-Feng Zhang

Abstract:

Adsorption of lead by a natural porous material was studied to establish a baseline for the removal of heavy metals from drinking and waste water. Samples were examined under different conditions such as solution pH, solution concentration, solution temperature, and exposure time. New materials with potentially enhanced adsorption properties were developed by functionalizing the surface of the natural porous material to fabricate graphene based coated and sulfide based treated porous material. The functionalized materials were characterized with Fourier Transform Infrared Spectroscopy (FTIR), Raman, Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) techniques. Solution pH effect on removal efficiency has been investigated in acidic (pH = 4), neutral (pH = 6) and basic (pH = 10) pH levels. All adsorbent materials showed highest adsorption capacities at neutral pH levels. Batch experiment was employed to assess the efficacy for the removal of lead with the sorption kinetics and the adsorption isotherms being determined for the natural and treated porous materials. The addition of graphene-based and sulfide-based materials increased the lead removal capacity of the natural clean porous material. Theoretical calculations confirmed pseudo-second order model as kinetic mechanism for lead adsorption for all adsorbents.

Keywords: heavy metals, ion exchange, adsorption, water remediation

Procedia PDF Downloads 249
28512 Environment Saving and Efficiency of Diesel Heat-Insulated Combustion Chamber Using Semitransparent Ceramic Coatings

Authors: Victoria Yu. Garnova, Vladimir G. Merzlikin, Sergey V. Khudyakov, Valeriy A. Tovstonog, Svyatoslav V. Cheranev

Abstract:

Long-term scientific forecasts confirm that diesel engines still will be the basis of the transport and stationary power in the near future. This is explained by their high efficiency and profitability compared to other types of heat engines. In the automotive industry carried basic researches are aimed at creating a new generation of diesel engines with reduced exhaust emissions (with stable performance) determining the minimum impact on the environment. The application of thermal barrier coatings (TBCs) and especially their modifications based on semitransparent ceramic materials allows solving this problem. For such researches, the preliminary stage of testing of physical characteristics materials and coatings especially with semitransparent properties the authors proposed experimental operating innovative radiative-and-convective cycling simulator. This setup contains original radiation sources (imitator) with tunable spectrum for modeling integral flux up to several MW/m2.

Keywords: environment saving, radiative and convective cycling simulator, semitransparent ceramic coatings, imitator radiant energy

Procedia PDF Downloads 267
28511 A Study of Carbon Emissions during Building Construction

Authors: Jonggeon Lee, Sungho Tae, Sungjoon Suk, Keunhyeok Yang, George Ford, Michael E. Smith, Omidreza Shoghli

Abstract:

In recent years, research to reduce carbon emissions through quantitative assessment of building life cycle carbon emissions has been performed as it relates to the construction industry. However, most research efforts related to building carbon emissions assessment have been focused on evaluation during the operational phase of a building’s life span. Few comprehensive studies of the carbon emissions during a building’s construction phase have been performed. The purpose of this study is to propose an assessment method that quantitatively evaluates the carbon emissions of buildings during the construction phase. The study analysed the amount of carbon emissions produced by 17 construction trades, and selected four construction trades that result in high levels of carbon emissions: reinforced concrete work; sheathing work; foundation work; and form work. Building materials, and construction and transport equipment used for the selected construction trades were identified, and carbon emissions produced by the identified materials and equipment were calculated for these four construction trades. The energy consumption of construction and transport equipment was calculated by analysing fuel efficiency and equipment productivity rates. The combination of the expected levels of carbon emissions associated with the utilization of building materials and construction equipment provides means for estimating the quantity of carbon emissions related to the construction phase of a building’s life cycle. The proposed carbon emissions assessment method was validated by case studies.

Keywords: building construction phase, carbon emissions assessment, building life cycle

Procedia PDF Downloads 751
28510 The Role of Building Services in Energy Conservation into Residential Buildings

Authors: Osama Ahmed Ibrahim Masoud, Mohamed Ibrahim Mohamed Abdelhadi, Ahmed Mohamed Seddik Hassan

Abstract:

The problem of study focuses on thermal comfort realization in a residential building during hot and dry climate periods consumes a major electrical energy for air conditioning operation. Thermal comfort realization in a residential building during such climate becomes more difficult regarding the phenomena of climate change, and the use of building and construction materials which have the feature of heat conduction as (bricks-reinforced concrete) and the global energy crises. For that, this study aims to how to realize internal thermal comfort through how to make the best use of building services (temporarily used service spaces) for reducing the electrical energy transfer and saving self-shading. In addition, the possibility of reduction traditional energy (fossil fuel) consumed in cooling through the use of building services for reducing the internal thermal comfort and the relationship between them. This study is based on measuring the consumed electrical energy rate in cooling (by using Design-Builder program) for a residential building (the place of study is: Egypt- Suez Canal- Suez City), this design model has lots of alternatives designs for the place of building services (center of building- the eastern front- southeastern front- the southern front- the south-west front, the western front). The building services are placed on the fronts with different rates for determining the best rate on fronts which realizes thermal comfort with the lowest of energy consumption used in cooling. Findings of the study indicate to that the best position for building services is on the west front then the south-west front, and the more the building services increase, the more energy consumption used in cooling of residential building decreases. Recommendations indicate to the need to study the building services positions in the new projects progress to select the best alternatives to realize ‘Energy conservation’ used in cooling or heating into the buildings in general, residential buildings particularly.

Keywords: residential buildings, energy conservation, thermal comfort, building services, temporary used service spaces, DesignBuilder

Procedia PDF Downloads 294
28509 The Introduction of the Revolution Einstein’s Relative Energy Equations in Even 2n and Odd 3n Light Dimension Energy States Systems

Authors: Jiradeach Kalayaruan, Tosawat Seetawan

Abstract:

This paper studied the energy of the nature systems by looking at the overall image throughout the universe. The energy of the nature systems was developed from the Einstein’s energy equation. The researcher used the new ideas called even 2n and odd 3n light dimension energy states systems, which were developed from Einstein’s relativity energy theory equation. In this study, the major methodology the researchers used was the basic principle ideas or beliefs of some religions such as Buddhism, Christianity, Hinduism, Islam, or Tao in order to get new discoveries. The basic beliefs of each religion - Nivara, God, Ether, Atman, and Tao respectively, were great influential ideas on the researchers to use them greatly in the study to form new ideas from philosophy. Since the philosophy of each religion was alive with deep insight of the physical nature relative energy, it connected the basic beliefs to light dimension energy states systems. Unfortunately, Einstein’s original relative energy equation showed only even 2n light dimension energy states systems (if n = 1,…,∞). But in advance ideas, the researchers multiplied light dimension energy by Einstein’s original relative energy equation and get new idea of theoritical physics in odd 3n light dimension energy states systems (if n = 1,…,∞). Because from basic principle ideas or beliefs of some religions philosophy of each religion, you had to add the media light dimension energy into Einstein’s original relative energy equation. Consequently, the simple meaning picture in deep insight showed that you could touch light dimension energy of Nivara, God, Ether, Atman, and Tao by light dimension energy. Since light dimension energy was transferred by Nivara, God, Ether, Atman and Tao, the researchers got the new equation of odd 3n light dimension energy states systems. Moreover, the researchers expected to be able to solve overview problems of all light dimension energy in all nature relative energy, which are developed from Eistein’s relative energy equation.The finding of the study was called 'super nature relative energy' ( in odd 3n light dimension energy states systems (if n = 1,…,∞)). From the new ideas above you could do the summation of even 2n and odd 3n light dimension energy states systems in all of nature light dimension energy states systems. In the future time, the researchers will expect the new idea to be used in insight theoretical physics, which is very useful to the development of quantum mechanics, all engineering, medical profession, transportation, communication, scientific inventions, and technology, etc.

Keywords: 2n light dimension energy states systems effect, Ether, even 2n light dimension energy states systems, nature relativity, Nivara, odd 3n light dimension energy states systems, perturbation points energy, relax point energy states systems, stress perturbation energy states systems effect, super relative energy

Procedia PDF Downloads 345
28508 A Unification and Relativistic Correction for Boltzmann’s Law

Authors: Lloyd G. Allred

Abstract:

The distribution of velocities of particles in plasma is a well understood discipline of plasma physics. Boltzmann’s law and the Maxwell-Boltzmann distribution describe the distribution of velocity of a particle in plasma as a function of mass and temperature. Particles with the same mass tend to have the same velocity. By expressing the same law in terms of energy alone, the author obtains a distribution independent of mass. In summary, for particles in plasma, the energies tend to equalize, independent of the masses of the individual particles. For high-energy plasma, the original law predicts velocities greater than the speed of light. If one uses Einstein’s formula for energy (E=mc2), then a relativistic correction is not required.

Keywords: cosmology, EMP, plasma physics, relativity

Procedia PDF Downloads 219
28507 Biochemical Approach to Renewable Energy: Enhancing Students' Perception and Understanding of Science of Energy through Integrated Hands-On Laboratory

Authors: Samina Yasmin, Anzar Khaliq, Zareen Tabassum

Abstract:

Acute power shortage in Pakistan requires an urgent attention to take preliminary steps to spread energy awareness at all levels. One such initiative is taken at Habib University (HU), Pakistan, through renewable energy course, one of the core offerings, where students are trained to investigate various aspects of renewable energy concepts. The course is offered to all freshmen enrolled at HU regardless of their academic backgrounds and degree programs. A four-credit modular course includes both theory and laboratory elements. Hands-on laboratories play an important role in science classes, particularly to enhance the motivation and deep understanding of energy science. A set of selected hands-on activities included in course introduced students to explore the latest developments in the field of renewable energy such as dye-sensitized solar cells, gas chromatography, global warming, climate change, fuel cell energy and power of biomass etc. These projects not only helped HU freshmen to build on energy fundamentals but also provided them greater confidence in investigating, questioning and experimenting with renewable energy related conceptions. A feedback survey arranged during and end of term revealed the effectiveness of the hands-on laboratory to enhance the common understanding of real world problems related to energy such as awareness of energy saving, the level of concern about global climate change, environmental pollution and science of energy behind the energy usage.

Keywords: biochemical approaches, energy curriculum, hands-on laboratory, renewable energy

Procedia PDF Downloads 256
28506 Obtaining High Purity Hydroxyapatite from Bovine Bone: Effect of Chemical and Thermal Treatments

Authors: Hernandez Pardo Diego F., Guiza Arguello Viviana R., Coy Echeverria Ana, Viejo Abrante Fernando

Abstract:

The biological hydroxyapatite obtained from bovine bone arouses great interest in its application as a material for bone regeneration due to its better bioactive behavior in comparison with synthetic hydroxyapatite. For this reason, the objective of the present investigation was to determine the effect of chemical and thermal treatments in obtaining biological bovine hydroxyapatite of high purity and crystallinity. Two different chemical reagents were evaluated (NaOH and HCl) with the aim to remove the organic matrix of the bovine cortical bone. On the other hand, for analyzing the effect of thermal treatment temperature was ranged between 500 and 1000°C for a holding time of 4 hours. To accomplish the above, the materials before and after the chemical and thermal treatments were characterized by elemental compositional analysis (CHN), infrared spectroscopy by Fourier transform (FTIR), RAMAN spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and energy dispersion X-ray spectroscopy (EDS). The results allowed to establish that NaOH is more effective in the removal of the organic matrix of the bone when compared to HCl, whereas a thermal treatment at 700ºC for 4 hours was enough to obtain biological hydroxyapatite of high purity and crystallinity.

Keywords: bovine bone, hydroxyapatite, biomaterials, thermal treatment

Procedia PDF Downloads 116
28505 Temperature Control and Thermal Management of Cylindrical Lithium Batteries Using Phase Change Materials (PCMs)

Authors: S. M. Sadrameli, Y. Azizi

Abstract:

Lithium-ion batteries (LIBs) have shown to be one of the most reliable energy storage systems for electric cars in the recent years. Ambient temperature has a significant impact on the performance, lifetime, safety and cost of such batteries. Increasing the temperature degrade the lithium batteries more quickly while working at low-temperature environment results reducing the power and energy capability of the system. A thermal management system has been designed and setup in laboratory scale for controlling the temperature at optimum conditions using PEG-1000 with the melting point in the range of 33-40 oC as a phase change material. Aluminum plates have been installed in the PCM to increase the thermal conductivity and increasing the heat transfer rate. Experimental tests have been run at different discharge rates and ambient temperatures to investigate the effects of temperature on the efficiency of the batteries. The comparison has been made between the system of 6 batteries with and without PCM and the results show that PCM with aluminum plates decrease the surface temperature of the batteries that would result better performance and longer lifetime of the batteries.

Keywords: lithium-ion batteries, phase change materials, thermal management, temperature control

Procedia PDF Downloads 341