Search results for: heat transfer model
19498 Computational Fluid Dynamics Simulations of Thermal and Flow Fields inside a Desktop Personal Computer Cabin
Authors: Mohammad Salehi, Mohammad Erfan Doraki
Abstract:
In this paper, airflow analysis inside a desktop computer case is performed by simulating computational fluid dynamics. The purpose is to investigate the cooling process of the central processing unit (CPU) with thermal capacities of 80 and 130 watts. The airflow inside the computer enclosure, selected from the microATX model, consists of the main components of heat production such as CPU, hard disk drive, CD drive, floppy drive, memory card and power supply unit; According to the amount of thermal power produced by the CPU with 80 and 130 watts of power, two different geometries have been used for a direct and radial heat sink. First, the independence of the computational mesh and the validation of the solution were performed, and after ensuring the correctness of the numerical solution, the results of the solution were analyzed. The simulation results showed that changes in CPU temperature and other components linearly increased with increasing CPU heat output. Also, the ambient air temperature has a significant effect on the maximum processor temperature.Keywords: computational fluid dynamics, CPU cooling, computer case simulation, heat sink
Procedia PDF Downloads 12219497 Mathematical Modelling of Biogas Dehumidification by Using of Counterflow Heat Exchanger
Authors: Staņislavs Gendelis, Andris Jakovičs, Jānis Ratnieks, Aigars Laizāns, Dāvids Vardanjans
Abstract:
Dehumidification of biogas at the biomass plants is very important to provide the energy efficient burning of biomethane at the outlet. A few methods are widely used to reduce the water content in biogas, e.g. chiller/heat exchanger based cooling, usage of different adsorbents like PSA, or the combination of such approaches. A quite different method of biogas dehumidification is offered and analyzed in this paper. The main idea is to direct the flow of biogas from the plant around it downwards; thus, creating additional insulation layer. As the temperature in gas shell layer around the plant will decrease from ~ 38°C to 20°C in the summer or even to 0°C in the winter, condensation of water vapor occurs. The water from the bottom of the gas shell can be collected and drain away. In addition, another upward shell layer is created after the condensate drainage place on the outer side to further reducing heat losses. Thus, counterflow biogas heat exchanger is created around the biogas plant. This research work deals with the numerical modelling of biogas flow, taking into account heat exchange and condensation on cold surfaces. Different kinds of boundary conditions (air and ground temperatures in summer/winter) and various physical properties of constructions (insulation between layers, wall thickness) are included in the model to make it more general and useful for different biogas flow conditions. The complexity of this problem is fact, that the temperatures in both channels are conjugated in case of low thermal resistance between layers. MATLAB programming language is used for multiphysical model development, numerical calculations and result visualization. Experimental installation of a biogas plant’s vertical wall with an additional 2 layers of polycarbonate sheets with the controlled gas flow was set up to verify the modelling results. Gas flow at inlet/outlet, temperatures between the layers and humidity were controlled and measured during a number of experiments. Good correlation with modelling results for vertical wall section allows using of developed numerical model for an estimation of parameters for the whole biogas dehumidification system. Numerical modelling of biogas counterflow heat exchanger system placed on the plant’s wall for various cases allows optimizing of thickness for gas layers and insulation layer to ensure necessary dehumidification of the gas under different climatic conditions. Modelling of system’s defined configuration with known conditions helps to predict the temperature and humidity content of the biogas at the outlet.Keywords: biogas dehumidification, numerical modelling, condensation, biogas plant experimental model
Procedia PDF Downloads 54919496 Integration of Two Thermodynamic Cycles by Absorption for Simultaneous Production of Fresh Water and Cooling
Authors: Javier Delgado-Gonzaga, Wilfrido Rivera, David Juárez-Romero
Abstract:
Cooling and water purification are processes that have contributed to the economic and social development of the modern world. However, these processes require a significant amount of energy globally. Nowadays, absorption heat pumps have been studied with great interest since they are capable of producing cooling and/or purifying water from low-temperature energy sources such as industrial waste heat or renewable energy. In addition, absorption heat pumps require negligible amounts of electricity for their operation and generally use working fluids that do not represent a risk to the environment. The objective of this work is to evaluate a system that integrates an absorption heat transformer and an absorption cooling system to produce fresh water and cooling from a low-temperature heat source. Both cycles operate with the working pair LiBr-H2O. The integration is possible through the interaction of the LiBr-H2O solution streams between both cycles and also by recycling heat from the absorption heat transformer to the absorption cooling system. Mathematical models were developed to compare the performance of four different configurations. The results showed that the configuration in which the hottest streams of LiBr-H2O solution preheated the coldest streams in the economizers of both cycles was one that achieved the best performance. The interaction of the solution currents and the heat recycling analyzed in this work serves as a record of the possibilities of integration between absorption cycles for cogeneration.Keywords: absorption heat transformer, absorption cooling system, water desalination, integrated system
Procedia PDF Downloads 7819495 Design, Spectroscopic, Structural Characterization, and Biological Studies for New Complexes via Charge Transfer Interaction of Ciprofloxacin Drug With π Acceptors
Authors: Khaled Alshammari
Abstract:
Ciprofloxacin (CIP) is a common antibiotic drug used as a strudy electron donor that interacts with dynamic π -acceptors such as 2,3-dinitrosalsylic acid (HDNS) and Tetracyanoethylene (TCNE) for synthesizing a new model of charge transfer (CT) complexes. The synthesized complexes were identified using diverse analytical methods such as UV–vis spectra, photometric titration measurements, FT-IR, HNMR Spectroscopy, and thermogravimetric analysis techniques (TGA/DTA). The stoichiometries for all the formed complexes were found to be a 1:1 M ratio between the reactants. The characteristic spectroscopic properties such as transition dipole moment (µ), oscillator strength (f), formation constant (KCT), ionization potential (ID), standard free energy (∆G), and energy of interaction (ECT) for the CT-complexes were collected. The developed CT complexes were tested for their toxicity on main organs, antimicrobial activity, antioxidant activity, and biofilm formation.Keywords: biological, biofilm, toxicity, thermal analysis, charge transfer, spectroscopy
Procedia PDF Downloads 5719494 Computational Fluid Dynamics Simulation of Gas-Liquid Phase Stirred Tank
Authors: Thiyam Tamphasana Devi, Bimlesh Kumar
Abstract:
A Computational Fluid Dynamics (CFD) technique has been applied to simulate the gas-liquid phase in double stirred tank of Rushton impeller. Eulerian-Eulerian model was adopted to simulate the multiphase with standard correlation of Schiller and Naumann for drag co-efficient. The turbulence was modeled by using standard k-ε turbulence model. The present CFD model predicts flow pattern, local gas hold-up, and local specific area. It also predicts local kLa (mass transfer rate) for single impeller. The predicted results were compared with experimental and CFD results of published literature. The predicted results are slightly over predicted with the experimental results; however, it is in reasonable agreement with other simulated results of published literature.Keywords: Eulerian-Eulerian, gas-hold up, gas-liquid phase, local mass transfer rate, local specific area, Rushton Impeller
Procedia PDF Downloads 23419493 Experimental Analysis of Electrical Energy Producing Using the Waste Heat of Exhaust Gas by the Help of Thermoelectric Generator
Authors: Dilek Ozlem Esen, Mesut Kaya
Abstract:
The focus of this study is to analyse the results of heat recovery from exhaust gas which is produced by an internal combustion engine (ICE). To obtain a small amount of energy, an exhaust system which is suitable for recovery waste heat has been constructed. Totally 27 TEGs have been used to convert from the heat to electric energy. By producing a small amount of this energy by the help of thermoelectric generators can reduce engine loads thus decreasing pollutant emissions, fuel consumption, and CO2. This case study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. As a result of this study, 0,45 A averaged current rate, 13,02 V averaged voltage rate and 5,8 W averaged electrical energy have been produced in a five hours operation time.Keywords: thermoelectric, peltier, thermoelectric generator (TEG), exhaust, cogeneration
Procedia PDF Downloads 65419492 Performance Assessment of Carbon Nano Tube Based Cutting Fluid in Machining Process
Authors: Alluru Gopala Krishna, Thella Babu Rao
Abstract:
In machining, there is always a problem with heat generation and friction produced during the process as they consequently affect tool wear and surface finish. An instant heat transfer mechanism could protect the cutting tool edge and enhance the tool life by cooling the cutting edge of the tool. In the present work, carbon nanotube (CNT) based nano-cutting fluid is proposed for machining a hard-to-cut material. Tool wear and surface roughness are considered for the evaluation of the nano-cutting fluid in turning process. The performance of nanocoolant is assessed against the conventional coolant and dry machining conditions and it is observed that the proposed nanocoolant has produced better performance than the conventional coolant.Keywords: CNT based nano cutting fluid, tool wear, turning, surface roughness
Procedia PDF Downloads 26319491 Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient
Authors: Anjanna Matta, P. A. L. Narayana
Abstract:
An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleight number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect.Keywords: linear stability analysis, heat source, porous medium, mass flow
Procedia PDF Downloads 72119490 Convective Boiling of CO₂/R744 in Macro and Micro-Channels
Authors: Adonis Menezes, J. C. Passos
Abstract:
The current panorama of technology in heat transfer and the scarcity of information about the convective boiling of CO₂ and hydrocarbon in small diameter channels motivated the development of this work. Among non-halogenated refrigerants, CO₂/ R744 has distinct thermodynamic properties compared to other fluids. The R744 presents significant differences in operating pressures and temperatures, operating at higher values compared to other refrigerants, and this represents a challenge for the design of new evaporators, as the original systems must normally be resized to meet the specific characteristics of the R744, which creates the need for a new design and optimization criteria. To carry out the convective boiling tests of CO₂, an experimental apparatus capable of storing (m= 10kg) of saturated CO₂ at (T = -30 ° C) in an accumulator tank was used, later this fluid was pumped using a positive displacement pump with three pistons, and the outlet pressure was controlled and could reach up to (P = 110bar). This high-pressure saturated fluid passed through a Coriolis type flow meter, and the mass velocities varied between (G = 20 kg/m².s) up to (G = 1000 kg/m².s). After that, the fluid was sent to the first test section of circular cross-section in diameter (D = 4.57mm), where the inlet and outlet temperatures and pressures, were controlled and the heating was promoted by the Joule effect using a source of direct current with a maximum heat flow of (q = 100 kW/m²). The second test section used a cross-section with multi-channels (seven parallel channels) with a square cross-section of (D = 2mm) each; this second test section has also control of temperature and pressure at the inlet and outlet as well as for heating a direct current source was used, with a maximum heat flow of (q = 20 kW/m²). The fluid in a biphasic situation was directed to a parallel plate heat exchanger so that it returns to the liquid state, thus being able to return to the accumulator tank, continuing the cycle. The multi-channel test section has a viewing section; a high-speed CMOS camera was used for image acquisition, where it was possible to view the flow patterns. The experiments carried out and presented in this report were conducted in a rigorous manner, enabling the development of a database on the convective boiling of the R744 in macro and micro channels. The analysis prioritized the processes from the beginning of the convective boiling until the drying of the wall in a subcritical regime. The R744 resurfaces as an excellent alternative to chlorofluorocarbon refrigerants due to its negligible ODP (Ozone Depletion Potential) and GWP (Global Warming Potential) rates, among other advantages. The results found in the experimental tests were very promising for the use of CO₂ in micro-channels in convective boiling and served as a basis for determining the flow pattern map and correlation for determining the heat transfer coefficient in the convective boiling of CO₂.Keywords: convective boiling, CO₂/R744, macro-channels, micro-channels
Procedia PDF Downloads 14319489 Theoretical Evaluation of Minimum Superheat, Energy and Exergy in a High-Temperature Heat Pump System Operating with Low GWP Refrigerants
Authors: Adam Y. Sulaiman, Donal F. Cotter, Ming J. Huang, Neil J. Hewitt
Abstract:
Suitable low global warming potential (GWP) refrigerants that conform to F-gas regulations are required to extend the operational envelope of high-temperature heat pumps (HTHPs) used for industrial waste heat recovery processes. The thermophysical properties and characteristics of these working fluids need to be assessed to provide a comprehensive understanding of operational effectiveness in HTHP applications. This paper presents the results of a theoretical simulation to investigate a range of low-GWP refrigerants and their suitability to supersede refrigerants HFC-245fa and HFC-365mfc. A steady-state thermodynamic model of a single-stage HTHP with an internal heat exchanger (IHX) was developed to assess system cycle characteristics at temperature ranges between 50 to 80 °C heat source and 90 to 150 °C heat sink. A practical approach to maximize the operational efficiency was examined to determine the effects of regulating minimum superheat within the process and subsequent influence on energetic and exergetic efficiencies. A comprehensive map of minimum superheat across the HTHP operating variables were used to assess specific tipping points in performance at 30 and 70 K temperature lifts. Based on initial results, the refrigerants HCFO-1233zd(E) and HFO-1336mzz(Z) were found to be closely aligned matches for refrigerants HFC-245fa and HFC-365mfc. The overall results show effective performance for HCFO-1233zd(E) occurs between 5-7 K minimum superheat, and HFO-1336mzz(Z) between 18-21 K dependant on temperature lift. This work provides a method to optimize refrigerant selection based on operational indicators to maximize overall HTHPs system performance.Keywords: high-temperature heat pump, minimum superheat, energy & exergy efficiency, low GWP refrigerants
Procedia PDF Downloads 18319488 Fin Efficiency of Helical Fin with Fixed Fin Tip Temperature Boundary Condition
Authors: Richard G. Carranza, Juan Ospina
Abstract:
The fin efficiency for a helical fin with a fixed fin tip (or arbitrary) temperature boundary condition is presented. Firstly, the temperature profile throughout the fin is determined via an energy balance around the fin itself. Secondly, the fin efficiency is formulated by integrating across the entire surface of the helical fin. An analytical expression for the fin efficiency is presented and compared with the literature for accuracy.Keywords: efficiency, fin, heat, helical, transfer
Procedia PDF Downloads 68419487 Design of an Innovative Geothermal Heat Pump with a PCM Thermal Storage
Authors: Emanuele Bonamente, Andrea Aquino
Abstract:
This study presents an innovative design for geothermal heat pumps with the goal of maximizing the system efficiency (COP - Coefficient of Performance), reducing the soil use (e.g. length/depth of geothermal boreholes) and initial investment costs. Based on experimental data obtained from a two-year monitoring of a working prototype implemented for a commercial building in the city of Perugia, Italy, an upgrade of the system is proposed and the performance is evaluated via CFD simulations. The prototype was designed to include a thermal heat storage (i.e. water), positioned between the boreholes and the heat pump, acting as a flywheel. Results from the monitoring campaign show that the system is still capable of providing the required heating and cooling energy with a reduced geothermal installation (approx. 30% of the standard length). In this paper, an optimization of the system is proposed, re-designing the heat storage to include phase change materials (PCMs). Two stacks of PCMs, characterized by melting temperatures equal to those needed to maximize the system COP for heating and cooling, are disposed within the storage. During the working cycle, the latent heat of the PCMs is used to heat (cool) the water used by the heat pump while the boreholes independently cool (heat) the storage. The new storage is approximately 10 times smaller and can be easily placed close to the heat pump in the technical room. First, a validation of the CFD simulation of the storage is performed against experimental data. The simulation is then used to test possible alternatives of the original design and it is finally exploited to evaluate the PCM-storage performance for two different configurations (i.e. single- and double-loop systems).Keywords: geothermal heat pump, phase change materials (PCM), energy storage, renewable energies
Procedia PDF Downloads 31419486 Three Dimensional Computational Fluid Dynamics Simulation of Wall Condensation inside Inclined Tubes
Authors: Amirhosein Moonesi Shabestary, Eckhard Krepper, Dirk Lucas
Abstract:
The current PhD project comprises CFD-modeling and simulation of condensation and heat transfer inside horizontal pipes. Condensation plays an important role in emergency cooling systems of reactors. The emergency cooling system consists of inclined horizontal pipes which are immersed in a tank of subcooled water. In the case of an accident the water level in the core is decreasing, steam comes in the emergency pipes, and due to the subcooled water around the pipe, this steam will start to condense. These horizontal pipes act as a strong heat sink which is responsible for a quick depressurization of the reactor core when any accident happens. This project is defined in order to model all these processes which happening in the emergency cooling systems. The most focus of the project is on detection of different morphologies such as annular flow, stratified flow, slug flow and plug flow. This project is an ongoing project which has been started 1 year ago in Helmholtz Zentrum Dresden Rossendorf (HZDR), Fluid Dynamics department. In HZDR most in cooperation with ANSYS different models are developed for modeling multiphase flows. Inhomogeneous MUSIG model considers the bubble size distribution and is used for modeling small-scaled dispersed gas phase. AIAD (Algebraic Interfacial Area Density Model) is developed for detection of the local morphology and corresponding switch between them. The recent model is GENTOP combines both concepts. GENTOP is able to simulate co-existing large-scaled (continuous) and small-scaled (polydispersed) structures. All these models are validated for adiabatic cases without any phase change. Therefore, the start point of the current PhD project is using the available models and trying to integrate phase transition and wall condensing models into them. In order to simplify the idea of condensation inside horizontal tubes, 3 steps have been defined. The first step is the investigation of condensation inside a horizontal tube by considering only direct contact condensation (DCC) and neglect wall condensation. Therefore, the inlet of the pipe is considered to be annular flow. In this step, AIAD model is used in order to detect the interface. The second step is the extension of the model to consider wall condensation as well which is closer to the reality. In this step, the inlet is pure steam, and due to the wall condensation, a liquid film occurs near the wall which leads to annular flow. The last step will be modeling of different morphologies which are occurring inside the tube during the condensation via using GENTOP model. By using GENTOP, the dispersed phase is able to be considered and simulated. Finally, the results of the simulations will be validated by experimental data which will be available also in HZDR.Keywords: wall condensation, direct contact condensation, AIAD model, morphology detection
Procedia PDF Downloads 30419485 Thermo-Mechanical Behavior of Steel-Wood Connections of Wooden Structures Under the Effect of a Fire
Authors: Ahmed Alagha, Belkacem Lamri, Abdelhak Kada.
Abstract:
Steel-wood assemblies often have complex geometric configurations whose overall behavior under the effect of a fire is conditioned by the thermal response, by combining the two materials steel and wood, whose thermal characteristics are greatly influenced by high temperatures. The objective of this work is to study the thermal behavior of a steel-wood connection, with or without insulating material, subjected to an ISO834 standard fire model. The analysis is developed by the analytical approach using the Eurocode, and numerically, by the finite element method, through the ANSYS calculation code. The design of the connections is evaluated at room temperature taking the cases of single shear and double shear. The thermal behavior of the connections is simulated in transient state while taking into account the modes of heat transfer by convection and by radiation. The variation of temperature as a function of time is evaluated in different positions of the connections while talking about the heat produced and the formation of the carbon layer. The results relate to the temperature distributions in the connection elements as a function of the duration of the fire. The results of the thermal analysis show that the temperature increases rapidly and reaches more than 260 °C in the steel material for an hour of exposure to fire. The temperature development in wood material is different from that in steel because of its thermal properties. Wood heats up on the outside and burns, its surface can reach very high temperatures in points on the surface.Keywords: Eurocode 5, finite elements, ISO834, simple shear, thermal behaviour, wood-steel connection
Procedia PDF Downloads 8619484 Computational Fluid Dynamics Analysis of a Biomass Burner Gas Chamber in OpenFOAM
Authors: Óscar Alfonso Gómez Sepúlveda, Julián Ernesto Jaramillo, Diego Camilo Durán
Abstract:
The global climate crisis has affected different aspects of human life, and in an effort to reverse the effects generated, we seek to optimize and improve the equipment and plants that produce high emissions of CO₂, being possible to achieve this through numerical simulations. These equipments include biomass combustion chambers. The objective of this research is to visualize the thermal behavior of a gas chamber that is used in the process of obtaining vegetable extracts. The simulation is carried out with OpenFOAM taking into account the conservation of energy, turbulence, and radiation; for the purposes of the simulation, combustion is omitted and replaced by heat generation. Within the results, the streamlines generated by the primary and secondary flows are analyzed in order to visualize whether they generate the expected effect, and the energy is used to the maximum. The inclusion of radiation seeks to compare its influence and also simplify the computational times to perform mesh analysis. An analysis is carried out with simplified geometries and with experimental data to corroborate the selection of the models to be used, and it is obtained that for turbulence, the appropriate one is the standard k - w. As a means of verification, a general energy balance is made and compared with the results of the numerical analysis, where the error is 1.67%, which is considered acceptable. From the approach to improvement options, it was found that with the implementation of fins, heat can be increased by up to 7.3%.Keywords: CFD analysis, biomass, heat transfer, radiation, OpenFOAM
Procedia PDF Downloads 11819483 Prediction of Thermodynamic Properties of N-Heptane in the Critical Region
Authors: Sabrina Ladjama, Aicha Rizi, Azzedine Abbaci
Abstract:
In this work, we use the crossover model to formulate a comprehensive fundamental equation of state for the thermodynamic properties for several n-alkanes in the critical region that extends to the classical region. This equation of state is constructed on the basis of comparison of selected measurements of pressure-density-temperature data, isochoric and isobaric heat capacity. The model can be applied in a wide range of temperatures and densities around the critical point for n-heptane. It is found that the developed model represents most of the reliable experimental data accurately.Keywords: crossover model, critical region, fundamental equation, n-heptane
Procedia PDF Downloads 47519482 Latent Heat Storage Using Phase Change Materials
Authors: Debashree Ghosh, Preethi Sridhar, Shloka Atul Dhavle
Abstract:
The judicious and economic consumption of energy for sustainable growth and development is nowadays a thing of primary importance; Phase Change Materials (PCM) provide an ingenious option of storing energy in the form of Latent Heat. Energy storing mechanism incorporating phase change material increases the efficiency of the process by minimizing the difference between supply and demand; PCM heat exchangers are used to storing the heat or non-convectional energy within the PCM as the heat of fusion. The experimental study evaluates the effect of thermo-physical properties, variation in inlet temperature, and flow rate on charging period of a coiled heat exchanger. Secondly, a numerical study is performed on a PCM double pipe heat exchanger packed with two different PCMs, namely, RT50 and Fatty Acid, in the annular region. In this work, the simulation of charging of paraffin wax (RT50) using water as high-temperature fluid (HTF) is performed. Commercial software Ansys-Fluent 15 is used for simulation, and hence charging of PCM is studied. In the Enthalpy-porosity model, a single momentum equation is applicable to describe the motion of both solid and liquid phases. The details of the progress of phase change with time are presented through the contours of melt-fraction, temperature. The velocity contour is shown to describe the motion of the liquid phase. The experimental study revealed that paraffin wax melts with almost the same temperature variation at the two Intermediate positions. Fatty acid, on the other hand, melts faster owing to greater thermal conductivity and low melting temperature. It was also observed that an increase in flow rate leads to a reduction in the charging period. The numerical study also supports some of the observations found in the experimental study like the significant dependence of driving force on the process of melting. The numerical study also clarifies the melting pattern of the PCM, which cannot be observed in the experimental study.Keywords: latent heat storage, charging period, discharging period, coiled heat exchanger
Procedia PDF Downloads 11819481 A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor
Authors: D. Ramajo, S. Corzo, M. Nigro
Abstract:
A Multi-dimensional computational fluid dynamics (CFD) two-phase model was developed with the aim to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a commercial nuclear power plant (NPP). Due to the fact that this PHWR is a Reactor Pressure Vessel type (RPV), three-dimensional (3D) detailed modelling of the large reservoirs of the RPV (the upper and lower plenums and the downcomer) were coupled with an in-house finite volume one-dimensional (1D) code in order to model the 451 coolant channels housing the nuclear fuel. Regarding the 1D code, suitable empirical correlations for taking into account the in-channel distributed (friction losses) and concentrated (spacer grids, inlet and outlet throttles) pressure losses were used. A local power distribution at each one of the coolant channels was also taken into account. The heat transfer between the coolant and the surrounding moderator was accurately calculated using a two-dimensional theoretical model. The implementation of subcooled boiling and condensation models in the 1D code along with the use of functions for representing the thermal and dynamic properties of the coolant and moderator (heavy water) allow to have estimations of the in-core steam generation under nominal flow conditions for a generic fission power distribution. The in-core mass flow distribution results for steady state nominal conditions are in agreement with the expected from design, thus getting a first assessment of the coupled 1/3D model. Results for nominal condition were compared with those obtained with a previous 1/3D single-phase model getting more realistic temperature patterns, also allowing visualize low values of void fraction inside the upper plenum. It must be mentioned that the current results were obtained by imposing prescribed fission power functions from literature. Therefore, results are showed with the aim of point out the potentiality of the developed model.Keywords: PHWR, CFD, thermo-hydraulic, two-phase flow
Procedia PDF Downloads 46819480 Performance of the Hybrid Loop Heat Pipe
Authors: Nandy Putra, Imansyah Ibnu Hakim, Iwan Setyawan, Muhammad Zayd A.I
Abstract:
A two-phase cooling technology of passive system sometimes can no longer meet the cooling needs of an increasingly challenging due to the inherent limitations of the capillary pumping for example in terms of the heat flux that can lead to dry out. In this study, intended to overcome the dry out with the addition of a diaphragm, they pump to accelerate the fluid transportation from the condenser to the evaporator. Diaphragm pump installed on the bypass line. When it did not happen dry out then the hybrid loop heat pipe will be work passively using a capillary pressure of wick. Meanwhile, when necessary, hybrid loop heat pipe will be work actively, using diaphragm pump with temperature control installed on the evaporator. From the results, it can be said that the pump has been successfully overcome dry out and can distribute working fluid from the condenser to the evaporator and reduce the temperature of the evaporator from 143°C to 100°C as a temperature controlled where the pump start actively at set point 100°C.Keywords: hybrid, heat pipe, dry out, assisted, pump
Procedia PDF Downloads 35219479 Extreme Heat and Workforce Health in Southern Nevada
Authors: Erick R. Bandala, Kebret Kebede, Nicole Johnson, Rebecca Murray, Destiny Green, John Mejia, Polioptro Martinez-Austria
Abstract:
Summertemperature data from Clark County was collected and used to estimate two different heat-related indexes: the heat index (HI) and excess heat factor (EHF). These two indexes were used jointly with data of health-related deaths in Clark County to assess the effect of extreme heat on the exposed population. The trends of the heat indexes were then analyzed for the 2007-2016 decadeandthe correlation between heat wave episodes and the number of heat-related deaths in the area was estimated. The HI showed that this value has increased significantly in June, July, and August over the last ten years. The same trend was found for the EHF, which showed a clear increase in the severity and number of these events per year. The number of heat wave episodes increased from 1.4 per year during the 1980-2016 period to 1.66 per yearduring the 2007-2016 period. However, a different trend was found for heat-wave-event duration, which decreasedfrom an average of 20.4 days during the trans-decadal period (1980-2016) to 18.1 days during the most recent decade(2007-2016). The number of heat-related deaths was also found to increase from 2007 to 2016, with 2016 with the highest number of heat-related deaths. Both HI and the number of deaths showeda normal-like distribution for June, July, and August, with the peak values reached in late July and early August. The average maximum HI values better correlated with the number of deaths registered in Clark County than the EHF, probably because HI uses the maximum temperature and humidity in its estimation,whereas EHF uses the average medium temperature. However, it is worth testing the EHF of the study zone because it was reported to fit properly in the case of heat-related morbidity. For the overall period, 437 heat-related deaths were registered in Clark County, with 20% of the deaths occurring in June, 52% occurring in July, 18% occurring in August,and the remaining 10% occurring in the other months of the year. The most vulnerable subpopulation was people over 50 years old, for which 76% of the heat-related deaths were registered.Most of the cases were associated with heart disease preconditions. The second most vulnerable subpopulation was young adults (20-50), which accounted for 23% of the heat-related deaths. These deathswere associated with alcoholic/illegal drug intoxication.Keywords: heat, health, hazards, workforce
Procedia PDF Downloads 10419478 Concentrated Whey Protein Drink with Orange Flavor: Protein Modification and Formulation
Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh
Abstract:
The application of whey protein in drink industry to enhance the nutritional value of the products is important. Furthermore, the gelification of protein during thermal treatment and shelf life makes some limitations in its application. So, the main goal of this research is manufacturing of high concentrate whey protein orange drink with appropriate shelf life. In this way, whey protein was 5 to 30% hydrolyzed ( in 5 percent intervals at six stages), then thermal stability of samples with 10% concentration of protein was tested in acidic condition (T= 90 °C, pH=4.2, 5 minutes ) and neutral condition (T=120° C, pH:6.7, 20 minutes.) Furthermore, to study the shelf life of heat treated samples in 4 months at 4 and 24 °C, the time sweep rheological test were done. At neutral conditions, 5 to 20% hydrolyzed sample showed gelling during thermal treatment, whereas at acidic condition, was happened only in 5 to 10 percent hydrolyzed samples. This phenomenon could be related to the difference in hydrodynamic radius and zeta potential of samples with different level of hydrolyzation at acidic and neutral conditions. To study the gelification of heat resistant protein solutions during shelf life, for 4 months with 7 days intervals, the time sweep analysis were performed. Cross over was observed for all heat resistant neutral samples at both storage temperature, while in heat resistant acidic samples with degree of hydrolysis, 25 and 30 percentage at 4 and 20 °C, it was not seen. It could be concluded that the former sample was stable during heat treatment and 4 months storage, which made them a good choice for manufacturing high protein drinks. The Scheffe polynomial model and numerical optimization were employed for modeling and high protein orange drink formula optimization. Scheffe model significantly predicted the overal acceptance index (Pvalue<0.05) of sensorial analysis. The coefficient of determination (R2) of 0.94, the adjusted coefficient of determination (R2Adj) of 0.90, insignificance of the lack-of-fit test and F value of 64.21 showed the accuracy of the model. Moreover, the coefficient of variable (C.V) was 6.8% which suggested the replicability of the experimental data. The desirability function had been achieved to be 0.89, which indicates the high accuracy of optimization. The optimum formulation was found as following: Modified whey protein solution (65.30%), natural orange juice (33.50%), stevia sweetener (0.05%), orange peel oil (0.15%) and citric acid (1 %), respectively. Its worth mentioning that this study made an appropriate model for application of whey protein in drink industry without bitter flavor and gelification during heat treatment and shelf life.Keywords: croos over, orange beverage, protein modification, optimization
Procedia PDF Downloads 6219477 Effects of Cattaneo-Christov Heat Flux on 3D Magnetohydrodynamic Viscoelastic Fluid Flow with Variable Thermal Conductivity
Authors: Muhammad Ramzan
Abstract:
A mathematical model has been envisaged to discuss three-dimensional Viscoelastic fluid flow with an effect of Cattaneo-Christov heat flux in attendance of magnetohydrodynamic (MHD). Variable thermal conductivity with the impact of homogeneous-heterogeneous reactions and convective boundary condition is also taken into account. Homotopy analysis method is engaged to obtain series solutions. Graphical illustrations depicting behaviour of sundry parameters on skin friction coefficient and all involved distributions are also given. It is observed that velocity components are decreasing functions of Viscoelastic fluid parameter. Furthermore, strength of homogeneous and heterogeneous reactions have opposite effects on concentration distribution. A comparison with a published paper has also been established and an excellent agreement is obtained; hence reliable results are being presented.Keywords: Cattaneo Christov heat flux, homogenous-heterogeneous reactions, magnetic field, variable thermal conductivity
Procedia PDF Downloads 19719476 Oxygen Transfer in Viscous Non-Newtonian Liquid in a Hybrid Bioreactor
Authors: Sérgio S. de Jesus, Aline Santana, Rubens Maciel Filho
Abstract:
Global oxygen transfer coefficient (kLa) was characterized in a mechanically agitated airlift bio reactor. The experiments were carried out in an airlift bio reactor (3.2 L) with internal re circulation (a concentric draft-tube airlift vessel device); the agitation is carried out through a turbine Rushton impeller located along with the gas sparger in the region comprised in the riser. The experiments were conducted using xanthan gum (0.6%) at 250 C and a constant rotation velocity of 0 and 800 rpm, as well as in the absence of agitation (airlift mode); the superficial gas velocity varied from 0.0157 to 0.0262 ms-1. The volumetric oxygen transfer coefficient dependence of the rotational speed revealed that the presence of agitation increased up to two times the kLa value.Keywords: aeration, mass transfer, non-Newtonian fluids, stirred airlift bioreactor
Procedia PDF Downloads 46019475 Thermal Regulation of Channel Flows Using Phase Change Material
Authors: Kira Toxopeus, Kamran Siddiqui
Abstract:
Channel flows are common in a wide range of engineering applications. In some types of channel flows, particularly the ones involving chemical or biological processes, the control of the flow temperature is crucial to maintain the optimal conditions for the chemical reaction or to control the growth of biological species. This often becomes an issue when the flow experiences temperature fluctuations due to external conditions. While active heating and cooling could regulate the channel temperature, it may not be feasible logistically or economically and is also regarded as a non-sustainable option. Thermal energy storage utilizing phase change material (PCM) could provide the required thermal regulation sustainably by storing the excess heat from the channel and releasing it back as required, thus regulating the channel temperature within a range in the proximity of the PCM melting temperature. However, in designing such systems, the configuration of the PCM storage within the channel is critical as it could influence the channel flow dynamics, which would, in turn, affect the heat exchange between the channel fluid and the PCM. The present research is focused on the investigation of the flow dynamical behavior in the channel during heat transfer from the channel flow to the PCM thermal energy storage. Offset vertical columns in a narrow channel were used that contained the PCM. Two different column shapes, square and circular, were considered. Water was used as the channel fluid that entered the channel at a temperature higher than that of the PCM melting temperature. Hence, as the water was passing through the channel, the heat was being transferred from the water to the PCM, causing the PCM to store the heat through a phase transition from solid to liquid. Particle image velocimetry (PIV) was used to measure the two-dimensional velocity field of the channel flow as it flows between the PCM columns. Thermocouples were also attached to the PCM columns to measure the PCM temperature at three different heights. Three different water flow rates (0.5, 0.75 and 1.2 liters/min) were considered. At each flow rate, experiments were conducted at three different inlet water temperatures (28ᵒC, 33ᵒC and 38ᵒC). The results show that the flow rate and the inlet temperature influenced the flow behavior inside the channel.Keywords: channel flow, phase change material, thermal energy storage, thermal regulation
Procedia PDF Downloads 14019474 Optimization of Copper-Water Negative Inclination Heat Pipe with Internal Composite Wick Structure
Authors: I. Brandys, M. Levy, K. Harush, Y. Haim, M. Korngold
Abstract:
Theoretical optimization of a copper-water negative inclination heat pipe with internal composite wick structure has been performed, regarding a new introduced parameter: the ratio between the coarse mesh wraps and the fine mesh wraps of the composite wick. Since in many cases, the design of a heat pipe matches specific thermal requirements and physical limitations, this work demonstrates the optimization of a 1 m length, 8 mm internal diameter heat pipe without an adiabatic section, at a negative inclination angle of -10º. The optimization is based on a new introduced parameter, LR: the ratio between the coarse mesh wraps and the fine mesh wraps.Keywords: heat pipe, inclination, optimization, ratio
Procedia PDF Downloads 32819473 Techno-Economic Assessment of Distributed Heat Pumps Integration within a Swedish Neighborhood: A Cosimulation Approach
Authors: Monica Arnaudo, Monika Topel, Bjorn Laumert
Abstract:
Within the Swedish context, the current trend of relatively low electricity prices promotes the electrification of the energy infrastructure. The residential heating sector takes part in this transition by proposing a switch from a centralized district heating system towards a distributed heat pumps-based setting. When it comes to urban environments, two issues arise. The first, seen from an electricity-sector perspective, is related to the fact that existing networks are limited with regards to their installed capacities. Additional electric loads, such as heat pumps, can cause severe overloads on crucial network elements. The second, seen from a heating-sector perspective, has to do with the fact that the indoor comfort conditions can become difficult to handle when the operation of the heat pumps is limited by a risk of overloading on the distribution grid. Furthermore, the uncertainty of the electricity market prices in the future introduces an additional variable. This study aims at assessing the extent to which distributed heat pumps can penetrate an existing heat energy network while respecting the technical limitations of the electricity grid and the thermal comfort levels in the buildings. In order to account for the multi-disciplinary nature of this research question, a cosimulation modeling approach was adopted. In this way, each energy technology is modeled in its customized simulation environment. As part of the cosimulation methodology: a steady-state power flow analysis in pandapower was used for modeling the electrical distribution grid, a thermal balance model of a reference building was implemented in EnergyPlus to account for space heating and a fluid-cycle model of a heat pump was implemented in JModelica to account for the actual heating technology. With the models set in place, different scenarios based on forecasted electricity market prices were developed both for present and future conditions of Hammarby Sjöstad, a neighborhood located in the south-east of Stockholm (Sweden). For each scenario, the technical and the comfort conditions were assessed. Additionally, the average cost of heat generation was estimated in terms of levelized cost of heat. This indicator enables a techno-economic comparison study among the different scenarios. In order to evaluate the levelized cost of heat, a yearly performance simulation of the energy infrastructure was implemented. The scenarios related to the current electricity prices show that distributed heat pumps can replace the district heating system by covering up to 30% of the heating demand. By lowering of 2°C, the minimum accepted indoor temperature of the apartments, this level of penetration can increase up to 40%. Within the future scenarios, if the electricity prices will increase, as most likely expected within the next decade, the penetration of distributed heat pumps can be limited to 15%. In terms of levelized cost of heat, a residential heat pump technology becomes competitive only within a scenario of decreasing electricity prices. In this case, a district heating system is characterized by an average cost of heat generation 7% higher compared to a distributed heat pumps option.Keywords: cosimulation, distributed heat pumps, district heating, electrical distribution grid, integrated energy systems
Procedia PDF Downloads 15019472 Combined Power Supply at Well Drilling in Extreme Climate Conditions
Authors: V. Morenov, E. Leusheva
Abstract:
Power supplying of well drilling on oil and gas fields at ambient air low temperatures is characterized by increased requirements of electric and heat energy. Power costs for heating of production facilities, technological and living objects may several times exceed drilling equipment electric power consumption. Power supplying of prospecting and exploitation drilling objects is usually done by means of local electric power structures based on diesel power stations. In the meantime, exploitation of oil fields is accompanied by vast quantities of extracted associated petroleum gas, and while developing gas fields there are considerable amounts of natural gas and gas condensate. In this regard implementation of gas-powered self-sufficient power units functioning on produced crude products for power supplying is seen as most potential. For these purposes gas turbines (GT) or gas reciprocating engines (GRE) may be used. In addition gas-powered units are most efficiently used in cogeneration mode - combined heat and power production. Conducted research revealed that GT generate more heat than GRE while producing electricity. One of the latest GT design are microturbines (MT) - devices that may be efficiently exploited in combined heat and power mode. In conditions of ambient air low temperatures and high velocity wind sufficient heat supplying is required for both technological process, specifically for drilling mud heating, and for maintaining comfortable working conditions at the rig. One of the main heat regime parameters are the heat losses. Due to structural peculiarities of the rig most of the heat losses occur at cold air infiltration through the technological apertures and hatchways and heat transition of isolation constructions. Also significant amount of heat is required for working temperature sustaining of the drilling mud. Violation of circulation thermal regime may lead to ice build-up on well surfaces and ice blockages in armature elements. That is why it is important to ensure heating of the drilling mud chamber according to ambient air temperature. Needed heat power will be defined by heat losses of the chamber. Noting heat power required for drilling structure functioning, it is possible to create combined heat and power complex based on MT for satisfying consumer power needs and at the same time lowering power generation costs. As a result, combined power supplying scheme for multiple well drilling utilizing heat of MT flue gases was developed.Keywords: combined heat, combined power, drilling, electric supply, gas-powered units, heat supply
Procedia PDF Downloads 57719471 Numerical Simulations of Frost Heave Using COMSOL Multiphysics Software in Unsaturated Freezing Soils
Authors: Sara Soltanpour, Adolfo Foriero
Abstract:
Frost heave is arguably the most problematic adverse phenomenon in cold region areas. Frost heave is a complex process that depends on heat and water transfer. These coupled physical fields generate considerable heave stresses as well as deformations. In the present study, a coupled thermal-hydraulic-mechanical (THM) model using COMSOL Multiphysics in frozen unsaturated soils, such as fine sand, is investigated. Particular attention to the frost heave and temperature distribution, as well as the water migrating during soil freezing, is assessed. The results obtained from the numerical simulations are consistent with the results measured in the full-scale tests conducted by Cold Regions Research and Engineering Laboratory (CRREL).Keywords: frost heave, numerical simulations, COMSOL software, unsaturated freezing soil
Procedia PDF Downloads 12519470 Experimental Study on Heat and Mass Transfer of Humidifier for Fuel Cell
Authors: You-Kai Jhang, Yang-Cheng Lu
Abstract:
Major contributions of this study are threefold: designing a new model of planar-membrane humidifier for Proton Exchange Membrane Fuel Cell (PEMFC), an index to measure the Effectiveness (εT) of that humidifier, and an air compressor system to replicate related planar-membrane humidifier experiments. PEMFC as a kind of renewable energy has become more and more important in recent years due to its reliability and durability. To maintain the efficiency of the fuel cell, the membrane of PEMFC need to be controlled in a good hydration condition. How to maintain proper membrane humidity is one of the key issues to optimize PEMFC. We developed new humidifier to recycle water vapor from cathode air outlet so as to keep the moisture content of cathode air inlet in a PEMFC. By measuring parameters such as dry side air outlet dew point temperature, dry side air inlet temperature and humidity, wet side air inlet temperature and humidity, and differential pressure between dry side and wet side, we calculated indices obtained by dew point approach temperature (DPAT), water flux (J), water recovery ratio (WRR), effectiveness (εT), and differential pressure (ΔP). We discussed six topics including sealing effect, flow rate effect, flow direction effect, channel effect, temperature effect, and humidity effect by using these indices. Gas cylinders are used as sources of air supply in many studies of humidifiers. Gas cylinder depletes quickly during experiment at 1kW air flow rate, and it causes replication difficult. In order to ensure high stable air quality and better replication of experimental data, this study designs an air supply system to overcome this difficulty. The experimental result shows that the best rate of pressure loss of humidifier is 0.133×10³ Pa(g)/min at the torque of 25 (N.m). The best humidifier performance ranges from 30-40 (LPM) of air flow rates. The counter flow configured humidifies moisturizes the dry side inlet air more effectively than the parallel flow humidifier. From the performance measurements of the channel plates various rib widths studied in this study, it is found that the narrower the rib width is, the more the performance of humidifier improves. Raising channel width in same hydraulic diameter (Dh ) will obtain higher εT and lower ΔP. Moreover, increasing the dry side air inlet temperature or humidity will lead to lower εT. In addition, when the dry side air inlet temperature exceeds 50°C, the effect becomes even more obvious.Keywords: PEM fuel cell, water management, membrane humidifier, heat and mass transfer, humidifier performance
Procedia PDF Downloads 17619469 The Effect of Wet Cooling Pad Thickness and Geometric Configuration to Enhance Evaporative Cooler Saturation Efficiency: A Review
Authors: Biruk Abate
Abstract:
Evaporative cooling occurs when air with high temperature and reduced humidity passes over a wet porous surface and a higher degree of cooling process is achieved for storage of fruits and vegetables due to greater rate of evaporation. The main objective of this reviewed study is to understand the effect of evaporative surface pad thickness and geometric configuration on the saturation efficiency of evaporative cooler and to state some related factors affecting the performance of the system. From this overview, selection of pad thickness and geometrical shape with suitable characteristics of heat and mass transfer and water holding capacity of the pads was reviewed as these parameters are important for saturation efficiency of evaporative cooling. Increasing the cooling pad thickness through increasing the face velocity increases the effectiveness of wet-bulb saturation. Increasing ambient temperature, inlet air speed and ambient air humidity decreases the wet bulb effectiveness and it increases with increasing length of the pad. Increasing the ambient temperature and inlet air velocity decreases the humidity ratio, but increases with increasing ambient air humidity and lengths of the pad. Increasing the temperature-humidity index is possible with increasing ambient temperature, inlet air velocity, ambient air humidity and pad length. Generally, all materials having a higher wetted surface area per unit volume give higher efficiency. Materials with higher thickness increase the wetted surface area for better mix-up of air and water to give higher efficiency for the same shape and this in turn helps to store fruits and vegetables.Keywords: Degree of cooling, heat and mass transfer, evaporative cooling, porous surface
Procedia PDF Downloads 130