Search results for: gaps in data ecosystems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26015

Search results for: gaps in data ecosystems

25145 Industrial and Environmental Safety in the Integrated Security Policy of the Industry: A Corporation and an Enterprise

Authors: Vladimir A. Grachev

Abstract:

Today, in the context of rapidly developing technosphere and hourly emerging new technologies, the industrial and environmental safety issue is ever more pressing. The article is devoted to the relationship of social, environmental, and industrial policies with industrial safety, occupational health and safety, environmental safety, and environmental protection. The author assesses the up-to-day situation through system analysis and on the basis of the existing practices. A complex system of the policies implementation without "gaps" and missing links ensures preservation of human lives, health and a favorable living environment. The author demonstrates that absence of an "environmental safety" high-priority link can lead to a significant loss of human lives and health and the global changes in the environment. The role of implementing the environmental policy of enterprises and organizations, and of economic sectors in the implementation of national environmental policy is shown. It was established that the system for implementing environmental policy should be based on a system analysis.

Keywords: environmental protection, environmental safety, industrial safety, occupational health and safety

Procedia PDF Downloads 214
25144 Single-Cell Visualization with Minimum Volume Embedding

Authors: Zhenqiu Liu

Abstract:

Visualizing the heterogeneity within cell-populations for single-cell RNA-seq data is crucial for studying the functional diversity of a cell. However, because of the high level of noises, outlier, and dropouts, it is very challenging to measure the cell-to-cell similarity (distance), visualize and cluster the data in a low-dimension. Minimum volume embedding (MVE) projects the data into a lower-dimensional space and is a promising tool for data visualization. However, it is computationally inefficient to solve a semi-definite programming (SDP) when the sample size is large. Therefore, it is not applicable to single-cell RNA-seq data with thousands of samples. In this paper, we develop an efficient algorithm with an accelerated proximal gradient method and visualize the single-cell RNA-seq data efficiently. We demonstrate that the proposed approach separates known subpopulations more accurately in single-cell data sets than other existing dimension reduction methods.

Keywords: single-cell RNA-seq, minimum volume embedding, visualization, accelerated proximal gradient method

Procedia PDF Downloads 227
25143 Cloud Data Security Using Map/Reduce Implementation of Secret Sharing Schemes

Authors: Sara Ibn El Ahrache, Tajje-eddine Rachidi, Hassan Badir, Abderrahmane Sbihi

Abstract:

Recently, there has been increasing confidence for a favorable usage of big data drawn out from the huge amount of information deposited in a cloud computing system. Data kept on such systems can be retrieved through the network at the user’s convenience. However, the data that users send include private information, and therefore, information leakage from these data is now a major social problem. The usage of secret sharing schemes for cloud computing have lately been approved to be relevant in which users deal out their data to several servers. Notably, in a (k,n) threshold scheme, data security is assured if and only if all through the whole life of the secret the opponent cannot compromise more than k of the n servers. In fact, a number of secret sharing algorithms have been suggested to deal with these security issues. In this paper, we present a Mapreduce implementation of Shamir’s secret sharing scheme to increase its performance and to achieve optimal security for cloud data. Different tests were run and through it has been demonstrated the contributions of the proposed approach. These contributions are quite considerable in terms of both security and performance.

Keywords: cloud computing, data security, Mapreduce, Shamir's secret sharing

Procedia PDF Downloads 306
25142 Formulation of Building Design Principles for Little People in Hong Kong

Authors: Yung Yau

Abstract:

'Little people' are those who have extremely short stature as they suffer from rare bone diseases. They are commonly known as 'dwarves' or 'people with dwarfism'. Dwarfism is generally regarded as a type of rare disease for its extremely small odds (~1 in 15,000). On account of its rarity, dwarfism, unlike other types of disability, has attracted relatively little attention from the general public and in various academic fields (e.g. architecture, psychology and sociology) except medical science. In view of the extant research gaps, this study aims to investigate the physical barriers facing the little people in the built environment in Hong Kong. Between November 2017 and July 2018, ten little people or their family members participated in in-depth interviews. Responses of the interviewees were transcribed (i.e., speech being converted to text word for word). Interview data were then analyzed using the interpretative phenomenological analysis methodology developed by J. Smith and others in 2009. The findings of the project reveal that although Hong Kong's built environment has been designed barrier-free pursuant to the prevailing building standards, those standards do not cater to the special anthropometric characteristics of little people. As a result, little people face a lot of challenges when using built facilities. For example, most water closets, urinals, and wash hand basins are not fit for little people's use. As indicated by the project findings, we are still far away from providing a discrimination-free and barrier-free living environment for the little people in Hong Kong. To make Hong Kong society more inclusive to the little people, there is a need for further tailored building design. A set of building design principles for better inclusion of the little people in our society are highlighted. These principles include 'the building design should accommodate individuals with different heights' and 'the building design should allow individuals to use comfortably and efficiently with a minimum of fatigue'. At the end of the paper, the author also calls for an agenda for further studies. For instance, we need an anthropometric study on little people for developing practical building design guidelines.

Keywords: dwarfism, little people, inclusive buildings, people with disabilities, social sustainability

Procedia PDF Downloads 128
25141 Towards Incorporating Context Awareness into Business Process Management

Authors: Xiaohui Zhao, Shahan Mafuz

Abstract:

Context-aware technologies provide system applications with the awareness of environmental conditions, customer behaviour, object movements, etc. Further, with such capability system applications can be smart to adapt intelligently their responses to the changing conditions. Concerning business operations, this promises businesses that their business processes can run more intelligently, adaptively and flexibly, and thereby either improve customer experience, enhance reliability of service delivery, or lower operational cost, to make the business more competitive and sustainable. Aiming at realizing such context-aware business process management, this paper firstly explores its potential benefit and then identifies some gaps between the current business process management support and the expected. In addition, some preliminary solutions are also discussed with context definition, rule-based process execution, run-time process evolution, etc. A framework is also presented to give a conceptual architecture of context-aware business process management system to guide system implementation.

Keywords: business process adaptation, business process evolution, business process modelling, and context awareness

Procedia PDF Downloads 410
25140 A Modular Framework for Enabling Analysis for Educators with Different Levels of Data Mining Skills

Authors: Kyle De Freitas, Margaret Bernard

Abstract:

Enabling data mining analysis among a wider audience of educators is an active area of research within the educational data mining (EDM) community. The paper proposes a framework for developing an environment that caters for educators who have little technical data mining skills as well as for more advanced users with some data mining expertise. This framework architecture was developed through the review of the strengths and weaknesses of existing models in the literature. The proposed framework provides a modular architecture for future researchers to focus on the development of specific areas within the EDM process. Finally, the paper also highlights a strategy of enabling analysis through either the use of predefined questions or a guided data mining process and highlights how the developed questions and analysis conducted can be reused and extended over time.

Keywords: educational data mining, learning management system, learning analytics, EDM framework

Procedia PDF Downloads 324
25139 Using Audit Tools to Maintain Data Quality for ACC/NCDR PCI Registry Abstraction

Authors: Vikrum Malhotra, Manpreet Kaur, Ayesha Ghotto

Abstract:

Background: Cardiac registries such as ACC Percutaneous Coronary Intervention Registry require high quality data to be abstracted, including data elements such as nuclear cardiology, diagnostic coronary angiography, and PCI. Introduction: The audit tool created is used by data abstractors to provide data audits and assess the accuracy and inter-rater reliability of abstraction performed by the abstractors for a health system. This audit tool solution has been developed across 13 registries, including ACC/NCDR registries, PCI, STS, Get with the Guidelines. Methodology: The data audit tool was used to audit internal registry abstraction for all data elements, including stress test performed, type of stress test, data of stress test, results of stress test, risk/extent of ischemia, diagnostic catheterization detail, and PCI data elements for ACC/NCDR PCI registries. This is being used across 20 hospital systems internally and providing abstraction and audit services for them. Results: The data audit tool had inter-rater reliability and accuracy greater than 95% data accuracy and IRR score for the PCI registry in 50 PCI registry cases in 2021. Conclusion: The tool is being used internally for surgical societies and across hospital systems. The audit tool enables the abstractor to be assessed by an external abstractor and includes all of the data dictionary fields for each registry.

Keywords: abstraction, cardiac registry, cardiovascular registry, registry, data

Procedia PDF Downloads 104
25138 The Words of the Pandemic in Spillover by David Quammen

Authors: Anna Maria Re

Abstract:

Taking advantage of the ecolinguistic theoretical and practical analysis, the work intends the prophetic, punctual, and at times disturbing language used by David Quammen in Spillover, questioning it from an ecological perspective and contributing to the search for new stories. In the famous volume, the author illustrates a literary history of the great epidemics and pandemics, demonstrating that viruses are nature's inevitable response to man's assault on ecosystems. In doing so, he introduces new words, which have tamed our anxieties in recent years since writing as a human artistic expression can mirror the human conscience. Writing in the Anthropocene, coining a new reference lexicon with respect to what is happening, means offering a form to the idea of survival of the planet, imagining the human being grappling with an environment whose conformation he himself has helped to change with a language that is no longer effective in describing the world as we have known it and that quickly needs a radical overhaul. Following the methodology proposed in Ecolinguistics: language, ecology and the stories we live by, the analysis in the paper will enhance the language that encodes new stories based on: ideologies, framings, metaphors, evaluations, identities, convictions, and salience.

Keywords: Anthropocene, pandemic, spillover, virus, zoonosis

Procedia PDF Downloads 95
25137 Artificial Intelligence Based Comparative Analysis for Supplier Selection in Multi-Echelon Automotive Supply Chains via GEP and ANN Models

Authors: Seyed Esmail Seyedi Bariran, Laysheng Ewe, Amy Ling

Abstract:

Since supplier selection appears as a vital decision, selecting supplier based on the best and most accurate ways has a lot of importance for enterprises. In this study, a new Artificial Intelligence approach is exerted to remove weaknesses of supplier selection. The paper has three parts. First part is choosing the appropriate criteria for assessing the suppliers’ performance. Next one is collecting the data set based on experts. Afterwards, the data set is divided into two parts, the training data set and the testing data set. By the training data set the best structure of GEP and ANN are selected and to evaluate the power of the mentioned methods the testing data set is used. The result obtained shows that the accuracy of GEP is more than ANN. Moreover, unlike ANN, a mathematical equation is presented by GEP for the supplier selection.

Keywords: supplier selection, automotive supply chains, ANN, GEP

Procedia PDF Downloads 630
25136 Increasing the Apparent Time Resolution of Tc-99m Diethylenetriamine Pentaacetic Acid Galactosyl Human Serum Albumin Dynamic SPECT by Use of an 180-Degree Interpolation Method

Authors: Yasuyuki Takahashi, Maya Yamashita, Kyoko Saito

Abstract:

In general, dynamic SPECT data acquisition needs a few minutes for one rotation. Thus, the time-activity curve (TAC) derived from the dynamic SPECT is relatively coarse. In order to effectively shorten the interval, between data points, we adopted a 180-degree interpolation method. This method is already used for reconstruction of the X-ray CT data. In this study, we applied this 180-degree interpolation method to SPECT and investigated its effectiveness.To briefly describe the 180-degree interpolation method: the 180-degree data in the second half of one rotation are combined with the 180-degree data in the first half of the next rotation to generate a 360-degree data set appropriate for the time halfway between the first and second rotations. In both a phantom and a patient study, the data points from the interpolated images fell in good agreement with the data points tracking the accumulation of 99mTc activity over time for appropriate region of interest. We conclude that data derived from interpolated images improves the apparent time resolution of dynamic SPECT.

Keywords: dynamic SPECT, time resolution, 180-degree interpolation method, 99mTc-GSA.

Procedia PDF Downloads 492
25135 The Curse of Oil: Unpacking the Challenges to Food Security in the Nigeria's Niger Delta

Authors: Abosede Omowumi Babatunde

Abstract:

While the Niger Delta region satisfies the global thirst for oil, the inhabitants have not been adequately compensated for the use of their ancestral land. Besides, the ruthless exploitation and destruction of the natural environment upon which the inhabitants of the Niger Delta depend for their livelihood and sustenance by the activities of oil multinationals, pose major threats to food security in the region and by implication, Nigeria in general, Africa, and the world, given the present global emphasis on food security. This paper examines the effect of oil exploitation on household food security, identify key gaps in measures put in place to address the changes to livelihoods and food security and explore what should be done to improve the local people access to sufficient, safe and culturally acceptable food in the Niger Delta. Data is derived through interviews with key informants and Focus Group Discussions (FGDs) conducted with respondents in the local communities in the Niger Delta states of Delta, Bayelsa and Rivers as well as relevant extant studies. The threat to food security is one important aspect of the human security challenges in the Niger Delta which has received limited scholarly attention. In addition, successive Nigerian governments have not meaningfully addressed the negative impacts of oil-induced environmental degradation on traditional livelihoods given the significant linkages between environmental sustainability, livelihood security, and food security. The destructive impact of oil pollution on the farmlands, crops, economic trees, creeks, lakes, and fishing equipment is so devastating that the people can no longer engage in productive farming and fishing. Also important is the limited access to modern agricultural methods for fishing and subsistence farming as fishing and farming are done using mostly crude implements and traditional methods. It is imperative and urgent to take stock of the negative implications of the activities of oil multinationals for environmental and livelihood sustainability, and household food security in the Niger Delta.

Keywords: challenges, food security, Nigeria's Niger delta, oil

Procedia PDF Downloads 246
25134 Impacts of Land Cover Changes over the Last Three Decades in Capital City of Pakistan Islamabad with the Perspective of Urbanization

Authors: Muhammad Tayyab Sohail, Li Jiangfeng

Abstract:

This study aimed at characterizing land cover dynamics for about three decades in capital city of Pakistan Islamabad. The specific objectives were identifying and map the major land cover types in 1993, 2002 and 2014 and check the reduction of greenery and urbanization rate and its some environments aspects. The study showed that overall grasslands decreased in the prescribed period. The key hotspots of these changes were distributed in all directions of the study area, but at different times. Urbanization is increasing every year in this city but the policies for this number of people are not sufficient to meet their living standard requirements. Apart from it, there is also an impact of urbanization on environmental related problems. Underground water is going down and down, traffic related issue and other associated problems are part of this research. Therefore, policies that integrate restoration and conservation of natural ecosystems with enhancement of agricultural productivity are strongly recommended. This will ensure environmental sustainability and socio-economic well-being in the area. Future research needs to address the problems related to urbanization and need to clarify the problems and solve it on high priority.

Keywords: land, Islamabad, water, urban

Procedia PDF Downloads 282
25133 AI-Driven Solutions for Optimizing Master Data Management

Authors: Srinivas Vangari

Abstract:

In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.

Keywords: artificial intelligence, master data management, data governance, data quality

Procedia PDF Downloads 16
25132 Sonochemical Zinc Oxide and Layered Hydroxy Zinc Acetate Synthesis in Fenton-Like Reactions

Authors: Durata Haciu, Ozgur Birer

Abstract:

Zinc acetate solution is sonicated at high power in water and in ethanol in the absence and presence of various peroxides. In the absence of peroxides, the products are zinc oxide and layered hydroxy zinc acetate in water and in ethanol, respectively. Layered basic zinc acetate are prepared for the first time using sonochemical methods. The addition of peroxides alters the reaction mechanisms. In water, insoluble peroxides produce zinc oxides while the water soluble peroxide, i.e.hydrogen peroxide, completely destroyed the structure and casted a doubt on the accepted peroxide initiated mechanism of reactions. In ethanol,peroxide addition caused the reaction mechanism to change and some oxide formation is observed. The reaction mechanism is sensitive to water/ethanol amounts as well as the peroxide to zinc ion mole ratio.Thin zinc oxide wafers (ca. 30 nm) with band gaps of 3.24 eV were obtained.

Keywords: ultrasound, zinc oxide, hydroxy zinc acetate, fenton, peroxide initiation

Procedia PDF Downloads 293
25131 Bio-Hub Ecosystems: Expansion of Traditional Life Cycle Analysis Metrics to Include Zero-Waste Circularity Measures

Authors: Kimberly Samaha

Abstract:

In order to attract new types of investors into the emerging Bio-Economy, a new set of metrics and measurement system is needed to better quantify the environmental, social and economic impacts of circular zero-waste design. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. Lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. In particular, the forestry-based plants which have been an invaluable outlet for woody biomass surplus, forest health improvement, timber production enhancement, and especially reduction of wildfire risk. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. It proposes not only models for integration of forestry, aquaculture, and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. Typically, life cycle analyses measure environmental impacts of different industrial production stages and are not integrated with indicators of material use circularity. This concept paper proposes the further development of a new set of metrics that would illustrate not only the typical life-cycle analysis (LCA), which shows the reduction in greenhouse gas (GHG) emissions, but also the zero-waste circularity measures of mass balance of the full value chain of the raw material and energy content/caloric value. These new measures quantify key impacts in making hyper-efficient use of natural resources and eliminating waste to landfills. The project utilized traditional LCA using the GREET model where the standalone biomass energy plant case was contrasted with the integration of a jet-fuel biorefinery. The methodology was then expanded to include combinations of co-hosts that optimize the life cycle of woody biomass from tree to energy, CO₂, heat and wood ash both from an energy/caloric value and for mass balance to include reuse of waste streams which are typically landfilled. The major findings of both a formal LCA study resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. If proven as a model, the expedited roll-out of these innovative scenarios can set a new standard for circular zero-waste projects that advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable bio-economy paradigm where waste streams become valuable inputs, supporting local and rural communities in simple, sustainable ways.

Keywords: bio-economy, biomass energy, financing, metrics

Procedia PDF Downloads 155
25130 Genetic Data of Deceased People: Solving the Gordian Knot

Authors: Inigo de Miguel Beriain

Abstract:

Genetic data of deceased persons are of great interest for both biomedical research and clinical use. This is due to several reasons. On the one hand, many of our diseases have a genetic component; on the other hand, we share genes with a good part of our biological family. Therefore, it would be possible to improve our response considerably to these pathologies if we could use these data. Unfortunately, at the present moment, the status of data on the deceased is far from being satisfactorily resolved by the EU data protection regulation. Indeed, the General Data Protection Regulation has explicitly excluded these data from the category of personal data. This decision has given rise to a fragmented legal framework on this issue. Consequently, each EU member state offers very different solutions. For instance, Denmark considers the data as personal data of the deceased person for a set period of time while some others, such as Spain, do not consider this data as such, but have introduced some specifically focused regulations on this type of data and their access by relatives. This is an extremely dysfunctional scenario from multiple angles, not least of which is scientific cooperation at the EU level. This contribution attempts to outline a solution to this dilemma through an alternative proposal. Its main hypothesis is that, in reality, health data are, in a sense, a rara avis within data in general because they do not refer to one person but to several. Hence, it is possible to think that all of them can be considered data subjects (although not all of them can exercise the corresponding rights in the same way). When the person from whom the data were obtained dies, the data remain as personal data of his or her biological relatives. Hence, the general regime provided for in the GDPR may apply to them. As these are personal data, we could go back to thinking in terms of a general prohibition of data processing, with the exceptions provided for in Article 9.2 and on the legal bases included in Article 6. This may be complicated in practice, given that, since we are dealing with data that refer to several data subjects, it may be complex to refer to some of these bases, such as consent. Furthermore, there are theoretical arguments that may oppose this hypothesis. In this contribution, it is shown, however, that none of these objections is of sufficient substance to delegitimize the argument exposed. Therefore, the conclusion of this contribution is that we can indeed build a general framework on the processing of personal data of deceased persons in the context of the GDPR. This would constitute a considerable improvement over the current regulatory framework, although it is true that some clarifications will be necessary for its practical application.

Keywords: collective data conceptual issues, data from deceased people, genetic data protection issues, GDPR and deceased people

Procedia PDF Downloads 154
25129 Steps towards the Development of National Health Data Standards in Developing Countries

Authors: Abdullah I. Alkraiji, Thomas W. Jackson, Ian Murray

Abstract:

The proliferation of health data standards today is somewhat overlapping and conflicting, resulting in market confusion and leading to increasing proprietary interests. The government role and support in standardization for health data are thought to be crucial in order to establish credible standards for the next decade, to maximize interoperability across the health sector, and to decrease the risks associated with the implementation of non-standard systems. The normative literature missed out the exploration of the different steps required to be undertaken by the government towards the development of national health data standards. Based on the lessons learned from a qualitative study investigating the different issues to the adoption of health data standards in the major tertiary hospitals in Saudi Arabia and the opinions and feedback from different experts in the areas of data exchange and standards and medical informatics in Saudi Arabia and UK, a list of steps required towards the development of national health data standards was constructed. Main steps are the existence of: a national formal reference for health data standards, an agreed national strategic direction for medical data exchange, a national medical information management plan and a national accreditation body, and more important is the change management at the national and organizational level. The outcome of this study can be used by academics and practitioners to develop the planning of health data standards, and in particular those in developing countries.

Keywords: interoperabilty, medical data exchange, health data standards, case study, Saudi Arabia

Procedia PDF Downloads 338
25128 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map

Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo

Abstract:

Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.

Keywords: RDM, multi-source data, big data, U-City

Procedia PDF Downloads 432
25127 The Evaluation of the Cognitive Training Program for Older Adults with Mild Cognitive Impairment: Protocol of a Randomized Controlled Study

Authors: Hui-Ling Yang, Kuei-Ru Chou

Abstract:

Background: Studies show that cognitive training can effectively delay cognitive failure. However, there are several gaps in the previous studies of cognitive training in mild cognitive impairment: 1) previous studies enrolled mostly healthy older adults, with few recruiting older adults with cognitive impairment; 2) they also had limited generalizability and lacked long-term follow-up data and measurements of the activities of daily living functional impact. Moreover, only 37% were randomized controlled trials (RCT). 3) Limited cognitive training has been specifically developed for mild cognitive impairment. Objective: This study sought to investigate the changes in cognitive function, activities of daily living and degree of depressive symptoms in older adults with mild cognitive impairment after cognitive training. Methods: This double-blind randomized controlled study has a 2-arm parallel group design. Study subjects are older adults diagnosed with mild cognitive impairment in residential care facilities. 124 subjects will be randomized by the permuted block randomization, into intervention group (Cognitive training, CT), or active control group (Passive information activities, PIA). Therapeutic adherence, sample attrition rate, medication compliance and adverse events will be monitored during the study period, and missing data analyzed using intent-to-treat analysis (ITT). Results: Training sessions of the CT group are 45 minutes/day, 3 days/week, for 12 weeks (36 sessions each). The training of active control group is the same as CT group (45min/day, 3days/week, for 12 weeks, for a total of 36 sessions). The primary outcome is cognitive function, using the Mini-Mental Status Examination (MMSE); the secondary outcome indicators are: 1) activities of daily living, using the Lawton’s Instrumental Activities of Daily Living (IADLs) and 2) degree of depressive symptoms, using the Geriatric Depression Scale-Short form (GDS-SF). Latent growth curve modeling will be used in the repeated measures statistical analysis to estimate the trajectory of improvement by examining the rate and pattern of change in cognitive functions, activities of daily living and degree of depressive symptoms for intervention efficacy over time, and the effects will be evaluated immediate post-test, 3 months, 6 months and one year after the last session. Conclusions: We constructed a rigorous CT program adhering to the Consolidated Standards of Reporting Trials (CONSORT) reporting guidelines. We expect to determine the improvement in cognitive function, activities of daily living and degree of depressive symptoms of older adults with mild cognitive impairment after using the CT.

Keywords: mild cognitive impairment, cognitive training, randomized controlled study

Procedia PDF Downloads 447
25126 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-

Authors: Nieto Bernal Wilson, Carmona Suarez Edgar

Abstract:

The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects.  Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.

Keywords: data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse

Procedia PDF Downloads 408
25125 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis

Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee

Abstract:

In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.

Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences

Procedia PDF Downloads 741
25124 Automated Testing to Detect Instance Data Loss in Android Applications

Authors: Anusha Konduru, Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai

Abstract:

Mobile applications are increasing in a significant amount, each to address the requirements of many users. However, the quick developments and enhancements are resulting in many underlying defects. Android apps create and handle a large variety of 'instance' data that has to persist across runs, such as the current navigation route, workout results, antivirus settings, or game state. Due to the nature of Android, an app can be paused, sent into the background, or killed at any time. If the instance data is not saved and restored between runs, in addition to data loss, partially-saved or corrupted data can crash the app upon resume or restart. However, it is difficult for the programmer to manually test this issue for all the activities. This results in the issue of data loss that the data entered by the user are not saved when there is any interruption. This issue can degrade user experience because the user needs to reenter the information each time there is an interruption. Automated testing to detect such data loss is important to improve the user experience. This research proposes a tool, DroidDL, a data loss detector for Android, which detects the instance data loss from a given android application. We have tested 395 applications and found 12 applications with the issue of data loss. This approach is proved highly accurate and reliable to find the apps with this defect, which can be used by android developers to avoid such errors.

Keywords: Android, automated testing, activity, data loss

Procedia PDF Downloads 237
25123 Bridging the Gap between Teaching and Learning: A 3-S (Strength, Stamina, Speed) Model for Medical Education

Authors: Mangala. Sadasivan, Mary Hughes, Bryan Kelly

Abstract:

Medical Education must focus on bridging the gap between teaching and learning when training pre-clinical year students in skills needed to keep up with medical knowledge and to meet the demands of health care in the future. The authors were interested in showing that a 3-S Model (building strength, developing stamina, and increasing speed) using a bridged curriculum design helps connect teaching and learning and improves students’ retention of basic science and clinical knowledge. The authors designed three learning modules using the 3-S Model within a systems course in a pre-clerkship medical curriculum. Each module focused on a bridge (concept map) designed by the instructor for specific content delivered to students in the course. This with-in-subjects design study included 304 registered MSU osteopathic medical students (3 campuses) ranked by quintile based on previous coursework. The instructors used the bridge to create self-directed learning exercises (building strength) to help students master basic science content. Students were video coached on how to complete assignments, and given pre-tests and post-tests designed to give them control to assess and identify gaps in learning and strengthen connections. The instructor who designed the modules also used video lectures to help students master clinical concepts and link them (building stamina) to previously learned material connected to the bridge. Boardstyle practice questions relevant to the modules were used to help students improve access (increasing speed) to stored content. Unit Examinations covering the content within modules and materials covered by other instructors teaching within the units served as outcome measures in this study. This data was then compared to each student’s performance on a final comprehensive exam and their COMLEX medical board examinations taken some time after the course. The authors used mean comparisons to evaluate students’ performances on module items (using 3-S Model) to non-module items on unit exams, final course exam and COMLEX medical board examination. The data shows that on average, students performed significantly better on module items compared to non-module items on exams 1 and 2. The module 3 exam was canceled due to a university shut down. The difference in mean scores (module verses non-module) items disappeared on the final comprehensive exam which was rescheduled once the university resumed session. Based on Quintile designation, the mean scores were higher for module items than non-module items and the difference in scores between items for Quintiles 1 and 2 were significantly better on exam 1 and the gap widened for all Quintile groups on exam 2 and disappeared in exam 3. Based on COMLEX performance, all students on average as a group, whether they Passed or Failed, performed better on Module items than non-module items in all three exams. The gap between scores of module items for students who passed COMLEX to those who failed was greater on Exam 1 (14.3) than on Exam 2 (7.5) and Exam 3 (10.2). Data shows the 3-S Model using a bridge effectively connects teaching and learning

Keywords: bridging gap, medical education, teaching and learning, model of learning

Procedia PDF Downloads 59
25122 Big Data: Appearance and Disappearance

Authors: James Moir

Abstract:

The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.

Keywords: big data, appearance, disappearance, surface, epistemology

Procedia PDF Downloads 419
25121 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images

Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann

Abstract:

FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.

Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design

Procedia PDF Downloads 276
25120 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management

Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang

Abstract:

Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.

Keywords: construction supply chain management, BIM, data exchange, artificial intelligence

Procedia PDF Downloads 23
25119 Representation Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction

Procedia PDF Downloads 425
25118 Data Mining As A Tool For Knowledge Management: A Review

Authors: Maram Saleh

Abstract:

Knowledge has become an essential resource in today’s economy and become the most important asset of maintaining competition advantage in organizations. The importance of knowledge has made organizations to manage their knowledge assets and resources through all multiple knowledge management stages such as: Knowledge Creation, knowledge storage, knowledge sharing and knowledge use. Researches on data mining are continues growing over recent years on both business and educational fields. Data mining is one of the most important steps of the knowledge discovery in databases process aiming to extract implicit, unknown but useful knowledge and it is considered as significant subfield in knowledge management. Data miming have the great potential to help organizations to focus on extracting the most important information on their data warehouses. Data mining tools and techniques can predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. This review paper explores the applications of data mining techniques in supporting knowledge management process as an effective knowledge discovery technique. In this paper, we identify the relationship between data mining and knowledge management, and then focus on introducing some application of date mining techniques in knowledge management for some real life domains.

Keywords: Data Mining, Knowledge management, Knowledge discovery, Knowledge creation.

Procedia PDF Downloads 206
25117 Effective Service Provision and Multi-Agency Working in Service Providers for Children and Young People with Special Educational Needs and Disabilities: A Mixed Methods Systematic Review

Authors: Natalie Tyldesley-Marshall, Janette Parr, Anna Brown, Yen-Fu Chen, Amy Grove

Abstract:

It is widely recognised in policy and research that the provision of services for children and young people (CYP) with Special Educational Needs and Disabilities (SEND) is enhanced when health and social care, and education services collaborate and interact effectively. In the UK, there have been significant changes to policy and provisions which support and improve collaboration. However, professionals responsible for implementing these changes face multiple challenges, including a lack of specific implementation guidance or framework to illustrate how effective multi-agency working could or should work. This systematic review will identify the key components of effective multi-agency working in services for CYP with SEND; and the most effective forms of partnership working in this setting. The review highlights interventions that lead to service improvements; and the conditions in the local area that support and encourage success. A protocol was written and registered with PROSPERO registration: CRD42022352194. Searches were conducted on several health, care, education, and applied social science databases from the year 2012 onwards. Citation chaining has been undertaken, as well as broader grey literature searching to enrich the findings. Qualitative, quantitative, mixed methods studies and systematic reviews were included, assessed independently, and critically appraised or assessed for risk of bias using appropriate tools based on study design. Data were extracted in NVivo software and checked by a more experienced researcher. A convergent segregated approach to synthesis and integration was used in which the quantitative and qualitative data were synthesised independently and then integrated using a joint display integration matrix. Findings demonstrate the key ingredients for effective partnership working for services delivering SEND. Interventions deemed effective are described, and lessons learned across interventions are summarised. Results will be of interest to educators and health and social care professionals that provide services to those with SEND. These will also be used to develop policy recommendations for how UK healthcare, social care, and education services for CYP with SEND aged 0-25 can most effectively collaborate and achieve service improvement. The review will also identify any gaps in the literature to recommend areas for future research. Funding for this review was provided by the Department for Education.

Keywords: collaboration, joint commissioning, service delivery, service improvement

Procedia PDF Downloads 106
25116 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data

Authors: Murat Yazici

Abstract:

Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.

Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data

Procedia PDF Downloads 51