Search results for: flexible manufacturing system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19364

Search results for: flexible manufacturing system

18494 Social Distancing as a Population Game in Networked Social Environments

Authors: Zhijun Wu

Abstract:

While social living is considered to be an indispensable part of human life in today's ever-connected world, social distancing has recently received much public attention on its importance since the outbreak of the coronavirus pandemic. In fact, social distancing has long been practiced in nature among solitary species and has been taken by humans as an effective way of stopping or slowing down the spread of infectious diseases. A social distancing problem is considered for how a population, when in the world with a network of social sites, decides to visit or stay at some sites while avoiding or closing down some others so that the social contacts across the network can be minimized. The problem is modeled as a population game, where every individual tries to find some network sites to visit or stay so that he/she can minimize all his/her social contacts. In the end, an optimal strategy can be found for everyone when the game reaches an equilibrium. The paper shows that a large class of equilibrium strategies can be obtained by selecting a set of social sites that forms a so-called maximal r-regular subnetwork. The latter includes many well-studied network types, which are easy to identify or construct and can be completely disconnected (with r = 0) for the most-strict isolation or allow certain degrees of connectivity (with r > 0) for more flexible distancing. The equilibrium conditions of these strategies are derived. Their rigidity and flexibility are analyzed on different types of r-regular subnetworks. It is proved that the strategies supported by maximal 0-regular subnetworks are strictly rigid, while those by general maximal r-regular subnetworks with r > 0 are flexible, though some can be weakly rigid. The proposed model can also be extended to weighted networks when different contact values are assigned to different network sites.

Keywords: social distancing, mitigation of spread of epidemics, populations games, networked social environments

Procedia PDF Downloads 118
18493 Study and Improvement of the Quality of a Production Line

Authors: S. Bouchami, M.N. Lakhoua

Abstract:

The automotive market is a dynamic market that continues to grow. That’s why several companies belonging to this sector adopt a quality improvement approach. Wanting to be competitive and successful in the environment in which they operate, these companies are dedicated to establishing a system of quality management to ensure the achievement of the objective quality, improving the products and process as well as the satisfaction of the customers. In this paper, the management of the quality and the improvement of a production line in an industrial company is presented. In fact, the project is divided into two essential parts: the creation of the technical line documentation and the quality assurance documentation and the resolution of defects at the line, as well as those claimed by the customer. The creation of the documents has required a deep understanding of the manufacturing process. The analysis and problem solving were done through the implementation of PDCA (Plan Do Check Act) and FTA (Fault Tree Analysis). As perspective, in order to better optimize production and improve the efficiency of the production line, a study on the problems associated with the supply of raw materials should be made to solve the problems of stock-outs which cause delays penalizing for the industrial company.

Keywords: quality management, documentary system, Plan Do Check Act (PDCA), fault tree analysis (FTA) method

Procedia PDF Downloads 123
18492 Local Energy and Flexibility Markets to Foster Demand Response Services within the Energy Community

Authors: Eduardo Rodrigues, Gisela Mendes, José M. Torres, José E. Sousa

Abstract:

In the sequence of the liberalisation of the electricity sector a progressive engagement of consumers has been considered and targeted by sector regulatory policies. With the objective of promoting market competition while protecting consumers interests, by transferring some of the upstream benefits to the end users while reaching a fair distribution of system costs, different market models to value consumers’ demand flexibility at the energy community level are envisioned. Local Energy and Flexibility Markets (LEFM) involve stakeholders interested in providing or procure local flexibility for community, services and markets’ value. Under the scope of DOMINOES, a European research project supported by Horizon 2020, the local market concept developed is expected to: • Enable consumers/prosumers empowerment, by allowing them to value their demand flexibility and Distributed Energy Resources (DER); • Value local liquid flexibility to support innovative distribution grid management, e.g., local balancing and congestion management, voltage control and grid restoration; • Ease the wholesale market uptake of DER, namely small-scale flexible loads aggregation as Virtual Power Plants (VPPs), facilitating Demand Response (DR) service provision; • Optimise the management and local sharing of Renewable Energy Sources (RES) in Medium Voltage (MV) and Low Voltage (LV) grids, trough energy transactions within an energy community; • Enhance the development of energy markets through innovative business models, compatible with ongoing policy developments, that promote the easy access of retailers and other service providers to the local markets, allowing them to take advantage of communities’ flexibility to optimise their portfolio and subsequently their participation in external markets. The general concept proposed foresees a flow of market actions, technical validations, subsequent deliveries of energy and/or flexibility and balance settlements. Since the market operation should be dynamic and capable of addressing different requests, either prioritising balancing and prosumer services or system’s operation, direct procurement of flexibility within the local market must also be considered. This paper aims to highlight the research on the definition of suitable DR models to be used by the Distribution System Operator (DSO), in case of technical needs, and by the retailer, mainly for portfolio optimisation and solve unbalances. The models to be proposed and implemented within relevant smart distribution grid and microgrid validation environments, are focused on day-ahead and intraday operation scenarios, for predictive management and near-real-time control respectively under the DSO’s perspective. At local level, the DSO will be able to procure flexibility in advance to tackle different grid constrains (e.g., demand peaks, forecasted voltage and current problems and maintenance works), or during the operating day-to-day, to answer unpredictable constraints (e.g., outages, frequency deviations and voltage problems). Due to the inherent risks of their active market participation retailers may resort to DR models to manage their portfolio, by optimising their market actions and solve unbalances. The interaction among the market actors involved in the DR activation and in flexibility exchange is explained by a set of sequence diagrams for the DR modes of use from the DSO and the energy provider perspectives. • DR for DSO’s predictive management – before the operating day; • DR for DSO’s real-time control – during the operating day; • DR for retailer’s day-ahead operation; • DR for retailer’s intraday operation.

Keywords: demand response, energy communities, flexible demand, local energy and flexibility markets

Procedia PDF Downloads 83
18491 Study of Phase Separation Behavior in Flexible Polyurethane Foam

Authors: El Hatka Hicham, Hafidi Youssef, Saghiri Khalid, Ittobane Najim

Abstract:

Flexible polyurethane foam (FPUF) is a low-density cellular material generally used as a cushioning material in many applications such as furniture, bedding, packaging, etc. It is commercially produced during a continuous process, where a reactive mixture of foam chemicals is poured onto a moving conveyor. FPUFs are produced by the catalytic balancing of two reactions involved, the blowing reaction (isocyanate-water) and the gelation reaction (isocyanate-polyol). The microstructure of FPUF is generally composed of soft phases (polyol phases) and rigid domains that separate into two domains of different sizes: the rigid polyurea microdomains and the macrodomains (larger aggregates). The morphological features of FPUF are strongly influenced by the phase separation morphology that plays a key role in determining the global FPUF properties. This phase-separated morphology results from a thermodynamic incompatibility between soft segments derived from aliphatic polyether and hard segments derived from the commonly used aromatic isocyanate. In order to improve the properties of FPUF against the different stresses faced by this material during its use, we report in this work a study of the phase separation phenomenon in FPUF that has been examined using SAXS WAXS and FTIR. Indeed, we have studied with these techniques the effect of water, isocyanates, and alkaline chlorides on the phase separation behavior. SAXS was used to study the morphology of the microphase separated, WAXS to examine the nature of the hard segment packing, and FTIR to investigate the hydrogen bonding characteristics of the materials studied. The prepared foams were shown to have different levels of urea phase connectivity; the increase in water content in the FPUF formulation leads to an increase in the amount of urea formed and consequently the increase of the size of urea aggregates formed. Alkali chlorides (NaCl, KCl, and LiCl) incorporated into FPUF formulations show that is the ability to prevent hydrogen bond formation and subsequently alter the rigid domains. FPUFs prepared by different isocyanate structures showed that urea aggregates are difficult to be formed in foams prepared by asymmetric diisocyanate, while are more easily formed in foams prepared by symmetric and aliphatic diisocyanate.

Keywords: flexible polyurethane foam, hard segments, phase separation, soft segments

Procedia PDF Downloads 139
18490 Estimation of the Exergy-Aggregated Value Generated by a Manufacturing Process Using the Theory of the Exergetic Cost

Authors: German Osma, Gabriel Ordonez

Abstract:

The production of metal-rubber spares for vehicles is a sequential process that consists in the transformation of raw material through cutting activities and chemical and thermal treatments, which demand electricity and fossil fuels. The energy efficiency analysis for these cases is mostly focused on studying of each machine or production step, but is not common to study of the quality of the production process achieves from aggregated value viewpoint, which can be used as a quality measurement for determining of impact on the environment. In this paper, the theory of exergetic cost is used for determining of aggregated exergy to three metal-rubber spares, from an exergy analysis and thermoeconomic analysis. The manufacturing processing of these spares is based into batch production technique, and therefore is proposed the use of this theory for discontinuous flows from of single models of workstations; subsequently, the complete exergy model of each product is built using flowcharts. These models are a representation of exergy flows between components into the machines according to electrical, mechanical and/or thermal expressions; they determine the demanded exergy to produce the effective transformation in raw materials (aggregated exergy value), the exergy losses caused by equipment and irreversibilities. The energy resources of manufacturing process are electricity and natural gas. The workstations considered are lathes, punching presses, cutters, zinc machine, chemical treatment tanks, hydraulic vulcanizing presses and rubber mixer. The thermoeconomic analysis was done by workstation and by spare; first of them describes the operation of the components of each machine and where the exergy losses are; while the second of them estimates the exergy-aggregated value for finished product and wasted feedstock. Results indicate that exergy efficiency of a mechanical workstation is between 10% and 60% while this value in the thermal workstations is less than 5%; also that each effective exergy-aggregated value is one-thirtieth of total exergy required for operation of manufacturing process, which amounts approximately to 2 MJ. These troubles are caused mainly by technical limitations of machines, oversizing of metal feedstock that demands more mechanical transformation work, and low thermal insulation of chemical treatment tanks and hydraulic vulcanizing presses. From established information, in this case, it is possible to appreciate the usefulness of theory of exergetic cost for analyzing of aggregated value in manufacturing processes.

Keywords: exergy-aggregated value, exergy efficiency, thermoeconomics, exergy modeling

Procedia PDF Downloads 155
18489 Performance Improvement of Piston Engine in Aeronautics by Means of Additive Manufacturing Technologies

Authors: G. Andreutti, G. Saccone, D. Lucariello, C. Pirozzi, S. Franchitti, R. Borrelli, C. Toscano, P. Caso, G. Ferraro, C. Pascarella

Abstract:

The reduction of greenhouse gases and pollution emissions is a worldwide environmental issue. The amount of CO₂ released by an aircraft is associated with the amount of fuel burned, so the improvement of engine thermo-mechanical efficiency and specific fuel consumption is a significant technological driver for aviation. Moreover, with the prospect that avgas will be phased out, an engine able to use more available and cheaper fuels is an evident advantage. An advanced aeronautical Diesel engine, because of its high efficiency and ability to use widely available and low-cost jet and diesel fuels, is a promising solution to achieve a more fuel-efficient aircraft. On the other hand, a Diesel engine has generally a higher overall weight, if compared with a gasoline one of same power performances. Fixing the MTOW, Max Take-Off Weight, and the operational payload, this extra-weight reduces the aircraft fuel fraction, partially vinifying the associated benefits. Therefore, an effort in weight saving manufacturing technologies is likely desirable. In this work, in order to achieve the mentioned goals, innovative Electron Beam Melting – EBM, Additive Manufacturing – AM technologies were applied to a two-stroke, common rail, GF56 Diesel engine, developed by the CMD Company for aeronautic applications. For this purpose, a consortium of academic, research and industrial partners, including CMD Company, Italian Aerospace Research Centre – CIRA, University of Naples Federico II and the University of Salerno carried out a technological project, funded by the Italian Minister of Education and Research – MIUR. The project aimed to optimize the baseline engine in order to improve its performance and increase its airworthiness features. This project was focused on the definition, design, development, and application of enabling technologies for performance improvement of GF56. Weight saving of this engine was pursued through the application of EBM-AM technologies and in particular using Arcam AB A2X machine, available at CIRA. The 3D printer processes titanium alloy micro-powders and it was employed to realize new connecting rods of the GF56 engine with an additive-oriented design approach. After a preliminary investigation of EBM process parameters and a thermo-mechanical characterization of titanium alloy samples, additive manufactured, innovative connecting rods were fabricated. These engine elements were structurally verified, topologically optimized, 3D printed and suitably post-processed. Finally, the overall performance improvement, on a typical General Aviation aircraft, was estimated, substituting the conventional engine with the optimized GF56 propulsion system.

Keywords: aeronautic propulsion, additive manufacturing, performance improvement, weight saving, piston engine

Procedia PDF Downloads 126
18488 Implementing a Structured, yet Flexible Tool for Critical Information Handover

Authors: Racheli Magnezi, Inbal Gazit, Michal Rassin, Joseph Barr, Orna Tal

Abstract:

An effective process for transmitting patient critical information is essential for patient safety and for improving communication among healthcare staff. Previous studies have discussed handover tools such as SBAR (Situation, Background, Assessment, Recommendation) or SOFI (Short Observational Framework for Inspection). Yet, these formats lack flexibility, and require special training. In addition, nurses and physicians have different procedures for handing over information. The objectives of this study were to establish a universal, structured tool for handover, for both physicians and nurses, based on parameters that were defined as ‘important’ and ‘appropriate’ by the medical team, and to implement this tool in various hospital departments, with flexibility for each ward. A questionnaire, based on established procedures and on the literature, was developed to assess attitudes towards the most important information for effective handover between shifts (Cronbach's alpha 0.78). It was distributed to 150 senior physicians and nurses in 62 departments. Among senior medical staff, 12 physicians and 66 nurses responded to the questionnaire (52% response rate). Based on the responses, a handover form suitable for all hospital departments was designed and implemented. Important information for all staff included: Patient demographics (full name and age); Health information (diagnosis or patient complaint, changes in hemodynamic status, new medical treatment or equipment required); and Social Information (suspicion of violence, mental or behavioral changes, and guardianship). Additional information relevant to each unit included treatment provided, laboratory or imaging required, and change in scheduled surgery in surgical departments. ICU required information on background illnesses, Pediatrics required information on diet and food provided and Obstetrics required the number of days after cesarean section. Based on the model described, a flexible tool was developed that enables handover of both common and unique information. In addition, it includes general logistic information that must be transmitted to the next shift, such as planned disruptions in service or operations, staff training, etc. Development of a simple, clear, comprehensive, universal, yet flexible tool designed for all medical staff for transmitting critical information between shifts was challenging. Physicians and nurses found it useful and it was widely implemented. Ongoing research is needed to examine the efficiency of this tool, and whether the enthusiasm that accompanied its initial use is maintained.

Keywords: handover, nurses, hospital, critical information

Procedia PDF Downloads 231
18487 Manufacturing Process of S-Glass Fiber Reinforced PEKK Prepregs

Authors: Nassier A. Nassir, Robert Birch, Zhongwei Guan

Abstract:

The aim of this study is to investigate the fundamental science/technology related to novel S-glass fiber reinforced polyether- ketone-ketone (GF/PEKK) composites and to gain insight into bonding strength and failure mechanisms. Different manufacturing techniques to make this high-temperature pre-impregnated composite (prepreg) were conducted i.e. mechanical deposition, electrostatic powder deposition, and dry powder prepregging techniques. Generally, the results of this investigation showed that it was difficult to control the distribution of the resin powder evenly on the both sides of the fibers within a specific percentage. Most successful approach was by using a dry powder prepregging where the fibers were coated evenly with an adhesive that served as a temporary binder to hold the resin powder in place onto the glass fiber fabric.

Keywords: sry powder technique, PEKK, S-glass, thermoplastic prepreg

Procedia PDF Downloads 193
18486 Characteristic Study on Conventional and Soliton Based Transmission System

Authors: Bhupeshwaran Mani, S. Radha, A. Jawahar, A. Sivasubramanian

Abstract:

Here, we study the characteristic feature of conventional (ON-OFF keying) and soliton based transmission system. We consider 20 Gbps transmission system implemented with Conventional Single Mode Fiber (C-SMF) to examine the role of Gaussian pulse which is the characteristic of conventional propagation and hyperbolic-secant pulse which is the characteristic of soliton propagation in it. We note the influence of these pulses with respect to different dispersion lengths and soliton period in conventional and soliton system, respectively, and evaluate the system performance in terms of quality factor. From the analysis, we could prove that the soliton pulse has more consistent performance even for long distance without dispersion compensation than the conventional system as it is robust to dispersion. For the length of transmission of 200 Km, soliton system yielded Q of 33.958 while the conventional system totally exhausted with Q=0.

Keywords: dispersion length, retrun-to-zero (rz), soliton, soliton period, q-factor

Procedia PDF Downloads 326
18485 Manufacturing and Characterization of Bioresorbable Self-Reinforced PLA Composites for Bone Applications

Authors: Carolina Pereira Lobato Costa, Cristina Pascual-González, Monica Echeverry, Javier LLorca, Carlos Gonzáléz, Juan Pedro Fernández-Bláquez

Abstract:

Although the potential of PLA self-reinforced composites for bone applications, not much literature addresses optimal manufacturing conditions. In this regard, this paper describes the woven self-reinforced PLA composites manufacturing processes: the commingling of yarns, weaving, and hot pressing and characterizes the manufactured laminates. Different structures and properties can be achieved by varying the hot compaction process parameters (pressure, holding time, and temperature). The specimens manufactured were characterized in terms of thermal properties (DSC), microstructure (C-scan optical microscope and SEM), strength (tensile test), and biocompatibility (MTT assays). Considering the final device, 155 ℃ for 10 min at 2 MPa act as the more appropriate hot pressing parameters. The laminate produced with these conditions has few voids/porosity, a tensile strength of 30.39 ± 1.21 MPa, and a modulus of 4.09 ± 0.24 GPa. Subsequently to the tensile testing was possible to observe fiber pullout from the fracture surfaces, confirming that this material behaves as a composite. From the results, no single laminate can fulfill all the requirements, being necessary to compromise in function of the priority property. Further investigation is required to improve materials' mechanical performance. Subsequently, process parameters and materials configuration can be adjusted depending on the place and type of implant to suit its function.

Keywords: woven fabric, self-reinforced polymer composite, poly(lactic acid), biodegradable

Procedia PDF Downloads 178
18484 Impact of Using Pyrolytic Carbon Black as Asphalt Modifier on Wearing Course of Flexible Pavement

Authors: Samiya Siddique, Taslima Akter Elma, Shahrina Mahzabin, Tamanna Jerin, Mohammed Russedul Islam

Abstract:

In the maneuver and designing of highway engineering, pavement performance is a principal concern. Quality of construction and materials, traffic volume, climate, etc. are the factors that affect the performance of asphalt concrete. Modified asphalt requires to attain greater strength and stability even at inimical circumstances. In this point of view, pyrolytic carbon black (PCB), which is a by-product of waste tire pyrolysis, holds incomparable properties that individualizes it from other conventional fillers by making it an imminent modifier of bitumen. Optimum asphalt content of 60/70 penetration grade asphalt is determined 5% through the Marshall Stability and Flow test for the wearing course of flexible pavement. 5, 10, and 15 percentages of PCB are then used with neat asphalt for modification. Deviations of physical and rheological properties are investigated on both PCB modified and neat asphalt by going through several laboratory tests such as penetration, softening point, and ductility tests. The obtained results reveal that the performance of paving asphalt can be upgraded by modifying it with PCB. With the increasing percentage of PCB, ductility is gradually decreased, and also penetration grade is gradually reduced from 60/70 to 30/40. Furthermore, asphalt mixtures modified with PCB demonstrate higher stability and lower flow values. The research discloses that the apposite percentage of PCB used in asphalt concrete plays a significant role in the advancement of pavement performances and reutilizing of waste tires.

Keywords: asphalt modification, pavement performances, pyrolytic carbon black, marshall stability, wearing course

Procedia PDF Downloads 134
18483 Effect of Print Orientation on the Mechanical Properties of Multi Jet Fusion Additively Manufactured Polyamide-12

Authors: Tyler Palma, Praveen Damasus, Michael Munther, Mehrdad Mohsenizadeh, Keivan Davami

Abstract:

The advancement of additive manufacturing, in both research and commercial realms, is highly dependent upon continuing innovations and creativity in materials and designs. Additive manufacturing shows great promise towards revolutionizing various industries, due largely to the fact that design data can be used to create complex products and components, on demand and from the raw materials, for the end user at the point of use. However, it will be critical that the material properties of additively-made parts for engineering purposes be fully understood. As it is a relatively new additive manufacturing method, the response of properties of Multi Jet Fusion (MJF) produced parts to different printing parameters has not been well studied. In this work, testing of mechanical and tribological properties MJF-printed Polyamide 12 parts was performed to determine whether printing orientation in this method results in significantly different part performances. Material properties were studied at macro- and nanoscales. Tensile tests, in combination with tribology tests including steady-state wear, were performed. Results showed a significant difference in resultant part characteristics based on whether they were printed in a vertical or horizontal orientation. Tensile performance of vertically and horizontally printed samples varied, both in ultimate strength and strain. Tribology tests showed that printing orientation has notable effects on the resulting mechanical and wear properties of tested surfaces, due largely to layer orientation and the presence of unfused fused powder grain inclusions. This research advances the understanding of how print orientation affects the mechanical properties of additively manufactured structures, and also how print orientation can be exploited in future engineering design.

Keywords: additive manufacturing, indentation, nano mechanical characterization, print orientation

Procedia PDF Downloads 128
18482 Benefits of High Power Impulse Magnetron Sputtering (HiPIMS) Method for Preparation of Transparent Indium Gallium Zinc Oxide (IGZO) Thin Films

Authors: Pavel Baroch, Jiri Rezek, Michal Prochazka, Tomas Kozak, Jiri Houska

Abstract:

Transparent semiconducting amorphous IGZO films have attracted great attention due to their excellent electrical properties and possible utilization in thin film transistors or in photovoltaic applications as they show 20-50 times higher mobility than that of amorphous silicon. It is also known that the properties of IGZO films are highly sensitive to process parameters, especially to oxygen partial pressure. In this study we have focused on the comparison of properties of transparent semiconducting amorphous indium gallium zinc oxide (IGZO) thin films prepared by conventional sputtering methods and those prepared by high power impulse magnetron sputtering (HiPIMS) method. Furthermore we tried to optimize electrical and optical properties of the IGZO thin films and to investigate possibility to apply these coatings on thermally sensitive flexible substrates. We employed dc, pulsed dc, mid frequency sine wave and HiPIMS power supplies for magnetron deposition. Magnetrons were equipped with sintered ceramic InGaZnO targets. As oxygen vacancies are considered to be the main source of the carriers in IGZO films, it is expected that with the increase of oxygen partial pressure number of oxygen vacancies decreases which results in the increase of film resistivity. Therefore in all experiments we focused on the effect of oxygen partial pressure, discharge power and pulsed power mode on the electrical, optical and mechanical properties of IGZO thin films and also on the thermal load deposited to the substrate. As expected, we have observed a very fast transition between low- and high-resistivity films depending on oxygen partial pressure when deposition using conventional sputtering methods/power supplies have been utilized. Therefore we established and utilized HiPIMS sputtering system for enlargement of operation window for better control of IGZO thin film properties. It is shown that with this system we are able to effectively eliminate steep transition between low and high resistivity films exhibited by DC mode of sputtering and the electrical resistivity can be effectively controlled in the wide resistivity range of 10-² to 10⁵ Ω.cm. The highest mobility of charge carriers (up to 50 cm2/V.s) was obtained at very low oxygen partial pressures. Utilization of HiPIMS also led to significant decrease in thermal load deposited to the substrate which is beneficial for deposition on the thermally sensitive and flexible polymer substrates. Deposition rate as a function of discharge power and oxygen partial pressure was also systematically investigated and the results from optical, electrical and structure analysis will be discussed in detail. Most important result which we have obtained demonstrates almost linear control of IGZO thin films resistivity with increasing of oxygen partial pressure utilizing HiPIMS mode of sputtering and highly transparent films with low resistivity were prepared already at low pO2. It was also found that utilization of HiPIMS technique resulted in significant improvement of surface smoothness in reactive mode of sputtering (with increasing of oxygen partial pressure).

Keywords: charge carrier mobility, HiPIMS, IGZO, resistivity

Procedia PDF Downloads 277
18481 Investigations on Utilization of Chrome Sludge, Chemical Industry Waste, in Cement Manufacturing and Its Effect on Clinker Mineralogy

Authors: Suresh Vanguri, Suresh Palla, Prasad G., Ramaswamy V., Kalyani K. V., Chaturvedi S. K., Mohapatra B. N., Sunder Rao TBVN

Abstract:

The utilization of industrial waste materials and by-products in the cement industry helps in the conservation of natural resources besides avoiding the problems arising due to waste dumping. The use of non-carbonated materials as raw mix components in clinker manufacturing is identified as one of the key areas to reduce Green House Gas (GHG) emissions. Chrome sludge is a waste material generated from the manufacturing process of sodium dichromate. This paper aims to present studies on the use of chrome sludge in clinker manufacturing, its impact on the development of clinker mineral phases and on the cement properties. Chrome sludge was found to contain substantial amounts of CaO, Fe2O3 and Al2O3 and therefore was used to replace some conventional sources of alumina and iron in the raw mix. Different mixes were prepared by varying the chrome sludge content from 0 to 5 % and the mixes were evaluated for burnability. Laboratory prepared clinker samples were evaluated for qualitative and quantitative mineralogy using X-ray Diffraction Studies (XRD). Optical microscopy was employed to study the distribution of clinker phases, their granulometry and mineralogy. Since chrome sludge also contains considerable amounts of chromium, studies were conducted on the leachability of heavy elements in the chrome sludge as well as in the resultant cement samples. Estimation of heavy elements, including chromium was carried out using ICP-OES. Further, the state of chromium valence, Cr (III) & Cr (VI), was studied using conventional chemical analysis methods coupled with UV-VIS spectroscopy. Assimilation of chromium in the clinker phases was investigated using SEM-EDXA studies. Bulk cement was prepared from the clinker to study the effect of chromium sludge on the cement properties such as setting time, soundness, strength development against the control cement. Studies indicated that chrome sludge can be successfully utilized and its content needs to be optimized based on raw material characteristics.

Keywords: chrome sludge, leaching, mineralogy, non-carbonate materials

Procedia PDF Downloads 192
18480 Developing a Recommendation Library System based on Android Application

Authors: Kunyanuth Kularbphettong, Kunnika Tenprakhon, Pattarapan Roonrakwit

Abstract:

In this paper, we present a recommendation library application on Android system. The objective of this system is to support and advice user to use library resources based on mobile application. We describe the design approaches and functional components of this system. The system was developed based on under association rules, Apriori algorithm. In this project, it was divided the result by the research purposes into 2 parts: developing the Mobile application for online library service and testing and evaluating the system. Questionnaires were used to measure user satisfaction with system usability by specialists and users. The results were satisfactory both specialists and users.

Keywords: online library, Apriori algorithm, Android application, black box

Procedia PDF Downloads 467
18479 Agent-Based Modeling Investigating Self-Organization in Open, Non-equilibrium Thermodynamic Systems

Authors: Georgi Y. Georgiev, Matthew Brouillet

Abstract:

This research applies the power of agent-based modeling to a pivotal question at the intersection of biology, computer science, physics, and complex systems theory about the self-organization processes in open, complex, non-equilibrium thermodynamic systems. Central to this investigation is the principle of Maximum Entropy Production (MEP). This principle suggests that such systems evolve toward states that optimize entropy production, leading to the formation of structured environments. It is hypothesized that guided by the least action principle, open thermodynamic systems identify and follow the shortest paths to transmit energy and matter, resulting in maximal entropy production, internal structure formation, and a decrease in internal entropy. Concurrently, it is predicted that there will be an increase in system information as more information is required to describe the developing structure. To test this, an agent-based model is developed simulating an ant colony's formation of a path between a food source and its nest. Utilizing the Netlogo software for modeling and Python for data analysis and visualization, self-organization is quantified by calculating the decrease in system entropy based on the potential states and distribution of the ants within the simulated environment. External entropy production is also evaluated for information increase and efficiency improvements in the system's action. Simulations demonstrated that the system begins at maximal entropy, which decreases as the ants form paths over time. A range of system behaviors contingent upon the number of ants are observed. Notably, no path formation occurred with fewer than five ants, whereas clear paths were established by 200 ants, and saturation of path formation and entropy state was reached at populations exceeding 1000 ants. This analytical approach identified the inflection point marking the transition from disorder to order and computed the slope at this point. Combined with extrapolation to the final path entropy, these parameters yield important insights into the eventual entropy state of the system and the timeframe for its establishment, enabling the estimation of the self-organization rate. This study provides a novel perspective on the exploration of self-organization in thermodynamic systems, establishing a correlation between internal entropy decrease rate and external entropy production rate. Moreover, it presents a flexible framework for assessing the impact of external factors like changes in world size, path obstacles, and friction. Overall, this research offers a robust, replicable model for studying self-organization processes in any open thermodynamic system. As such, it provides a foundation for further in-depth exploration of the complex behaviors of these systems and contributes to the development of more efficient self-organizing systems across various scientific fields.

Keywords: complexity, self-organization, agent based modelling, efficiency

Procedia PDF Downloads 48
18478 Control Configuration System as a Key Element in Distributed Control System

Authors: Goodarz Sabetian, Sajjad Moshfe

Abstract:

Control system for hi-tech industries could be realized generally and deeply by a special document. Vast heavy industries such as power plants with a large number of I/O signals are controlled by a distributed control system (DCS). This system comprises of so many parts from field level to high control level, and junior instrument engineers may be confused by this enormous information. The key document which can solve this problem is “control configuration system diagram” for each type of DCS. This is a road map that covers all of activities respect to control system in each industrial plant and inevitable to be studied by whom corresponded. It plays an important role from designing control system start point until the end; deliver the system to operate. This should be inserted in bid documents, contracts, purchasing specification and used in different periods of project EPC (engineering, procurement, and construction). Separate parts of DCS are categorized here in order of importance and a brief description and some practical plan is offered. This article could be useful for all instrument and control engineers who worked is EPC projects.

Keywords: control, configuration, DCS, power plant, bus

Procedia PDF Downloads 475
18477 The Design and Construction of the PV-Wind Autonomous System for Greenhouse Plantations in Central Thailand

Authors: Napat Watjanatepin, Wikorn Wong-Satiean

Abstract:

The objective of this research is to design and construct the PV-Wind hybrid autonomous system for the greenhouse plantation, and analyze the technical performance of the PV-Wind energy system. This design depends on the water consumption in the greenhouse by using 24 of the fogging mist each with the capability of 24 liter/min. The operating time is 4 times per day, each round for 15 min. The fogging system is being driven by water pump with AC motor rating 0.5 hp. The load energy consumed is around 1.125 kWh/d. The designing results of the PV-Wind hybrid energy system is that sufficient energy could be generated by this system. The results of this study can be applied as a technical data reference for other areas in the central part of Thailand.

Keywords: PV-Wind hybrid autonomous system, greenhouse plantation, fogging system, central part of Thailand

Procedia PDF Downloads 296
18476 A Development of a Weight-Balancing Control System Based On Android Operating System

Authors: Rattanathip Rattanachai, Piyachai Petchyen, Kunyanuth Kularbphettong

Abstract:

This paper describes the development of a Weight- Balancing Control System based on the Android Operating System and it provides recommendations on ways of balancing of user’s weight based on daily metabolism process and need so that user can make informed decisions on his or her weight controls. The system also depicts more information on nutrition details. Furthermore, it was designed to suggest to users what kinds of foods they should eat and how to exercise in the right ways. We describe the design methods and functional components of this prototype. To evaluate the system performance, questionnaires for system usability and Black Box Testing were used to measure expert and user satisfaction. The results were satisfactory as followed: Means for experts and users were 3.94 and 4.07 respectively.

Keywords: weight-balancing control, Android operating system, daily metabolism, black box testing

Procedia PDF Downloads 455
18475 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments

Authors: A. Kampker, K. Kreisköther, C. Reinders

Abstract:

Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.

Keywords: additive manufacturing, design of experiments, mold making, PolyJet, 3D-Printing

Procedia PDF Downloads 241
18474 Simulation and Analysis of Different Parameters in Hydraulic Circuit Due to Leakage

Authors: J.Das, Gyan Wrat

Abstract:

Leakage is the main gradual failure in the fluid power system, which is usually caused by the impurity in the oil and wear of matching surfaces between parts and lead to the change of the gap value. When leakage occurs in the system, the oil will flow from the high pressure chamber into the low pressure chamber through the gap, causing the reduction of system flow as well as the loss of system pressure, resulting in the decreasing of system efficiency. In the fluid power system, internal leakage may occur in various components such as gear pump, reversing valve and hydraulic cylinder, and affect the system work performance. Therefore, component leakage in the fluid power system is selected as the study to characterize the leakage and the effect of leakage on the system. Effect of leakage on system pressure and cylinder displacement can be obtained using pressure sensors and the displacement sensor. The leakage can be varied by changing the orifice using a flow control valve. Hydraulic circuit for leakage will be developed in Matlab/Simulink environment and simulations will be done by changing different parameters.

Keywords: leakage causes, effect, analysis, MATLAB simulation, hydraulic circuit

Procedia PDF Downloads 380
18473 Integrating Cyber-Physical System toward Advance Intelligent Industry: Features, Requirements and Challenges

Authors: V. Reyes, P. Ferreira

Abstract:

In response to high levels of competitiveness, industrial systems have evolved to improve productivity. As a consequence, a rapid increase in volume production and simultaneously, a customization process require lower costs, more variety, and accurate quality of products. Reducing time-cycle production, enabling customizability, and ensure continuous quality improvement are key features in advance intelligent industry. In this scenario, customers and producers will be able to participate in the ongoing production life cycle through real-time interaction. To achieve this vision, transparency, predictability, and adaptability are key features that provide the industrial systems the capability to adapt to customer demands modifying the manufacturing process through an autonomous response and acting preventively to avoid errors. The industrial system incorporates a diversified number of components that in advanced industry are expected to be decentralized, end to end communicating, and with the capability to make own decisions through feedback. The evolving process towards advanced intelligent industry defines a set of stages to empower components of intelligence and enhancing efficiency to achieve the decision-making stage. The integrated system follows an industrial cyber-physical system (CPS) architecture whose real-time integration, based on a set of enabler technologies, links the physical and virtual world generating the digital twin (DT). This instance allows incorporating sensor data from real to virtual world and the required transparency for real-time monitoring and control, contributing to address important features of the advanced intelligent industry and simultaneously improve sustainability. Assuming the industrial CPS as the core technology toward the latest advanced intelligent industry stage, this paper reviews and highlights the correlation and contributions of the enabler technologies for the operationalization of each stage in the path toward advanced intelligent industry. From this research, a real-time integration architecture for a cyber-physical system with applications to collaborative robotics is proposed. The required functionalities and issues to endow the industrial system of adaptability are identified.

Keywords: cyber-physical systems, digital twin, sensor data, system integration, virtual model

Procedia PDF Downloads 103
18472 Corporate Governance, Performance, and Financial Reporting Quality of Listed Manufacturing Firms in Nigeria

Authors: Jamila Garba Audu, Shehu Usman Hassan

Abstract:

The widespread failure in the financial information quality has created the need to improve the financial information quality and to strengthen the control of managers by setting up good firms structures. Published accounting information in financial statements is required to provide various users - shareholders, employees, suppliers, creditors, financial analysts, stockbrokers and government agencies – with timely and reliable information useful for making prudent, effective and efficient decisions. The relationship between corporate governance and performance to financial reporting quality is imperative; this is because despite rapid researches in this area the findings obtained from these studies are constantly inconclusive. Data for the study were extracted from the firms’ annual reports and accounts. After running the OLS regression, a robustness test was conducted for the validity of statistical inferences; the data was empirically tested. A multiple regression was employed to test the model as a technique for data analysis. The results from the analysis revealed a negative association between all the regressors and financial reporting quality except the performance of listed manufacturing firms in Nigeria. This indicates that corporate governance plays a significant role in mitigating earnings management and improving financial reporting quality while performance does not. The study recommended among others that the composition of audit committee should be made in accordance with the provision for code of corporate governance which is not more than six (6) members with at least one (1) financial expert.

Keywords: corporate governance, financial reporting quality, manufacturing firms, Nigeria, performance

Procedia PDF Downloads 231
18471 Value Relevance of Accounting Information: Empirical Evidence from China

Authors: Ying Guo, Miaochan Li, David Yang, Xiao-Yan Li

Abstract:

This paper examines the relevance of accounting information to stock prices at different periods using manufacturing companies listed in China’s Growth Enterprise Market (GEM). We find that both the average stock price at fiscal year-end and the average stock price one month after fiscal year-end are more relevant to the accounting information than the closing stock price four months after fiscal year-end. This implies that Chinese stock markets react before the public disclosure of accounting information, which may be due to information leak before official announcements. Our findings confirm that accounting information is relevant to stock prices for Chinese listed manufacturing companies, which is a critical question to answer for investors who have interest in Chinese companies.

Keywords: accounting information, response time, value relevance, stock price

Procedia PDF Downloads 75
18470 The Management Information System for Convenience Stores: Case Study in 7 Eleven Shop in Bangkok

Authors: Supattra Kanchanopast

Abstract:

The purpose of this research is to develop and design a management information system for 7 eleven shop in Bangkok. The system was designed and developed to meet users’ requirements via the internet network by use of application software such as My SQL for database management, Apache HTTP Server for Web Server and PHP Hypertext Preprocessor for an interface between web server, database and users. The system was designed into two subsystems as the main system, or system for head office, and the branch system for branch shops. These consisted of three parts which are classified by user management as shop management, inventory management and Point of Sale (POS) management. The implementation of the MIS for the mini-mart shop, can lessen the amount of paperwork and reduce repeating tasks so it may decrease the capital of the business and support an extension of branches in the future as well.

Keywords: convenience store, the management information system, inventory management, 7 eleven shop

Procedia PDF Downloads 446
18469 Proposal of Innovative Risk Assessment of Ergonomic Factors in the Production of Jet Engines Using AHP (Analytic Hierarchy Process)

Authors: Jose Cristiano Pereira, Gilson Brito Alves Lima

Abstract:

Ergonomics is a key factor affecting the operational safety and quality in the aircraft engine manufacturing industry and evidence shows that the lack of attention to it can increase the risk of accidents. In order to emphasize the importance of ergonomics, this paper systematically reviews the critical processes used in the aircraft engine production industry with focus on the ergonomic factors. about the subject to identify key ergonomic factors. Experts validated the factors and used AHP to rank the factors in order of significance. From the six key risk factors identified, the ones with the highest weight are psychological demand followed by understanding of operational side. These factors suggest that measures must be taken to improve ergonomic factors, quality and safety in the manufacturing of aircraft engines.

Keywords: ergonomics, safety, aviation, aircraft engine production

Procedia PDF Downloads 297
18468 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model

Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino

Abstract:

The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method.

Keywords: base-isolated structures, earthquake engineering, mixed time integration, nonlinear exponential model

Procedia PDF Downloads 263
18467 The Colouration of Additive-Manufactured Polymer

Authors: Abisuga Oluwayemisi Adebola, Kerri Akiwowo, Deon de Beer, Kobus Van Der Walt

Abstract:

The convergence of additive manufacturing (AM) and traditional textile dyeing techniques has initiated innovative possibilities for improving the visual application and customization potential of 3D-printed polymer objects. Textile dyeing techniques have progressed to transform fabrics with vibrant colours and complex patterns over centuries. The layer-by-layer deposition characteristic of AM necessitates adaptations in dye application methods to ensure even colour penetration across complex surfaces. Compatibility between dye formulations and polymer matrices influences colour uptake and stability, demanding careful selection and testing of dyes for optimal results. This study investigates the development interaction between these areas, revealing the challenges and opportunities of applying textile dyeing methods to colour 3D-printed polymer materials. The method explores three innovative approaches to colour the 3D-printed polymer object: (a) Additive Manufacturing of a Prototype, (b) the traditional dyebath method, and (c) the contemporary digital sublimation technique. The results show that the layer lines inherent to AM interact with dyes differently and affect the visual outcome compared to traditional textile fibers. Skillful manipulation of textile dyeing methods and dye type used for this research reduced the appearance of these lines to achieve consistency and desirable colour outcomes. In conclusion, integrating textile dyeing techniques into colouring 3D-printed polymer materials connects historical craftsmanship with innovative manufacturing. Overcoming challenges of colour distribution, compatibility, and layer line management requires a holistic approach that blends the technical consistency of AM with the artistic sensitivity of textile dyeing. Hence, applying textile dyeing methods to 3D-printed polymers opens new dimensions of aesthetic and functional possibilities.

Keywords: polymer, 3D-printing, sublimation, textile, dyeing, additive manufacturing

Procedia PDF Downloads 55
18466 Bank Concentration and Industry Structure: Evidence from China

Authors: Jingjing Ye, Cijun Fan, Yan Dong

Abstract:

The development of financial sector plays an important role in shaping industrial structure. However, evidence on the micro-level channels through which this relation manifest remains relatively sparse, particularly for developing countries. In this paper, we compile an industry-by-city dataset based on manufacturing firms and registered banks in 287 Chinese cities from 1998 to 2008. Based on a difference-in-difference approach, we find the highly concentrated banking sector decreases the competitiveness of firms in each manufacturing industry. There are two main reasons: i) bank accessibility successfully fosters firm expansion within each industry, however, only for sufficiently large enterprises; ii) state-owned enterprises are favored by the banking industry in China. The results are robust after considering alternative concentration and external finance dependence measures.

Keywords: bank concentration, China, difference-in-difference, industry structure

Procedia PDF Downloads 373
18465 GSM Based Smart Patient Monitoring System

Authors: Ayman M. Mansour

Abstract:

In this paper, we propose an intelligent system that is used for monitoring the health conditions of Patients. Monitoring the health condition of Patients is a complex problem that involves different medical units and requires continuous monitoring especially in rural areas because of inadequate number of available specialized physicians. The proposed system will Improve patient care and drive costs down comparing to the existing system in Jordan. The proposed system will be the start point to Faster and improve the communication between different units in the health system in Jordan. Connecting patients and their physicians beyond hospital doors regarding their geographical area is an important issue in developing the health system in Jordan. The propose system will provide an intelligent system that will generate initial diagnosing to the patient case. This will assist and advice clinicians at the point of care. The decision is based on demographic data and laboratory test results of patient data. Using such system with the ability of making medical decisions, the quality of medical care in Jordan and specifically in Tafial is expected to be improved. This will provide more accurate, effective, and reliable diagnoses and treatments especially if the physicians have insufficient knowledge.

Keywords: GSM, SMS, patient, monitoring system, fuzzy logic, multi-agent system

Procedia PDF Downloads 549