Search results for: financial bubble detection
5505 Moving Object Detection Using Histogram of Uniformly Oriented Gradient
Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang
Abstract:
Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.Keywords: moving object detection, histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine
Procedia PDF Downloads 5945504 Basic Study of Mammographic Image Magnification System with Eye-Detector and Simple EEG Scanner
Authors: Aika Umemuro, Mitsuru Sato, Mizuki Narita, Saya Hori, Saya Sakurai, Tomomi Nakayama, Ayano Nakazawa, Toshihiro Ogura
Abstract:
Mammography requires the detection of very small calcifications, and physicians search for microcalcifications by magnifying the images as they read them. The mouse is necessary to zoom in on the images, but this can be tiring and distracting when many images are read in a single day. Therefore, an image magnification system combining an eye-detector and a simple electroencephalograph (EEG) scanner was devised, and its operability was evaluated. Two experiments were conducted in this study: the measurement of eye-detection error using an eye-detector and the measurement of the time required for image magnification using a simple EEG scanner. Eye-detector validation showed that the mean distance of eye-detection error ranged from 0.64 cm to 2.17 cm, with an overall mean of 1.24 ± 0.81 cm for the observers. The results showed that the eye detection error was small enough for the magnified area of the mammographic image. The average time required for point magnification in the verification of the simple EEG scanner ranged from 5.85 to 16.73 seconds, and individual differences were observed. The reason for this may be that the size of the simple EEG scanner used was not adjustable, so it did not fit well for some subjects. The use of a simple EEG scanner with size adjustment would solve this problem. Therefore, the image magnification system using the eye-detector and the simple EEG scanner is useful.Keywords: EEG scanner, eye-detector, mammography, observers
Procedia PDF Downloads 2155503 The Contribution of Edgeworth, Bootstrap and Monte Carlo Methods in Financial Data
Authors: Edlira Donefski, Tina Donefski, Lorenc Ekonomi
Abstract:
Edgeworth Approximation, Bootstrap, and Monte Carlo Simulations have considerable impacts on achieving certain results related to different problems taken into study. In our paper, we have treated a financial case related to the effect that has the components of a cash-flow of one of the most successful businesses in the world, as the financial activity, operational activity, and investment activity to the cash and cash equivalents at the end of the three-months period. To have a better view of this case, we have created a vector autoregression model, and after that, we have generated the impulse responses in the terms of asymptotic analysis (Edgeworth Approximation), Monte Carlo Simulations, and residual bootstrap based on the standard errors of every series created. The generated results consisted of the common tendencies for the three methods applied that consequently verified the advantage of the three methods in the optimization of the model that contains many variants.Keywords: autoregression, bootstrap, edgeworth expansion, Monte Carlo method
Procedia PDF Downloads 1545502 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux
Authors: Hao Mi, Ming Yang, Tian-yue Yang
Abstract:
Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing
Procedia PDF Downloads 2245501 Evaluating the Influence of Financial Technology (FinTech) on Sustainable Finance: A Comprehensive Global Analysis
Authors: Muhammad Kashif
Abstract:
The primary aim of this paper is to investigate the influence of financial technology (FinTech) on sustainable finance. The sample for this study spans from 2010 to 2021, encompassing data from 89 countries worldwide. The study employed two-stage least squares (2SLS) regression approach with the instrumental variables and validated the findings using a two-step system generalized method of moments (GMM). The findings indicate that fintech has a significant favorable impact on sustainable finance. While other factors such as institutional quality, socio-economic condition, and renewable energy have a significant and beneficial influence on the trajectory of sustainable finance, except globalization's impact is positive but insignificant. Furthermore, fintech is crucial in driving the transition toward a sustainable future characterized by a lower carbon economy. The study found that fintech has extensive application across various sectors of sustainable finance and has substantial potential to create long-term positive effects on sustainable finance. Fintech can integrate extensively with other technologies to facilitate diversified growth in sustainable finance. Additionally, this study highlights fintech-related trends and research opportunities in sustainable finance, showing how these can promote each other worldwide with important policy implications for countries looking to advance sustainable finance through technology.Keywords: sustainable development goals (SDGs), financial technology (FinTech), genuine savings index (GSI), financial stability index, sustainable finance
Procedia PDF Downloads 1355500 Evaluation of Environmental Disclosures on Financial Performance of Quoted Industrial Goods Manufacturing Sectors in Nigeria (2011 – 2020)
Authors: C. C. Chima, C. J. M. Anumaka
Abstract:
This study evaluates environmental disclosures on the financial performance of quoted industrial goods manufacturing sectors in Nigeria. The study employed a quasi-experimental research design to establish the relationship that exists between the environmental disclosure index and financial performance indices (return on assets - ROA, return on equity - ROE, and earnings per share - EPS). A purposeful sampling technique was employed to select five (5) industrial goods manufacturing sectors quoted on the Nigerian Stock Exchange. Secondary data covering 2011 to 2020 financial years were extracted from annual reports of the study sectors using a content analysis method. The data were analyzed using SPSS, Version 23. Panel Ordinary Least Squares (OLS) regression method was employed in estimating the unknown parameters in the study’s regression model after conducting diagnostic and preliminary tests to ascertain that the data set are reliable and not misleading. Empirical results show that there is an insignificant negative relationship between the environmental disclosure index (EDI) and the performance indices (ROA, ROE, and EPS) of the industrial goods manufacturing sectors in Nigeria. The study recommends that: only relevant information which increases the performance indices should appear on the disclosure checklist; environmental disclosure practices should be country-specific; and company executives in Nigeria should increase and monitor the level of investment (resources, time, and energy) in order to ensure that environmental disclosure has a significant impact on financial performance.Keywords: earnings per share, environmental disclosures, return on assets, return on equity
Procedia PDF Downloads 865499 Off-Topic Text Detection System Using a Hybrid Model
Authors: Usama Shahid
Abstract:
Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.Keywords: off topic, text detection, eco state network, machine learning
Procedia PDF Downloads 855498 The Impact of Macroeconomic Variables on Financial Performance of Tourism Firms: Case of Borsa İstanbul
Authors: Ndeye Tiguida Sarr, Onur Akpinar
Abstract:
The tourism industry, being the sector that includes all the activities related to the organization and satisfaction of tourists during their trip, also has a very important role in the national economy of the host country. In order to measure the stakes of tourism on the economy, microeconomic and macroeconomic factors are elements of analysis. While microeconomics is limited to an individual perspective, macroeconomics extends to a global perspective and treats the economy as a whole by focusing on social and economic actors in general. It is in this context that this study focuses on macroeconomic variables in order to determine the factors that influence the financial performance of tourism firms in Turkey, which is one of the world's major destinations. The aim of the study is to demonstrate the relationship between macroeconomic variables and the financial performance of tourism firms. Data from 2011 to 2020 are collected, from a sample of 16 companies that represent the tourism sector in Borsa Istanbul. Tobin’s Q ratio, Market to Book ratio, Return on Invested Capital, and Return on Assets as the financial performance indicators were dependent variables of the study. Gross Domestic Products, Inflation, Interest Rates, and Unemployment as macroeconomic indicators were independent variables. Again, Size, Liquidity, Leverage, and Age were control variables of the study. According to the results, value indicators, which are Tobin’s Q ratio and Market to Book ratio, have a statistically significant relationship with Inflation, Interest Rates, and Unemployment. A negative relationship is found between value indicators and Interest rates and a positive relationship between value indicators and Unemployment and Inflation. On the other hand, there is no significant relationship between profit indicators (Return on Invested Capital and Return on Assets) and macroeconomic variables. Accordingly, Interest rates negatively affect the financial performance of tourism firms and stand out as a factor that decreases the value.Keywords: financial performance, macroeconomic variables, panel data, Tobin Q
Procedia PDF Downloads 1565497 A Comprehensive Approach to Mitigate Return-Oriented Programming Attacks: Combining Operating System Protection Mechanisms and Hardware-Assisted Techniques
Authors: Zhang Xingnan, Huang Jingjia, Feng Yue, Burra Venkata Durga Kumar
Abstract:
This paper proposes a comprehensive approach to mitigate ROP (Return-Oriented Programming) attacks by combining internal operating system protection mechanisms and hardware-assisted techniques. Through extensive literature review, we identify the effectiveness of ASLR (Address Space Layout Randomization) and LBR (Last Branch Record) in preventing ROP attacks. We present a process involving buffer overflow detection, hardware-assisted ROP attack detection, and the use of Turing detection technology to monitor control flow behavior. We envision a specialized tool that views and analyzes the last branch record, compares control flow with a baseline, and outputs differences in natural language. This tool offers a graphical interface, facilitating the prevention and detection of ROP attacks. The proposed approach and tool provide practical solutions for enhancing software security.Keywords: operating system, ROP attacks, returning-oriented programming attacks, ASLR, LBR, CFI, DEP, code randomization, hardware-assisted CFI
Procedia PDF Downloads 955496 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection
Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu
Abstract:
Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception
Procedia PDF Downloads 5755495 Graphene-Based Nanobiosensors and Lab on Chip for Sensitive Pesticide Detection
Authors: Martin Pumera
Abstract:
Graphene materials are being widely used in electrochemistry due to their versatility and excellent properties as platforms for biosensing. Here we present current trends in the electrochemical biosensing of pesticides and other toxic compounds. We explore two fundamentally different designs, (i) using graphene and other 2-D nanomaterials as an electrochemical platform and (ii) using these nanomaterials in the laboratory on chip design, together with paramagnetic beads. More specifically: (i) We explore graphene as transducer platform with very good conductivity, large surface area, and fast heterogeneous electron transfer for the biosensing. We will present the comparison of these materials and of the immobilization techniques. (ii) We present use of the graphene in the laboratory on chip systems. Laboratory on the chip had a huge advantage due to small footprint, fast analysis times and sample handling. We will show the application of these systems for pesticide detection and detection of other toxic compounds.Keywords: graphene, 2D nanomaterials, biosensing, chip design
Procedia PDF Downloads 5505494 A Relational View for Financial Metrics in Logistics Service Providers
Authors: Paulo Sergio Altman Ferreira
Abstract:
Relationship development plays an essential role in every logistics company. Logistics companies are service-based businesses essentially performing the flow of materials, housing, and inventory management for a wide range of customers. The service encounter between the logistics provider’s personnel and the customers may form a connection that will demonstrate a strong impact, not only to the customers' overall satisfaction but may also provide the perception of individualized services. Logistics services must drive value. It also shows a close influence on the quality and costs of client-centered services. If we describe logistics value creation as the function of quality perception of the client divided by service costs, there is a requirement to better outline and explain the measures and analytics for logistics costs and relationship performance. This critical shift to understand logistics services is a relevant contribution to capture how relationship value can be quantified. This might involve changing our current perspective on logistics providers beyond uniquely measuring the services in terms of activities, personnel levels, and financial/costs ratios. This paper argues that measuring value creation accomplishments of logistics services needs to consider the relational improvements for the wider range of logistics companies. Accurate logistics value requires a description of the financial impact of the relational perspective of the service.Keywords: logistics services providers, financial metrics, relationship management, value creation
Procedia PDF Downloads 1505493 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN
Authors: Jamison Duckworth, Shankarachary Ragi
Abstract:
Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands
Procedia PDF Downloads 1275492 Convergence with IFRS: Evidence from Financial Statements
Authors: M. S. Turan, Dimple
Abstract:
Due to implementation of IFRS by several developed and developing countries, India has no option other than to converge their accounting standards with IFRS. There are over 10,000 listed companies required to implement IFRS in India. IFRS based financial information presented by a company is different from the same information provided by Indian GAAPs. In this study, we have brought out and analyzed the effect of IFRS reporting on the financial statements of selected companies. The results reveal that convergence with IFRS brought prominent positive variations in the values of quick ratio, debt/equity ratio, proprietary ratio and net profit ratio, while negative variation is brought in the values of current ratio, debt to total assets ratio, operating profit ratio, return on capital employed and return on shareholders’ equity ratios. It also presents significant changes in the values of items of balance sheet, profit and loss account and cash flow statement.Keywords: IFRS, reporting standards, convergence process, results
Procedia PDF Downloads 3345491 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network
Authors: Li Hui, Riyadh Hindi
Abstract:
Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network
Procedia PDF Downloads 665490 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance
Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan
Abstract:
A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection
Procedia PDF Downloads 1255489 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends
Authors: Zheng Yuxun
Abstract:
This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis
Procedia PDF Downloads 515488 Application of Fair Value Accounting in an Emerging Market Algerian Case
Authors: Haouam Djemaa
Abstract:
This study aimed to identify the possibility for applying fair value accounting by Algerian enterprises coted in capital maket (Algiers stock exchange). To achieve the objectives of this study, we made an interview with preparers of accounting information. The results document that enterprises are aware of fair value accounting in financial reporting because of its ability to provide useful accounting, but it depends on the availability of favorable circumstances for its application and this is what is missing in the Algerian environment.Keywords: fair value, financial reporting, accounting information, valuation method
Procedia PDF Downloads 3935487 Detection and Identification of Chlamydophila psittaci in Asymptomatic and Symptomatic Parrots in Isfahan
Authors: Mehdi Moradi Sarmeidani, Peyman Keyhani, Hasan Momtaz
Abstract:
Chlamydophila psittaci is a avian pathogen that may cause respiratory disorders in humans. Conjunctival and cloacal swabs from 54 captive psittacine birds presented at veterinary clinics were collected to determine the prevalence of C. psittaci in domestic birds in Isfahan. Samples were collected during 2014 from a total of 10 different species of parrots, with African gray(33), Cockatiel lutino(3), Cockatiel gray(2), Cockatiel cinnamon(1), Pearl cockatiel(6), Timneh African grey(1), Ringneck parakeet(2), Melopsittacus undulatus(1), Alexander parakeet(2), Green Parakeet(3) being the most representative species sampled. C. psittaci was detected in 27 (50%) birds using molecular detection (PCR) method. The detection of this bacterium in captive psittacine birds shows that there is a potential risk for human whom has a direct contact and there is a possibility of infecting other birds.Keywords: chlamydophila psittaci, psittacine birds, PCR, Isfahan
Procedia PDF Downloads 3715486 Failure Detection in an Edge Cracked Tapered Pipe Conveying Fluid Using Finite Element Method
Authors: Mohamed Gaith, Zaid Haddadin, Abdulah Wahbe, Mahmoud Hamam, Mahmoud Qunees, Mohammad Al Khatib, Mohammad Bsaileh, Abd Al-Aziz Jaber, Ahmad Aqra’a
Abstract:
The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail.Keywords: damage detection, finite element, tapered pipe, vibration characteristics
Procedia PDF Downloads 1705485 Financial Burden of Family for the Children with Autism Spectrum Disorder
Authors: M. R. Bhuiyan, S. M. M. Hossain, M. Z. Islam
Abstract:
Autism Spectrum Disorder (ASD) is the fastest growing serious developmental disorder characterized by social deficits, communicative difficulties, and repetitive behaviors. ASD is an emerging public health issue globally which is associated with huge financial burden to the family, community and the nation. The aim of this study was to assess the financial burden of family for the children with Autism spectrum Disorder. This cross-sectional study was carried out from July 2015 to June 2016 among 154 children with ASD to assess the financial burden of family. Data were collected by face-to-face interview with semi-structured questionnaire following systematic random sampling technique. Majority (73.4%) children were male and mean (±SD) age was 6.66 ± 2.97 years. Most (88.8%) of the children were from urban areas with average monthly family income Tk. 41785.71±23936.45. Average monthly direct cost of the children was Tk.17656.49 ± 9984.35, while indirect cost was Tk. 13462.90 ± 9713.54 and total treatment cost was Tk. 23076.62 ± 15341.09. Special education cost (Tk. 4871.00), cost of therapy (Tk. 4124.07) and travel cost (Tk. 3988.31) were the major types of direct cost, while loss of income (Tk.14570.18) was the chief indirect cost incurred by the families. The study found that majority (59.8%) of the children attended special schools were incurred Tk.20001-78700 as total treatment cost, which were statistically significant (p<0.001). Again, families with higher monthly family income incurred higher treatment cost (r=0.526, p<0.05). Difference between mean direct and indirect cost was found significant (t=4.190, df=61, p<0.001). According to the analysis of variance, mean difference of father’s educational status among direct cost (F=10.337, p<0.001) and total treatment cost (F=7.841, p<0.001), which were statistically significant. The study revealed that maximum children with ASD were under five years, three-fourth were male. According to monthly family income, maximum family were in middle class. The study recommends cost effective interventions and financial safety-net measures to reduce the financial burden of families for the children with ASD.Keywords: autism spectrum disorder, financial burden, direct cost, indirect cost, special education
Procedia PDF Downloads 1365484 The International Monetary Fund’s Treatment Towards Argentina and Brazil During Financial Negotiations for Their First Adjustment Programs, 1958-64
Authors: Fernanda Conforto de Oliveira
Abstract:
The International Monetary Fund (IMF) has a central role in global financial governance as the world’s leading crisis lender. Its practice of conditional lending – conditioning loans on the implementation of economic policy adjustments – is the primary lever by which the institution interacts with and influences the policy choices of member countries and has been a key topic of interest to scholars and public opinion. However, empirical evidence about the economic and (geo)political determinants of IMF lending behavior remains inconclusive, and no model that explains IMF policies has been identified. This research moves beyond panel analysis to focus on financial negotiations for the first IMF programs in Argentina and Brazil in the early post-war period. It seeks to understand why negotiations achieved distinct objectives: Argentinean officials cooperated and complied with IMF policies, whereas their Brazilian counterparts hesitated. Using qualitative and automated text analysis, this paper analyses the hypothesis about whether a differential IMF treatment could help to explain these distinct outcomes. This paper contributes to historical studies on IMF-Latin America relations and the broader literature in international policy economy about IMF policies.Keywords: international monetary fund, international history, financial history, Latin American economic history, natural language processing, sentiment analysis
Procedia PDF Downloads 635483 Analysis of Detection Concealed Objects Based on Multispectral and Hyperspectral Signatures
Authors: M. Kastek, M. Kowalski, M. Szustakowski, H. Polakowski, T. Sosnowski
Abstract:
Development of highly efficient security systems is one of the most urgent topics for science and engineering. There are many kinds of threats and many methods of prevention. It is very important to detect a threat as early as possible in order to neutralize it. One of the very challenging problems is detection of dangerous objects hidden under human’s clothing. This problem is particularly important for safety of airport passengers. In order to develop methods and algorithms to detect hidden objects it is necessary to determine the thermal signatures of such objects of interest. The laboratory measurements were conducted to determine the thermal signatures of dangerous tools hidden under various clothes in different ambient conditions. Cameras used for measurements were working in spectral range 0.6-12.5 μm An infrared imaging Fourier transform spectroradiometer was also used, working in spectral range 7.7-11.7 μm. Analysis of registered thermograms and hyperspectral datacubes has yielded the thermal signatures for two types of guns, two types of knives and home-made explosive bombs. The determined thermal signatures will be used in the development of method and algorithms of image analysis implemented in proposed monitoring systems.Keywords: hyperspectral detection, nultispectral detection, image processing, monitoring systems
Procedia PDF Downloads 3485482 Automatic Seizure Detection Using Weighted Permutation Entropy and Support Vector Machine
Authors: Noha Seddik, Sherine Youssef, Mohamed Kholeif
Abstract:
The automated epileptic seizure detection research field has emerged in the recent years; this involves analyzing the Electroencephalogram (EEG) signals instead of the traditional visual inspection performed by expert neurologists. In this study, a Support Vector Machine (SVM) that uses Weighted Permutation Entropy (WPE) as the input feature is proposed for classifying normal and seizure EEG records. WPE is a modified statistical parameter of the permutation entropy (PE) that measures the complexity and irregularity of a time series. It incorporates both the mapped ordinal pattern of the time series and the information contained in the amplitude of its sample points. The proposed system utilizes the fact that entropy based measures for the EEG segments during epileptic seizure are lower than in normal EEG.Keywords: electroencephalogram (EEG), epileptic seizure detection, weighted permutation entropy (WPE), support vector machine (SVM)
Procedia PDF Downloads 3725481 Brexit and Financial Stability: An Agent-Based Simulation
Authors: Aristeidis Samitas, Stathis Polyzos
Abstract:
As the UK and the EU prepare to start negotiations for Brexit, it is important for both sides to comprehend the full extent of the consequences of this process. In this paper, we employ an object oriented simulation framework in order to test for the short-term and long-term effects of Brexit on both sides of the Channel. The relative strength of the UK economy and the banking sector vis-à-vis the EU is taken under consideration. Our results confirm predictions in the relevant literature regarding the output cost of Brexit, with particular emphasis on the EU. Furthermore, we show that financial stability is also an important issue on both sides, with the banking system suffering significant losses, particularly over the longer term. Our findings suggest that policymakers should be extremely careful in handling Brexit negotiations, making sure to consider dynamic effects that may be caused by UK bank assets moving to the EU after Brexit. The model results show that, as the UK banking system loses its assets, the end state of the UK economy is deteriorated while the end state of EU economy is improved.Keywords: Banking Crises, Brexit, Financial Stability, VBanking
Procedia PDF Downloads 2805480 Financial Risk Tolerance and Its Impact on Terrorism-Tourism Relation in Pakistan
Authors: Sania Sana, Afnan Nasim, Usman Malik, Maroof Tahir
Abstract:
The aim of this research is to scrutinize the interdependent relationship between terrorism and behavioral changes in the tourism activities in Pakistan with the moderating impact of a unique variable titled 'Financial Risk Tolerance'. The article looks at the inter-reliant relationship with the alleged political and economic aspects and behavioral changes in the tourists and the consumers by these variables over time. The researchers used many underlying theories like the catastrophe theory by (Svyantek, Deshon and Siler 1991), information integration theory (Anderson 1981, 1982) and prospect theory (Kahneman and Tversky 1979) to shape the study’s framework as per tourist decision making model. A sample of around 110 locals was used for this purpose and the data was gathered by convenience sampling. The responses were analyzed using regression analysis. The results exhibited how terrorism along with the influence of financial risk tolerance had inclined a behavioral shift in the travelling patterns and vacation destination choice of the local tourists. Lastly, the paper proposes a number of suggestive measures for the tourism industry and the legislative bodies to ensure the safety of travelers and to boost the tourist activities in the vacation industry of Pakistan.Keywords: terrorism, tourism, financial risk tolerance, tourist decision-making, destination choice
Procedia PDF Downloads 2365479 Revisiting the Link between Corporate Social Performance and Corporate Financial Performance Post 2008 Global Economic Crisis
Authors: Anand Choudhary
Abstract:
Following the global economic crisis in 2008, businesses and more especially the big multinational conglomerates were increasingly viewed by the people world over as one of the major causes of the economic problems faced by millions globally, in terms of job loss and lifetime savings being wiped out as banks and pension funds went bankrupt and people stared at an insecure financial future. This caused a lot of resentment in the public against big businesses and fueled several protest movements by the people such as “Occupy Wall Street” in different parts of the world. This forced the big businesses to respond to the challenge by adopting more people-centric policies and initiatives for local communities in societies where they operate as part of their corporate social responsibility (CSR), in order to regain their social acceptance among the people whilst earning their ‘social license to operate’. The current paper studies many of such large MNCs across the United States of America, India and South Africa, which changed the way they did business earlier, following the global economic crisis in 2008, by incorporating capacity building initiatives for local communities as part of their CSR strategy and explores whether it has contributed to improving their financial performance. It is a conceptual research paper using secondary source data. The findings reveal that there is a positive correlation between the companies’ corporate social performance and corporate financial performance. In addition, the findings also bring to light that the MNCs examined as part of the current paper have improved their image in the eyes of their stakeholders following the change in their CSR strategy and initiatives.Keywords: corporate social responsibility (CSR), Corporate Social Performance (CSP), Corporate Financial Performance (CFP), local communities
Procedia PDF Downloads 3355478 A Literature Review on ISO 10014
Authors: Rafael Feldmann Farias, Fernando Tobal Berssaneti
Abstract:
Since its emergence in 1998, ISO 10014 has been developed as a response to the need to demonstrate the economic and financial benefits that an organization can obtain from the implementation of a quality management system. With the publication of the new edition in 2021, this article aims to identify how this standard has been addressed through a literature review. Among the results, it was found that, of the 282 documents identified, only 0.7% of the publications used the standard and 1.4% of the publications cited it. This low adherence seems to be linked to the highly technical nature of the content of the standard.Keywords: quality management system, ISO 10014, economical benefits, financial benefits
Procedia PDF Downloads 1145477 An Autopilot System for Static Zone Detection
Authors: Yanchun Zuo, Yingao Liu, Wei Liu, Le Yu, Run Huang, Lixin Guo
Abstract:
Electric field detection is important in many application scenarios. The traditional strategy is measuring the electric field with a man walking around in the area under test. This strategy cannot provide a satisfactory measurement accuracy. To solve the mentioned problem, an autopilot measurement system is divided. A mini-car is produced, which can travel in the area under test according to respect to the program within the CPU. The electric field measurement platform (EFMP) carries a central computer, two horn antennas, and a vector network analyzer. The mini-car stop at the sampling points according to the preset. When the car stops, the EFMP probes the electric field and stores data on the hard disk. After all the sampling points are traversed, an electric field map can be plotted. The proposed system can give an accurate field distribution description of the chamber.Keywords: autopilot mini-car measurement system, electric field detection, field map, static zone measurement
Procedia PDF Downloads 1015476 Lexical Based Method for Opinion Detection on Tripadvisor Collection
Authors: Faiza Belbachir, Thibault Schienhinski
Abstract:
The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.Keywords: Tripadvisor, opinion detection, SentiWordNet, trust score
Procedia PDF Downloads 199