Search results for: electronic interface
2260 Virtual Schooling as a Collaboration between Public Schools and the Scientific Community
Authors: Thomas A. Fuller
Abstract:
Over the past fifteen years, virtual schooling has been introduced and implemented in varying degrees throughout the public education system in the United States. It is possible in some states for students to voluntarily take all of their course load online, without ever having to step in a classroom. Experts foresee a dramatic rise in the number of courses taken online by public school students in the United States, with some predicting that by 2019 as many as 50% of public high school courses will be delivered online. This electronic delivery of public education offers tremendous potential to the scientific community because it calls for innovation and is funded by public school revenue. Public accountability provides a ready supply of statistical data for measuring the progress of virtual schools as they are implemented into the public school arena. This allows for a survey of the current use of virtual schooling through examination of past statistical data, as well as forecasting forward for future years based upon this past data. Virtual schooling is on the rise in the United States, but its growth has been tempered by practical problems of implementation. The greatest and best use of virtual schooling thus far has been to supplement the courses offered by public schools (e.g., offering unique language courses, elective courses, and games-based math and science courses). The weaknesses of virtual schooling lay in the problematic accountability in allowing students to take courses online at home and the lack of supportive infrastructure in the public school arena. Virtual schooling holds great promise for the public school education system in the United States, as well as the scientific community. Online courses allow students access to a much greater catalog of courses than is offered through classroom instruction in their local public school. This promising sector needs assistance from the scientific community in implementing new pedagogical methodologies.Keywords: virtual schools, online classroom, electronic delivery, technological innovation
Procedia PDF Downloads 3842259 Assessment of E-Learning Facilities in Open and Distance Learning and Information Need by Students
Authors: Sabo Elizabeth
Abstract:
Electronic learning is increasingly popular learning approach in higher educational institutions due to vast growth of internet technology. This approach is important in human capital development. An investigation of open distance and e-learning facilities and information need by open and distance learning students was carried out in Jalingo, Nigeria. Structured questionnaires were administered to 70 registered ODL students of the NOUN. Information sourced from the respondents covered demographic, economic and institutional variables. Data collected for demographic variables were computed as frequency count and percentages. Assessment of the effectiveness of ODL facilities and information need among open and distance learning students was computed on a three or four point Likert Rating Scale. Findings indicated that there are more men compared to women. A large proportion of the respondents are married and there are more matured students in ODL compared to the youth. A high proportion of the ODL students obtained qualifications higher than the secondary school certificate. The proportion of computer literate ODL students was high, and large number of the students does not own a laptop computer. Inadequate e -books and reference materials, internet gadgets and inadequate books (hard copies) and reference material are factors that limit utilization of e-learning facilities in the study areas. Inadequate computer facilities and power back up caused inconveniences and delay in administering and use of e learning facilities. To a high extent, open and distance learning students needed information on university time table and schedule of activities, availability and access to books (hard and e-books) and reference materials. The respondents emphasized that contact with course coordinators via internet will provide a better learning and academic performance.Keywords: open and distance learning, information required, electronic books, internet gadgets, Likert scale test
Procedia PDF Downloads 3252258 Fabrication of Silver Nanowire Based Low Temperature Conductive Ink
Authors: Merve Nur Güven Biçer
Abstract:
Conductive inks are used extensively in electronic devices like sensors, batteries, photovoltaic devices, antennae, and organic light-emitting diodes. These inks are typically made from silver. Wearable technology is another industry that requires inks to be flexible. The aim of this study is the fabrication of low-temperature silver paste by synthesis long silver nanowires.Keywords: silver ink, conductive ink, low temperature conductive ink, silver nanowire
Procedia PDF Downloads 1892257 An Analytical Study of the Quality of Educational Administration and Management At Secondary School Level in Punjab, Pakistan
Authors: Shamim Akhtar
Abstract:
The purpose of the present research was to analyse the performance level of district administrators and school heads teachers at secondary school level. The sample of the study was head teachers and teachers of secondary schools. In survey three scales were used, two scales were for the head teachers, one five point scale was for analysing the working efficiency of educational administrators and other seven points scale was for head teachers for analysing their own performance and one another seven point rating scale similar to head teacher was for the teachers for analysing the working performance of their head teachers. The results of the head teachers’ responses revealed that the performance of their District Educational Administrators was average and for the performance efficiency of the head teachers, researcher constructed the rating scales on seven parameters of management likely academic management, personnel management, financial management, infra-structure management, linkage and interface, student’s services, and managerial excellence. Results of percentages, means, and graphical presentation on different parameters of management showed that there was an obvious difference in head teachers and teachers’ responses and head teachers probably were overestimating their efficiency; but teachers evaluated that they were performing averagely on majority statements. Results of t-test showed that there was no significance difference in the responses of rural and urban teachers but significant difference in male and female teachers’ responses showed that female head teachers were performing their responsibilities better than male head teachers in public sector schools. When efficiency of the head teachers on different parameters of management were analysed it was concluded that their efficiency on academic and personnel management was average and on financial management and on managerial excellence was highly above of average level but on others parameters like infra-structure management, linkage and interface and on students services was above of average level on most statements but highly above of average on some statements. Hence there is need to improve the working efficiency in academic management and personnel management.Keywords: educational administration, educational management, parameters of management, education
Procedia PDF Downloads 3402256 A Tool to Provide Advanced Secure Exchange of Electronic Documents through Europe
Authors: Jesus Carretero, Mario Vasile, Javier Garcia-Blas, Felix Garcia-Carballeira
Abstract:
Supporting cross-border secure and reliable exchange of data and documents and to promote data interoperability is critical for Europe to enhance sector (like eFinance, eJustice and eHealth). This work presents the status and results of the European Project MADE, a Research Project funded by Connecting Europe facility Programme, to provide secure e-invoicing and e-document exchange systems among Europe countries in compliance with the eIDAS Regulation (Regulation EU 910/2014 on electronic identification and trust services). The main goal of MADE is to develop six new AS4 Access Points and SMP in Europe to provide secure document exchanges using the eDelivery DSI (Digital Service Infrastructure) amongst both private and public entities. Moreover, the project demonstrates the feasibility and interest of the solution provided by providing several months of interoperability among the providers of the six partners in different EU countries. To achieve those goals, we have followed a methodology setting first a common background for requirements in the partner countries and the European regulations. Then, the partners have implemented access points in each country, including their service metadata publisher (SMP), to allow the access to their clients to the pan-European network. Finally, we have setup interoperability tests with the other access points of the consortium. The tests will include the use of each entity production-ready Information Systems that process the data to confirm all steps of the data exchange. For the access points, we have chosen AS4 instead of other existing alternatives because it supports multiple payloads, native web services, pulling facilities, lightweight client implementations, modern crypto algorithms, and more authentication types, like username-password and X.509 authentication and SAML authentication. The main contribution of MADE project is to open the path for European companies to use eDelivery services with cross-border exchange of electronic documents following PEPPOL (Pan-European Public Procurement Online) based on the e-SENS AS4 Profile. It also includes the development/integration of new components, integration of new and existing logging and traceability solutions and maintenance tool support for PKI. Moreover, we have found that most companies are still not ready to support those profiles. Thus further efforts will be needed to promote this technology into the companies. The consortium includes the following 9 partners. From them, 2 are research institutions: University Carlos III of Madrid (Coordinator), and Universidad Politecnica de Valencia. The other 7 (EDICOM, BIZbrains, Officient, Aksesspunkt Norge, eConnect, LMT group, Unimaze) are private entities specialized in secure delivery of electronic documents and information integration brokerage in their respective countries. To achieve cross-border operativity, they will include AS4 and SMP services in their platforms according to the EU Core Service Platform. Made project is instrumental to test the feasibility of cross-border documents eDelivery in Europe. If successful, not only einvoices, but many other types of documents will be securely exchanged through Europe. It will be the base to extend the network to the whole Europe. This project has been funded under the Connecting Europe Facility Agreement number: INEA/CEF/ICT/A2016/1278042. Action No: 2016-EU-IA-0063.Keywords: security, e-delivery, e-invoicing, e-delivery, e-document exchange, trust
Procedia PDF Downloads 2672255 Determination of Temperature Dependent Characteristic Material Properties of Commercial Thermoelectric Modules
Authors: Ahmet Koyuncu, Abdullah Berkan Erdogmus, Orkun Dogu, Sinan Uygur
Abstract:
Thermoelectric modules are integrated to electronic components to keep their temperature in specific values in electronic cooling applications. They can be used in different ambient temperatures. The cold side temperatures of thermoelectric modules depend on their hot side temperatures, operation currents, and heat loads. Performance curves of thermoelectric modules are given at most two different hot surface temperatures in product catalogs. Characteristic properties are required to select appropriate thermoelectric modules in thermal design phase of projects. Generally, manufacturers do not provide characteristic material property values of thermoelectric modules to customers for confidentiality. Common commercial software applied like ANSYS ICEPAK, FloEFD, etc., include thermoelectric modules in their libraries. Therefore, they can be easily used to predict the effect of thermoelectric usage in thermal design. Some software requires only the performance values in different temperatures. However, others like ICEPAK require three temperature-dependent equations for material properties (Seebeck coefficient (α), electrical resistivity (β), and thermal conductivity (γ)). Since the number and the variety of thermoelectric modules are limited in this software, definitions of characteristic material properties of thermoelectric modules could be required. In this manuscript, the method of derivation of characteristic material properties from the datasheet of thermoelectric modules is presented. Material characteristics were estimated from two different performance curves by experimentally and numerically in this study. Numerical calculations are accomplished in ICEPAK by using a thermoelectric module exists in the ICEPAK library. A new experimental setup was established to perform experimental study. Because of similar results of numerical and experimental studies, it can be said that proposed equations are approved. This approximation can be suggested for the analysis includes different type or brand of TEC modules.Keywords: electrical resistivity, material characteristics, thermal conductivity, thermoelectric coolers, seebeck coefficient
Procedia PDF Downloads 1792254 The Pore–Scale Darcy–Brinkman–Stokes Model for the Description of Advection–Diffusion–Precipitation Using Level Set Method
Authors: Jiahui You, Kyung Jae Lee
Abstract:
Hydraulic fracturing fluid (HFF) is widely used in shale reservoir productions. HFF contains diverse chemical additives, which result in the dissolution and precipitation of minerals through multiple chemical reactions. In this study, a new pore-scale Darcy–Brinkman–Stokes (DBS) model coupled with Level Set Method (LSM) is developed to address the microscopic phenomena occurring during the iron–HFF interaction, by numerically describing mass transport, chemical reactions, and pore structure evolution. The new model is developed based on OpenFOAM, which is an open-source platform for computational fluid dynamics. Here, the DBS momentum equation is used to solve for velocity by accounting for the fluid-solid mass transfer; an advection-diffusion equation is used to compute the distribution of injected HFF and iron. The reaction–induced pore evolution is captured by applying the LSM, where the solid-liquid interface is updated by solving the level set distance function and reinitialized to a signed distance function. Then, a smoothened Heaviside function gives a smoothed solid-liquid interface over a narrow band with a fixed thickness. The stated equations are discretized by the finite volume method, while the re-initialized equation is discretized by the central difference method. Gauss linear upwind scheme is used to solve the level set distance function, and the Pressure–Implicit with Splitting of Operators (PISO) method is used to solve the momentum equation. The numerical result is compared with 1–D analytical solution of fluid-solid interface for reaction-diffusion problems. Sensitivity analysis is conducted with various Damkohler number (DaII) and Peclet number (Pe). We categorize the Fe (III) precipitation into three patterns as a function of DaII and Pe: symmetrical smoothed growth, unsymmetrical growth, and dendritic growth. Pe and DaII significantly affect the location of precipitation, which is critical in determining the injection parameters of hydraulic fracturing. When DaII<1, the precipitation uniformly occurs on the solid surface both in upstream and downstream directions. When DaII>1, the precipitation mainly occurs on the solid surface in an upstream direction. When Pe>1, Fe (II) transported deeply into and precipitated inside the pores. When Pe<1, the precipitation of Fe (III) occurs mainly on the solid surface in an upstream direction, and they are easily precipitated inside the small pore structures. The porosity–permeability relationship is subsequently presented. This pore-scale model allows high confidence in the description of Fe (II) dissolution, transport, and Fe (III) precipitation. The model shows fast convergence and requires a low computational load. The results can provide reliable guidance for injecting HFF in shale reservoirs to avoid clogging and wellbore pollution. Understanding Fe (III) precipitation, and Fe (II) release and transport behaviors give rise to a highly efficient hydraulic fracture project.Keywords: reactive-transport , Shale, Kerogen, precipitation
Procedia PDF Downloads 1652253 Adsorption of Atmospheric Gases Using Atomic Clusters
Authors: Vidula Shevade, B. J. Nagare, Sajeev Chacko
Abstract:
First principles simulation, meaning density functional theory (DFT) calculations with plane waves and pseudopotential, has become a prized technique in condensed matter theory. Nanoparticles (NP) have been known to possess good catalytic activities, especially for molecules such as CO, O₂, etc. Among the metal NPs, Aluminium based NPs are also widely known for their catalytic properties. Aluminium metal is a lightweight, excellent electrical, and thermal abundant chemical element in the earth’s crust. Aluminium NPs, when added to solid rocket fuel, help improve the combustion speed and considerably increase combustion heat and combustion stability. Adding aluminium NPs into normal Al/Al₂O₃ powder improves the sintering processes of the ceramics, with high heat transfer performance, increased density, and enhanced thermal conductivity of the sinter. We used VASP and Gaussian 0₃ package to compute the geometries, electronic structure, and bonding properties of Al₁₂Ni as well as its interaction with O₂ and CO molecules. Several MD simulations were carried out using VASP at various temperatures from which hundreds of structures were optimized, leading to 24 unique structures. These structures were then further optimized through a Gaussian package. The lowest energy structure of Al₁₂Ni has been reported to be a singlet. However, through our extensive search, we found a triplet state to be lower in energy. In our structure, the Ni atom is found to be on the surface, which gives the non-zero magnetic moment. Incidentally, O2 and CO molecules are also triplet in nature, due to which the Al₁₂-Ni cluster is likely to facilitate the oxidation process of the CO molecule. Our results show that the most favourable site for the CO molecule is the Ni atom and that for the O₂ molecule is the Al atom that is nearest to the Ni atom. Al₁₂Ni-O₂ and Al₁₂-Ni-CO structures we extracted using VMD. Al₁₂Ni nanocluster, due to in triplet electronic structure configuration, indicates it to be a potential candidate as a catalyst for oxidation of CO molecules.Keywords: catalyst, gaussian, nanoparticles, oxidation
Procedia PDF Downloads 972252 The Digital Microscopy in Organ Transplantation: Ergonomics of the Tele-Pathological Evaluation of Renal, Liver, and Pancreatic Grafts
Authors: Constantinos S. Mammas, Andreas Lazaris, Adamantia S. Mamma-Graham, Georgia Kostopanagiotou, Chryssa Lemonidou, John Mantas, Eustratios Patsouris
Abstract:
The process to build a better safety culture, methods of error analysis, and preventive measures, starts with an understanding of the effects when human factors engineering refer to remote microscopic diagnosis in surgery and specially in organ transplantation for the evaluation of the grafts. Α high percentage of solid organs arrive at the recipient hospitals and are considered as injured or improper for transplantation in the UK. Digital microscopy adds information on a microscopic level about the grafts (G) in Organ Transplant (OT), and may lead to a change in their management. Such a method will reduce the possibility that a diseased G will arrive at the recipient hospital for implantation. Aim: The aim of this study is to analyze the ergonomics of digital microscopy (DM) based on virtual slides, on telemedicine systems (TS) for tele-pathological evaluation (TPE) of the grafts (G) in organ transplantation (OT). Material and Methods: By experimental simulation, the ergonomics of DM for microscopic TPE of renal graft (RG), liver graft (LG) and pancreatic graft (PG) tissues is analyzed. In fact, this corresponded to the ergonomics of digital microscopy for TPE in OT by applying virtual slide (VS) system for graft tissue image capture, for remote diagnoses of possible microscopic inflammatory and/or neoplastic lesions. Experimentation included the development of an OTE-TS similar experimental telemedicine system (Exp.-TS) for simulating the integrated VS based microscopic TPE of RG, LG and PG Simulation of DM on TS based TPE performed by 2 specialists on a total of 238 human renal graft (RG), 172 liver graft (LG) and 108 pancreatic graft (PG) tissues digital microscopic images for inflammatory and neoplastic lesions on four electronic spaces of the four used TS. Results: Statistical analysis of specialist‘s answers about the ability to accurately diagnose the diseased RG, LG and PG tissues on the electronic space among four TS (A,B,C,D) showed that DM on TS for TPE in OT is elaborated perfectly on the ES of a desktop, followed by the ES of the applied Exp.-TS. Tablet and mobile-phone ES seem significantly risky for the application of DM in OT (p<.001). Conclusion: To make the largest reduction in errors and adverse events referring to the quality of the grafts, it will take application of human factors engineering to procurement, design, audit, and awareness-raising activities. Consequently, it will take an investment in new training, people, and other changes to management activities for DM in OT. The simulating VS based TPE with DM of RG, LG and PG tissues after retrieval, seem feasible and reliable and dependable on the size of the electronic space of the applied TS, for remote prevention of diseased grafts from being retrieved and/or sent to the recipient hospital and for post-grafting and pre-transplant planning.Keywords: digital microscopy, organ transplantation, tele-pathology, virtual slides
Procedia PDF Downloads 2812251 Comparative Study Performance of the Induction Motor between SMC and NLC Modes Control
Authors: A. Oukaci, R. Toufouti, D. Dib, l. Atarsia
Abstract:
This article presents a multitude of alternative techniques to control the vector control, namely the nonlinear control and sliding mode control. Moreover, the implementation of their control law applied to the high-performance to the induction motor with the objective to improve the tracking control, ensure stability robustness to parameter variations and disturbance rejection. Tests are performed numerical simulations in the Matlab/Simulink interface, the results demonstrate the efficiency and dynamic performance of the proposed strategy.Keywords: Induction Motor (IM), Non-linear Control (NLC), Sliding Mode Control (SMC), nonlinear sliding surface
Procedia PDF Downloads 5732250 Evaluation of E-Government Service Quality
Authors: Nguyen Manh Hien
Abstract:
Service quality is the highest requirement from users, especially for the service in electronic government. During the past decades, it has become a major area of academic investigation. Considering this issue, there are many researches that evaluated the dimensions and e-service contexts. This study also identified the dimensions of service quality but focused on a new conceptual and provides a new methodological in developing measurement scales of e-service quality such as information quality, service quality and organization quality. Finally, the study will suggest a key factor to evaluate e-government service quality better.Keywords: dimensionality, e-government, e-service, e-service quality
Procedia PDF Downloads 5452249 Spatial Organization of Cells over the Process of Pellicle Formation by Pseudomonas alkylphenolica KL28
Authors: Kyoung Lee
Abstract:
Numerous aerobic bacteria have the ability to form multicellular communities on the surface layer of the air-liquid (A-L) interface as a biofilm called a pellicle. Pellicles occupied at the A-L interface will benefit from the utilization of oxygen from air and nutrient from liquid. Buoyancy of cells can be obtained by high surface tension at the A-L interface. Thus, formation of pellicles is an adaptive advantage in utilization of excess nutrients in the standing culture where oxygen depletion is easily set up due to rapid cell growth. In natural environments, pellicles are commonly observed on the surface of lake or pond contaminated with pollutants. Previously, we have shown that when cultured in standing LB media an alkylphenol-degrading bacteria Pseudomonas alkylphenolia KL28 forms pellicles in a diameter of 0.3-0.5 mm with a thickness of ca 40 µm. The pellicles have unique features for possessing flatness and unusual rigidity. In this study, the biogenesis of the circular pellicles has been investigated by observing the cell organization at early stages of pellicle formation and cell arrangements in pellicle, providing a clue for highly organized cellular arrangement to be adapted to the air-liquid niche. Here, we first monitored developmental patterns of pellicle from monolayer to multicellular organization. Pellicles were shaped by controlled growth of constituent cells which accumulate extracellular polymeric substance. The initial two-dimensional growth was transited to multilayers by a constraint force of accumulated self-produced extracellular polymeric substance. Experiments showed that pellicles are formed by clonal growth and even with knock-out of genes for flagella and pilus formation. In contrast, the mutants in the epm gene cluster for alginate-like polymer biosynthesis were incompetent in cell alignment for initial two-dimensional growth of pellicles. Electron microscopic and confocal laser scanning microscopic studies showed that the fully matured structures are highly packed by matrix-encased cells which have special arrangements. The cells on the surface of the pellicle lie relatively flat and inside longitudinally cross packed. HPLC analysis of the extrapolysaccharide (EPS) hydrolysate from the colonies from LB agar showed a composition with L-fucose, L-rhamnose, D-galactosamine, D-glucosamine, D-galactose, D-glucose, D-mannose. However, that from pellicles showed similar neutral and amino sugar profile but missing galactose. Furthermore, uronic acid analysis of EPS hydrolysates by HPLC showed that mannuronic acid was detected from pellicles not from colonies, indicating the epm-derived polymer is critical for pellicle formation as proved by the epm mutants. This study verified that for the circular pellicle architecture P. alkylphenolica KL28 cells utilized EPS building blocks different from that used for colony construction. These results indicate that P. alkylphenolica KL28 is a clever architect that dictates unique cell arrangements with selected EPS matrix material to construct sophisticated building, circular biofilm pellicles.Keywords: biofilm, matrix, pellicle, pseudomonas
Procedia PDF Downloads 1552248 Photoemission Momentum Microscopy of Graphene on Ir (111)
Authors: Anna V. Zaporozhchenko, Dmytro Kutnyakhov, Katherina Medjanik, Christian Tusche, Hans-Joachim Elmers, Olena Fedchenko, Sergey Chernov, Martin Ellguth, Sergej A. Nepijko, Gerd Schoenhense
Abstract:
Graphene reveals a unique electronic structure that predetermines many intriguing properties such as massless charge carriers, optical transparency and high velocity of fermions at the Fermi level, opening a wide horizon of future applications. Hence, a detailed investigation of the electronic structure of graphene is crucial. The method of choice is angular resolved photoelectron spectroscopy ARPES. Here we present experiments using time-of-flight (ToF) momentum microscopy, being an alternative way of ARPES using full-field imaging of the whole Brillouin zone (BZ) and simultaneous acquisition of up to several 100 energy slices. Unlike conventional ARPES, k-microscopy is not limited in simultaneous k-space access. We have recorded the whole first BZ of graphene on Ir(111) including all six Dirac cones. As excitation source we used synchrotron radiation from BESSY II (Berlin) at the U125-2 NIM, providing linearly polarized (both polarizations p- and s-) VUV radiation. The instrument uses a delay-line detector for single-particle detection up the 5 Mcps range and parallel energy detection via ToF recording. In this way, we gather a 3D data stack I(E,kx,ky) of the full valence electronic structure in approx. 20 mins. Band dispersion stacks were measured in the energy range of 14 eV up to 23 eV with steps of 1 eV. The linearly-dispersing graphene bands for all six K and K’ points were simultaneously recorded. We find clear features of hybridization with the substrate, in particular in the linear dichroism in the angular distribution (LDAD). Recording of the whole Brillouin zone of graphene/Ir(111) revealed new features. First, the intensity differences (i.e. the LDAD) are very sensitive to the interaction of graphene bands with substrate bands. Second, the dark corridors are investigated in detail for both, p- and s- polarized radiation. They appear as local distortions of photoelectron current distribution and are induced by quantum mechanical interference of graphene sublattices. The dark corridors are located in different areas of the 6 Dirac cones and show chirality behaviour with a mirror plane along vertical axis. Moreover, two out of six show an oval shape while the rest are more circular. It clearly indicates orientation dependence with respect to E vector of incident light. Third, a pattern of faint but very sharp lines is visible at energies around 22eV that strongly remind on Kikuchi lines in diffraction. In conclusion, the simultaneous study of all six Dirac cones is crucial for a complete understanding of dichroism phenomena and the dark corridor.Keywords: band structure, graphene, momentum microscopy, LDAD
Procedia PDF Downloads 3402247 Patients with Chronic Obstructive Pulmonary Feelings of Uncertainty
Authors: Kyngäs Helvi, Patala-Pudas, Kaakinen Pirjo
Abstract:
It has been reported that COPD -patients may experience much emotional distress, which can compromise positive health outcomes. The aim of this study was to explore disease-related uncertainty as reported by Chronic Obstructive Pulmonary Disease (COPD) patients. Uncertainty was defined as a lack of confidence; negative feelings; a sense of confidence; and awareness of the sources of uncertainty. Research design was a non-experimental cross-sectional survey. The data (n=141) was collected by validated questionnaire during COPD -patients’ visits or admissions to a tertiary hospital. The response rate was 62%. The data was analyzed by statistical methods. Around 70% of the participants were male with COPD diagnosed many years ago. Fifty-four percent were under 65 years and used an electronic respiratory aid apparatus (52%) (oxygen concentrator, ventilator or electronic inhalation device). Forty-one percent of the participants smoked. Disease-related uncertainty was widely reported. Seventy-three percent of the participants had uncertainty about their knowledge of the disease, the pulmonary medication and nutrition. One-quarter (25%) did not feel sure about managing COPD exacerbation. About forty percent (43%) reported that they did not have a written exacerbation decision aid indicating how to act in relation to COPD symptoms. Over half of the respondents were uncertain about self-management behavior related to health habits such as exercise and nutrition. Over a third of the participants (37%) felt uncertain about self-management skills related to giving up smoking. Support from the care providers was correlated significantly with the patients’ sense of confidence. COPD -patients who felt no confidence stated that they received significantly less support in care. Disease-related uncertainty should be considered more closely and broadly in the patient care context, and those strategies within patient education that enhance adherence should be strengthened and incorporated into standard practice.Keywords: adherence, COPD, disease-management, uncertainty
Procedia PDF Downloads 2402246 Keynote Talk: The Role of Internet of Things in the Smart Cities Power System
Authors: Abdul-Rahman Al-Ali
Abstract:
As the number of mobile devices is growing exponentially, it is estimated to connect about 50 million devices to the Internet by the year 2020. At the end of this decade, it is expected that an average of eight connected devices per person worldwide. The 50 billion devices are not mobile phones and data browsing gadgets only, but machine-to-machine and man-to-machine devices. With such growing numbers of devices the Internet of Things (I.o.T) concept is one of the emerging technologies as of recently. Within the smart grid technologies, smart home appliances, Intelligent Electronic Devices (IED) and Distributed Energy Resources (DER) are major I.o.T objects that can be addressable using the IPV6. These objects are called the smart grid internet of things (SG-I.o.T). The SG-I.o.T generates big data that requires high-speed computing infrastructure, widespread computer networks, big data storage, software, and platforms services. A company’s utility control and data centers cannot handle such a large number of devices, high-speed processing, and massive data storage. Building large data center’s infrastructure takes a long time, it also requires widespread communication networks and huge capital investment. To maintain and upgrade control and data centers’ infrastructure and communication networks as well as updating and renewing software licenses which collectively, requires additional cost. This can be overcome by utilizing the emerging computing paradigms such as cloud computing. This can be used as a smart grid enabler to replace the legacy of utilities data centers. The talk will highlight the role of I.o.T, cloud computing services and their development models within the smart grid technologies.Keywords: intelligent electronic devices (IED), distributed energy resources (DER), internet, smart home appliances
Procedia PDF Downloads 3252245 Human Factors Considerations in New Generation Fighter Planes to Enhance Combat Effectiveness
Authors: Chitra Rajagopal, Indra Deo Kumar, Ruchi Joshi, Binoy Bhargavan
Abstract:
Role of fighter planes in modern network centric military warfare scenarios has changed significantly in the recent past. New generation fighter planes have multirole capability of engaging both air and ground targets with high precision. Multirole aircraft undertakes missions such as Air to Air combat, Air defense, Air to Surface role (including Air interdiction, Close air support, Maritime attack, Suppression and Destruction of enemy air defense), Reconnaissance, Electronic warfare missions, etc. Designers have primarily focused on development of technologies to enhance the combat performance of the fighter planes and very little attention is given to human factor aspects of technologies. Unique physical and psychological challenges are imposed on the pilots to meet operational requirements during these missions. Newly evolved technologies have enhanced aircraft performance in terms of its speed, firepower, stealth, electronic warfare, situational awareness, and vulnerability reduction capabilities. This paper highlights the impact of emerging technologies on human factors for various military operations and missions. Technologies such as ‘cooperative knowledge-based systems’ to aid pilot’s decision making in military conflict scenarios as well as simulation technologies to enhance human performance is also studied as a part of research work. Current and emerging pilot protection technologies and systems which form part of the integrated life support systems in new generation fighter planes is discussed. System safety analysis application to quantify the human reliability in military operations is also studied.Keywords: combat effectiveness, emerging technologies, human factors, systems safety analysis
Procedia PDF Downloads 1422244 Effect of Oxygen Ion Irradiation on the Structural, Spectral and Optical Properties of L-Arginine Acetate Single Crystals
Authors: N. Renuka, R. Ramesh Babu, N. Vijayan
Abstract:
Ion beams play a significant role in the process of tuning the properties of materials. Based on the radiation behavior, the engineering materials are categorized into two different types. The first one comprises organic solids which are sensitive to the energy deposited in their electronic system and the second one comprises metals which are insensitive to the energy deposited in their electronic system. However, exposure to swift heavy ions alters this general behavior. Depending on the mass, kinetic energy and nuclear charge, an ion can produce modifications within a thin surface layer or it can penetrate deeply to produce long and narrow distorted area along its path. When a high energetic ion beam impinges on a material, it causes two different types of changes in the material due to the columbic interaction between the target atom and the energetic ion beam: (i) inelastic collisions of the energetic ion with the atomic electrons of the material; and (ii) elastic scattering from the nuclei of the atoms of the material, which is extremely responsible for relocating the atoms of matter from their lattice position. The exposure of the heavy ions renders the material return to equilibrium state during which the material undergoes surface and bulk modifications which depends on the mass of the projectile ion, physical properties of the target material, its energy, and beam dimension. It is well established that electronic stopping power plays a major role in the defect creation mechanism provided it exceeds a threshold which strongly depends on the nature of the target material. There are reports available on heavy ion irradiation especially on crystalline materials to tune their physical and chemical properties. L-Arginine Acetate [LAA] is a potential semi-organic nonlinear optical crystal and its optical, mechanical and thermal properties have already been reported The main objective of the present work is to enhance or tune the structural and optical properties of LAA single crystals by heavy ion irradiation. In the present study, a potential nonlinear optical single crystal, L-arginine acetate (LAA) was grown by slow evaporation solution growth technique. The grown LAA single crystal was irradiated with oxygen ions at the dose rate of 600 krad and 1M rad in order to tune the structural and optical properties. The structural properties of pristine and oxygen ions irradiated LAA single crystals were studied using Powder X- ray diffraction and Fourier Transform Infrared spectral studies which reveal the structural changes that are generated due to irradiation. Optical behavior of pristine and oxygen ions irradiated crystals is studied by UV-Vis-NIR and photoluminescence analyses. From this investigation we can concluded that oxygen ions irradiation modifies the structural and optical properties of LAA single crystals.Keywords: heavy ion irradiation, NLO single crystal, photoluminescence, X-ray diffractometer
Procedia PDF Downloads 2542243 E-Learning Approach for Improving Classroom Teaching to Enhance Students' Learning in Secondary Schools in Nigeria
Authors: Chika Ethel Esege
Abstract:
Electronic learning is learning facilitated by technology which has basically altered approaches globally, including the field of education. This trend is compelling educators to focus on approaches that improve classroom practices in order to enhance students’ learning and participation in a global digital society. However, e-learning is not fully utilized across subject disciplines particularly in the field of humanities, in the context of Nigerian secondary education. This study focused on the use of e-learning to enhance the development of digital skills, particularly, collaboration and communication in secondary school students in Nigeria. The study adopted an ‘action research’ involving 210 students and 7 teachers, who utilised the e-learning platform designed by the researcher for the survey. Mixed methods- qualitative and quantitative- were used for data collection including questionnaire, observation, interview, and analysis of statutory documents. The data were presented using frequency counts for questionnaire responses and figures of screenshots for learning tasks. The VOD Burner software was also used to analyse interviews and video recordings. The study showed that the students acquired collaboration and communication skills through e-learning intervention lesson, and demonstrated satisfaction with this approach. However, the study further revealed that the traditional teaching approach could not provide digital education or develop the digital skills of the students. Based on these findings, recommendations were made that the Nigerian Government should incorporate digital content across subject disciplines into secondary school education curricular and provide adequate infrastructure in order to enable educators to adopt relevant approaches necessary for the enhancement of students’ learning especially in a technologically evolving and advancing world.Keywords: developing collaboration and communication skills, electronic learning, improving classroom teaching, secondary schools in Nigeria
Procedia PDF Downloads 1342242 Development of Electronic Waste Management Framework at College of Design Art, Design and Technology
Authors: Wafula Simon Peter, Kimuli Nabayego Ibtihal, Nabaggala Kimuli Nashua
Abstract:
The worldwide use of information and communications technology (ICT) equipment and other electronic equipment is growing and consequently, there is a growing amount of equipment that becomes waste after its time in use. This growth is expected to accelerate since equipment lifetime decreases with time and growing consumption. As a result, e-waste is one of the fastest-growing waste streams globally. The United Nations University (UNU) calculates in its second Global E-waste Monitor 44.7 million metric tonnes (Mt) of e-waste were generated globally in 2016. The study population was 80 respondents, from which a sample of 69 respondents was selected using simple and purposive sampling techniques. This research was carried out to investigate the problem of e-waste and come up with a framework to improve e-waste management. The objective of the study was to develop a framework for improving e-waste management at the College of Engineering, Design, Art and Technology (CEDAT). This was achieved by breaking it down into specific objectives, and these included the establishment of the policy and other Regulatory frameworks being used in e-waste management at CEDAT, the determination of the effectiveness of the e-waste management practices at CEDAT, the establishment of the critical challenges constraining e-waste management at the College, development of a framework for e-waste management. The study reviewed the e-waste regulatory framework used at the college and then collected data which was used to come up with a framework. The study also established that weak policy and regulatory framework, lack of proper infrastructure, improper disposal of e-waste and a general lack of awareness of the e-waste and the magnitude of the problem are the critical challenges of e-waste management. In conclusion, the policy and regulatory framework should be revised, localized and strengthened to contextually address the problem. Awareness campaigns, the development of proper infrastructure and extensive research to establish the volumes and magnitude of the problems will come in handy. The study recommends a framework for the improvement of e-waste.Keywords: e-waste, treatment, disposal, computers, model, management policy and guidelines
Procedia PDF Downloads 792241 The Effect of Antibiotic Use on Blood Cultures: Implications for Future Policy
Authors: Avirup Chowdhury, Angus K. McFadyen, Linsey Batchelor
Abstract:
Blood cultures (BCs) are an important aspect of management of the septic patient, identifying the underlying pathogen and its antibiotic sensitivities. However, while the current literature outlines indications for initial BCs to be taken, there is little guidance for repeat sampling in the following 5-day period and little information on how antibiotic use can affect the usefulness of this investigation. A retrospective cohort study was conducted using inpatients who had undergone 2 or more BCs within 5 days between April 2016 and April 2017 at a 400-bed hospital in the west of Scotland and received antibiotic therapy between the first and second BCs. The data for BC sampling was collected from the electronic microbiology database, and cross-referenced with data from the hospital electronic prescribing system. Overall, 283 BCs were included in the study, taken from 92 patients (mean 3.08 cultures per patient, range 2-10). All 92 patients had initial BCs, of which 83 were positive (90%). 65 had a further sample within 24 hours of commencement of antibiotics, with 35 positive (54%). 23 had samples within 24-48 hours, with 4 (17%) positive; 12 patients had sampling at 48-72 hours, 12 at 72-96 hours, and 10 at 96-120 hours, with none positive. McNemar’s Exact Test was used to calculate statistical significance for patients who received blood cultures in multiple time blocks (Initial, < 24h, 24-120h, > 120h). For initial vs. < 24h-post BCs (53 patients tested), the proportion of positives fell from 46/53 to 29/53 (one-tailed P=0.002, OR 3.43, 95% CI 1.48-7.96). For initial vs 24-120h (n=42), the proportions were 38/42 and 4/42 respectively (P < 0.001, OR 35.0, 95% CI 4.79-255.48). For initial vs > 120h (n=36), these were 33/36 and 2/36 (P < 0.001,OR ∞). These were also calculated for a positive in initial or < 24h vs. 24-120h (n=42), with proportions of 41/42 and 4/42 (P < 0.001, OR 38.0, 95% CI 5.22-276.78); and for initial or < 24h vs > 120h (n=36), with proportions of 35/36 and 2/36 respectively (P < 0.001, OR ∞). This data appears to show that taking an initial BC followed by a BC within 24 hours of antibiotic commencement would maximise blood culture yield while minimising the risk of false negative results. This could potentially remove the need for as many as 46% of BC samples without adversely affecting patient care. BC yield decreases sharply after 48 hours of antibiotic use, and may not provide any clinically useful information after this time. Further multi-centre studies would validate these findings, and provide a foundation for future health policy generation.Keywords: antibiotics, blood culture, efficacy, inpatient
Procedia PDF Downloads 1732240 Multiphase Flow Regime Detection Algorithm for Gas-Liquid Interface Using Ultrasonic Pulse-Echo Technique
Authors: Serkan Solmaz, Jean-Baptiste Gouriet, Nicolas Van de Wyer, Christophe Schram
Abstract:
Efficiency of the cooling process for cryogenic propellant boiling in engine cooling channels on space applications is relentlessly affected by the phase change occurs during the boiling. The effectiveness of the cooling process strongly pertains to the type of the boiling regime such as nucleate and film. Geometric constraints like a non-transparent cooling channel unable to use any of visualization methods. The ultrasonic (US) technique as a non-destructive method (NDT) has therefore been applied almost in every engineering field for different purposes. Basically, the discontinuities emerge between mediums like boundaries among different phases. The sound wave emitted by the US transducer is both transmitted and reflected through a gas-liquid interface which makes able to detect different phases. Due to the thermal and structural concerns, it is impractical to sustain a direct contact between the US transducer and working fluid. Hence the transducer should be located outside of the cooling channel which results in additional interfaces and creates ambiguities on the applicability of the present method. In this work, an exploratory research is prompted so as to determine detection ability and applicability of the US technique on the cryogenic boiling process for a cooling cycle where the US transducer is taken place outside of the channel. Boiling of the cryogenics is a complex phenomenon which mainly brings several hindrances for experimental protocol because of thermal properties. Thus substitute materials are purposefully selected based on such parameters to simplify experiments. Aside from that, nucleate and film boiling regimes emerging during the boiling process are simply simulated using non-deformable stainless steel balls, air-bubble injection apparatuses and air clearances instead of conducting a real-time boiling process. A versatile detection algorithm is perennially developed concerning exploratory studies afterward. According to the algorithm developed, the phases can be distinguished 99% as no-phase, air-bubble, and air-film presences. The results show the detection ability and applicability of the US technique for an exploratory purpose.Keywords: Ultrasound, ultrasonic, multiphase flow, boiling, cryogenics, detection algorithm
Procedia PDF Downloads 1702239 Design and Simulation Interface Circuit for Piezoresistive Accelerometers with Offset Cancellation Ability
Authors: Mohsen Bagheri, Ahmad Afifi
Abstract:
This paper presents a new method for read out of the piezoresistive accelerometer sensors. The circuit works based on instrumentation amplifier and it is useful for reducing offset in Wheatstone bridge. The obtained gain is 645 with 1 μv/°c equivalent drift and 1.58 mw power consumption. A Schmitt trigger and multiplexer circuit control output node. A high speed counter is designed in this work. The proposed circuit is designed and simulated in 0.18 μm CMOS technology with 1.8 v power supply.Keywords: piezoresistive accelerometer, zero offset, Schmitt trigger, bidirectional reversible counter
Procedia PDF Downloads 3132238 Adsorption and Desorption Behavior of Ionic and Nonionic Surfactants on Polymer Surfaces
Authors: Giulia Magi Meconi, Nicholas Ballard, José M. Asua, Ronen Zangi
Abstract:
Experimental and computational studies are combined to elucidate the adsorption proprieties of ionic and nonionic surfactants on hydrophobic polymer surface such us poly(styrene). To present these two types of surfactants, sodium dodecyl sulfate and poly(ethylene glycol)-block-poly(ethylene), commonly utilized in emulsion polymerization, are chosen. By applying quartz crystal microbalance with dissipation monitoring it is found that, at low surfactant concentrations, it is easier to desorb (as measured by rate) ionic surfactants than nonionic surfactants. From molecular dynamics simulations, the effective, attractive force of these nonionic surfactants to the surface increases with the decrease of their concentration, whereas, the ionic surfactant exhibits mildly the opposite trend. The contrasting behavior of ionic and nonionic surfactants critically relies on two observations obtained from the simulations. The first is that there is a large degree of interweavement between head and tails groups in the adsorbed layer formed by the nonionic surfactant (PEO/PE systems). The second is that water molecules penetrate this layer. In the disordered layer, these nonionic surfactants generate at the surface, only oxygens of the head groups present at the interface with the water phase or oxygens next to the penetrating waters can form hydrogen bonds. Oxygens inside this layer lose this favorable energy, with a magnitude that increases with the surfactants density at the interface. This reduced stability of the surfactants diminishes their driving force for adsorption. All that is shown to be in accordance with experimental results on the dynamics of surfactants desorption. Ionic surfactants assemble into an ordered structure and the attraction to the surface was even slightly augmented at higher surfactant concentration, in agreement with the experimentally determined adsorption isotherm. The reason these two types of surfactants behave differently is because the ionic surfactant has a small head group that is strongly hydrophilic, whereas the head groups of the nonionic surfactants are large and only weakly attracted to water.Keywords: emulsion polymerization process, molecular dynamics simulations, polymer surface, surfactants adsorption
Procedia PDF Downloads 3452237 Worldwide GIS Based Earthquake Information System/Alarming System for Microzonation/Liquefaction and It’s Application for Infrastructure Development
Authors: Rajinder Kumar Gupta, Rajni Kant Agrawal, Jaganniwas
Abstract:
One of the most frightening phenomena of nature is the occurrence of earthquake as it has terrible and disastrous effects. Many earthquakes occur every day worldwide. There is need to have knowledge regarding the trends in earthquake occurrence worldwide. The recoding and interpretation of data obtained from the establishment of the worldwide system of seismological stations made this possible. From the analysis of recorded earthquake data, the earthquake parameters and source parameters can be computed and the earthquake catalogues can be prepared. These catalogues provide information on origin, time, epicenter locations (in term of latitude and longitudes) focal depths, magnitude and other related details of the recorded earthquakes. Theses catalogues are used for seismic hazard estimation. Manual interpretation and analysis of these data is tedious and time consuming. A geographical information system is a computer based system designed to store, analyzes and display geographic information. The implementation of integrated GIS technology provides an approach which permits rapid evaluation of complex inventor database under a variety of earthquake scenario and allows the user to interactively view results almost immediately. GIS technology provides a powerful tool for displaying outputs and permit to users to see graphical distribution of impacts of different earthquake scenarios and assumptions. An endeavor has been made in present study to compile the earthquake data for the whole world in visual Basic on ARC GIS Plate form so that it can be used easily for further analysis to be carried out by earthquake engineers. The basic data on time of occurrence, location and size of earthquake has been compiled for further querying based on various parameters. A preliminary analysis tool is also provided in the user interface to interpret the earthquake recurrence in region. The user interface also includes the seismic hazard information already worked out under GHSAP program. The seismic hazard in terms of probability of exceedance in definite return periods is provided for the world. The seismic zones of the Indian region are included in the user interface from IS 1893-2002 code on earthquake resistant design of buildings. The City wise satellite images has been inserted in Map and based on actual data the following information could be extracted in real time: • Analysis of soil parameters and its effect • Microzonation information • Seismic hazard and strong ground motion • Soil liquefaction and its effect in surrounding area • Impacts of liquefaction on buildings and infrastructure • Occurrence of earthquake in future and effect on existing soil • Propagation of earth vibration due of occurrence of Earthquake GIS based earthquake information system has been prepared for whole world in Visual Basic on ARC GIS Plate form and further extended micro level based on actual soil parameters. Individual tools has been developed for liquefaction, earthquake frequency etc. All information could be used for development of infrastructure i.e. multi story structure, Irrigation Dam & Its components, Hydro-power etc in real time for present and future.Keywords: GIS based earthquake information system, microzonation, analysis and real time information about liquefaction, infrastructure development
Procedia PDF Downloads 3172236 Cannabis Use Reported by Patients in an Academic Medical Practice
Authors: Siddhant Yadav, Ann Vincent, Sanjeev Nanda, Karen M. Fischer, Jessica A. Wright
Abstract:
Statement of the Problem: Despite the growing popularity of cannabis in the general population, there are several unknowns regarding its use, specific reasons for use, patient’s choice of products, health benefits, and adverse effects. The aim of our study was to evaluate patient-reported information related to cannabis use that was recorded in the electronic medical records. Methodology & Theoretical Orientation: We manually reviewed the electronic medical records of cannabis users who were part of a large pharmacogenomic study. Data abstracted included demographics, level of education, concurrent alcohol and tobacco use, type of cannabis utilized, formulation, indication, symptomatic improvement, or adverse effects reported. Following this, we did a descriptive statistical analysis. Findings: Our sample of 164 cannabis users were predominantly female (73.2%); 66% of users reported using cannabis for medical indications. Of the 109 patients who recorded information pertaining to alcohol/tobacco use, two-thirds of cannabis users reported concurrent use of alcohol, and about half of them were former or current tobacco users. The mean age of cannabis use was 66 years. Regarding the type of cannabis, 34.1% reported using marijuana, 32.3% reported CBD use, 1.8% reported using THC, and 1.2% reported using Marinol. Oral formulations (capsules, oils, suspensions, brownies, cakes, and tea) were the most common route (44 %). Indications for use included chronic pain (n=76), anxiety (n=9), counteracting side effects of chemotherapy (n=4), and palliative reasons (n=2). Fifty-eight of the 76 users endorsed improvement in chronic pain (80%), 5 users reported improvement in anxiety, and 2 reported improvement in side effects of chemotherapy. Conclusion & Significance: The majority of our cannabis users were Caucasian females, and there was a high likelihood of coinciding use of alcohol/tobacco in patients using cannabis. Most of our patients used the oral formulation for chronic pain. Importantly, a considerable number of patients reported improvements in chronic pain, anxiety, and side effects of chemotherapy.Keywords: cannabis use, adverse effects, medical practice, indications
Procedia PDF Downloads 932235 Using Electronic Portfolio to Promote English Speaking Ability of EFL Undergraduate Students
Authors: Jiraporn Lao-Un, Dararat Khampusaen
Abstract:
Lack of exposure to English language in the authentic English setting naturally leads to a lack of fluency in the language. As a result, Thai EFL learners are struggling in meeting with the communication 'can do' descriptors of the Common European Framework of References (CEFR) required by the Ministry of Education. This initial phase of the ongoing study, employing the e-portfolio to promote the English speaking ability, probed into the effects of the use of e-portfolio on Thai EFL nursing students' speaking ability. Also, their opinions towards the use of e-portfolio to enhance their speaking ability were investigated. The participants were 44 undergraduate nursing students at a Thai College of Nursing. The participants undertook four lessons to promote their communication skills according to the CEFR criteria. Throughout the semester, the participants videotaped themselves while completing the four speaking tasks. The videos were then uploaded onto the e-portfolio website where the researcher provided them with the feedbacks. The video records were analyzed by the speaking rubric designed according to the CEFR 'can do' descriptors. Also, students were required to record self-reflections in video format and upload onto the same URL Students' oral self-reflections were coded to find out the perceptions towards the use of the e-portfolio in promoting their speaking ability. The results from the two research instruments suggested the effectiveness of the tool on improving speaking ability, learner autonomy and media literacy skills. In addition, the oral reflection videos revealed positive opinion towards the tool. The discussion offers the current status of English speaking ability among Thai EFL students. This reveals the gaps between the EFL speaking ability and the CEFR ‘can do’ descriptors. In addition, the author raises the light on integration of the 21st century IT tool to enhance these students’ speaking ability. Lastly, the theoretical implications and recommendation for further study in integrating electronic tools to promote language skills in the EFL context are offered for further research.Keywords: EFL communication, EFL speaking, English communication, E-learning, E-portfolio, speaking ability, Thai EFL learners
Procedia PDF Downloads 1632234 Urgent Need for E -Waste Management in Mongolia
Authors: Enkhjargal Bat-Ochir
Abstract:
The global market of electrical and electronic equipment (EEE) has increasing rapidly while the lifespan of these products has become increasingly shorter. So, e-waste is becoming the world’s fastest growing waste stream. E-waste is a huge problem when it’s not properly disposed of, as these devices contain substances that are harmful to the environment and to human health as they contaminate the land, water, and air. This paper tends to highlight e-waste problem and harmful effects and can grasp the extent of the problem and take the necessary measures to solve it in Mongolia and to improve standards and human health.Keywords: e -waste, recycle, electrical, Mongolia
Procedia PDF Downloads 4202233 CFD-DEM Modelling of Liquid Fluidizations of Ellipsoidal Particles
Authors: Esmaeil Abbaszadeh Molaei, Zongyan Zhou, Aibing Yu
Abstract:
The applications of liquid fluidizations have been increased in many parts of industries such as particle classification, backwashing of granular filters, crystal growth, leaching and washing, and bioreactors due to high-efficient liquid–solid contact, favorable mass and heat transfer, high operation flexibilities, and reduced back mixing of phases. In most of these multiphase operations the particles properties, i.e. size, density, and shape, may change during the process because of attrition, coalescence or chemical reactions. Previous studies, either experimentally or numerically, mainly have focused on studies of liquid-solid fluidized beds containing spherical particles; however, the role of particle shape on the hydrodynamics of liquid fluidized beds is still not well-known. A three-dimensional Discrete Element Model (DEM) and Computational Fluid Dynamics (CFD) are coupled to study the influence of particles shape on particles and liquid flow patterns in liquid-solid fluidized beds. In the simulations, ellipsoid particles are used to study the shape factor since they can represent a wide range of particles shape from oblate and sphere to prolate shape particles. Different particle shapes from oblate (disk shape) to elongated particles (rod shape) are selected to investigate the effect of aspect ratio on different flow characteristics such as general particles and liquid flow pattern, pressure drop, and particles orientation. First, the model is verified based on experimental observations, then further detail analyses are made. It was found that spherical particles showed a uniform particle distribution in the bed, which resulted in uniform pressure drop along the bed height. However for particles with aspect ratios less than one (disk-shape), some particles were carried into the freeboard region, and the interface between the bed and freeboard was not easy to be determined. A few particle also intended to leave the bed. On the other hand, prolate particles showed different behaviour in the bed. They caused unstable interface and some flow channeling was observed for low liquid velocities. Because of the non-uniform particles flow pattern for particles with aspect ratios lower (oblate) and more (prolate) than one, the pressure drop distribution in the bed was not observed as uniform as what was found for spherical particles.Keywords: CFD, DEM, ellipsoid, fluidization, multiphase flow, non-spherical, simulation
Procedia PDF Downloads 3112232 Room Temperature Ionic Liquids Filled Mixed Matrix Membranes for CO2 Separation
Authors: Asim Laeeq Khan, Mazhar Amjad Gilani, Tayub Raza
Abstract:
The use of fossil fuels for energy generation leads to the emission of greenhouse gases particularly CO2 into the atmosphere. To date, several techniques have been proposed for the efficient removal of CO2 from flue gas mixtures. Membrane technology is a promising choice due to its several inherent advantages such as low capital cost, high energy efficiency, and low ecological footprint. One of the goals in the development of membranes is to achieve high permeability and selectivity. Mixed matrix membranes comprising of inorganic fillers embedded in polymer matrix are a class of membranes that have showed improved separation properties. One of the biggest challenges in the commercialization if mixed matrix membranes are the removal of non-selective voids existing at the polymer-filler interface. In this work, mixed matrix membranes were prepared using polysulfone as polymer matrix and ordered mesoporous MCM-41 as filler materials. A new approach to removing the interfacial voids was developed by introducing room temperature ionic (RTIL) at the polymer-filler interface. The results showed that the imidazolium based RTIL not only provided wettability characteristics but also helped in further improving the separation properties. The removal of interfacial voids and good contact between polymer and filler was verified by SEM measurement. The synthesized membranes were tested in a custom built gas permeation set-up for the measurement of gas permeability and ideal gas selectivity. The results showed that the mixed matrix membranes showed significantly higher CO2 permeability in comparison to the pristine membrane. In order to have further insight into the role of fillers, diffusion and solubility measurements were carried out. The results showed that the presence of highly porous fillers resulted in increasing the diffusion coefficient while the solubility showed a slight drop. The RTIL filled membranes showed higher CO2/CH4 and CO2/N2 selectivity than unfilled membranes while the permeability dropped slightly. The increase in selectivity was due to the highly selective RTIL used in this work. The study revealed that RTIL filled mixed matrix membranes are an interesting candidate for gas separation membranes.Keywords: ionic liquids, CO2 separation, membranes, mixed matrix membranes
Procedia PDF Downloads 4802231 Coupled Exciton - Surface Plasmon Polariton Enhanced Photoresponse of Two-Dimensional Hydrogenated Honeycomb Silicon Boride
Authors: Farzaneh Shayeganfar, Ali Ramazani
Abstract:
Exciton (strong electronic interaction of electron-hole) and hot carriers created by surface plasmon polaritons has been demonstrated in nanoscale optoelectronic devices, enhancing the photoresponse of the system. Herein, we employ a quantum framework to consider coupled exciton- hot carriers effects on photovoltaiv energy distribution, scattering process, polarizability and light emission of 2D-semicnductor. We use density functional theory (DFT) to design computationally a semi-functionalized 2D honeycomb silicon boride (SiB) monolayer with H atoms, suitable for photovoltaics. The dynamical stability, electronic and optical properties of SiB and semi-hydrogenated SiB structures were investigated utilizing the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The calculated phonon dispersion shows that while an unhydrogenated SiB monolayer is dynamically unstable, surface semi-hydrogenation improves the stability of the structure and leads to a transition from metallic to semiconducting conductivity with a direct band gap of about 1.57 eV, appropriate for photovoltaic applications. The optical conductivity of this H-SiB structure, determined using the random phase approximation (RPA), shows that light adsorption should begin at the boundary of the visible range of light. Additionally, due to hydrogenation, the reflectivity spectrum declines sharply with respect to the unhydrogenated reflectivity spectrum in the IR and visible ranges of light. The energy band gap remains direct, increasing from 0.9 to 1.8 eV, upon increasing the strain from -6% (compressive) to +6% (tensile). Additionally, compressive and tensile strains lead, respectively, to red and blue shifts of optical the conductivity threshold around the visible range of light. Overall, this study suggests that H-SiB monolayers are suitable as two-dimensional solar cell materials.Keywords: surface plasmon, hot carrier, strain engineering, valley polariton
Procedia PDF Downloads 110